(a) The magnitude of the force propelling the bobsled forward is 648 N. (b) The magnitude of the net force acting on the bobsled is 198 N.
Use Newton's second law of motion, which states that force equals mass times acceleration (F = ma). Rearranging the formula, we get F = ma, where F is the force, m is the mass, and a is the acceleration.
So, the force propelling the bobsled forward is,
F = ma = (270 kg)(2.4 m/s^2) = 648 N
The net force acting on the bobsled can be calculated by subtracting the forces resisting the motion from the force propelling the bobsled forward. So, the net force acting is,
Net force = Force propelling forward - Forces resisting motion
Net force = 648 N - 450 N
Net force = 198 N
To know more about force, here
brainly.com/question/13570504
#SPJ4
A pitcher throws a 0.15-kg baseball accelerating it from rest to a speed of about 90 m/s .estimate the force exerted by the pitcher on the ball
The force exerted by the pitcher on the 0.15 Kg ball, given that the ball accelerated from rest is 357.35 N
How to determine the force exerted by the pitcher?First, we shall determine the acceleration of the ball. Details below:
Initial velocity (u) = 0 m/sFinal velocity (v) = 90 m/sDistance (s) = 1.7 mAcceleration (a) =?v² = u² + 2as
90² = 0² + (2 × a × 1.7)
8100 = 0 + 3.4a
8100 = 3.4a
Divide both side by 3.4
a = 8100 / 3.4
a = 2382.35 m/s²
Finally, we shall determine the force exerted. Details below:
Mass (m) = 0.15 KgAcceleration (a) = 2382.35 m/s²Force exerted (F) =?Force = mass × acceleration
Force exerted = 0.15 × 2382.35
Force exerted = 357.35 N
Thus, the force exerted is 357.35 N
Learn more about force and acceleration:
https://brainly.com/question/12163222
#SPJ1
Complete question:
A pitcher throws a 0.15-kg baseball accelerating it from rest to a speed of about 90 m/s in a distance 1.7 m . Estimate the force exerted by the pitcher on the ball
Describe and identify problems relating to data management
Problems with data management may have a detrimental impact on a variety of issues. Bad risk management choices, data loss, information leakage, unauthorised, data pyramids, compliance with laws, an unsafe environment, a shortage of resources, etc. are instances among these.
What issues surround the handling of data?
These are a few potential issues in managing scientific, financial, or administration data that have been briefly explained.
Technical information not adequately recorded.
The administration of performance specifications is not under the PI's control.
Data not kept on file by the organization.
improper maintenance of financial or administrative data.
What would you say is data management?
Data administration is the act of gathering, arranging, and using data to job in an effective, economy, and judgement call.
To know more about laws click here
brainly.com/question/27389083
#SPJ4
a vertical spring has a length of 0.15 m when a 0.225 kg mass hangs from it, and a length of 0.725 m when a 1.85 kg mass hangs from it.50% Part (a) What is the force constant of the spring, in newtons per meter? 50% Part (b) What is the unloaded length of the spring, in centimeters?
Answer:
Spring constant: approximately [tex]28\; {\rm N\cdot m^{-1}}[/tex].
Unloaded length: approximately [tex]7.0\; {\rm cm}[/tex].
(Assume that the weight of the spring is negligible, and that [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex].)
Explanation:
Divide the tension [tex]F[/tex] on the spring by the displacement [tex]x[/tex] to find the spring constant. [tex]k[/tex]:
[tex]\begin{aligned}k &= \frac{F}{x}\end{aligned}[/tex].
Let [tex]L_{0}[/tex] denote the unloaded length of the spring (in meters.)
When the [tex]0.225\; {\rm kg}[/tex] mass is on the spring, the tension on the spring would be [tex]m\, g = (0.225)\, (9.81) \; {\rm N} \approx 2.207\; {\rm N}[/tex].
It is given that the length of the spring with this [tex]0.225\; {\rm kg}[/tex] mass attached is [tex]L = 0.15\; {\rm m}[/tex]. Subtract the initial length of the spring [tex]L_{0}[/tex] from the current length to find the displacement of the spring: [tex]x = L - L_{0} = 0.15 - L_{0}[/tex].
Divide the tension on the spring by the displacement to find an expression for the spring constant:
[tex]\begin{aligned}k &= \frac{F}{x} \approx \frac{2.207}{0.15 - L_{0}}\end{aligned}[/tex].
Similarly, when the [tex]1.85\; {\rm kg}[/tex] object is on the spring, the tension on the spring would be [tex]m\, g = (1.85)\, (9.81) \; {\rm N} \approx 18.15\; {\rm N}[/tex].
Subtract the initial length [tex]L_{0}[/tex] from the current length [tex]L = 0.725\; {\rm m}[/tex] to find the displacement: [tex]x = L - L_{0} = (0.725 - L_{0})\; {\rm m}[/tex].
Divide the tension on the spring by the displacement to find another expression for the spring constant:
[tex]\begin{aligned}k &= \frac{F}{x} \approx \frac{18.15}{0.725 - L_{0}}\end{aligned}[/tex].
Equate the two expressions for the spring constant [tex]k[/tex] and solve for the unloaded length [tex]L_{0}[/tex]:
[tex]\begin{aligned}\frac{18.15}{0.725 - L_{0}} &= \frac{2.207}{0.15 - L_{0}}\end{aligned}[/tex].
[tex](18.15)\, (0.15 - L_{0}) = (2.207)\, (0.725 - L_{0})[/tex].
[tex]\begin{aligned} L_{0} &\approx \frac{(18.15)\, (0.15) - (0.725) (2.207)}{18.15 - 2.207}\; {\rm m} \\ &\approx 0.070\; {\rm m}\end{aligned}[/tex].
Substitute [tex]L_{0}[/tex] back into one of the two expressions for the spring constant [tex]k[/tex] and evaluate:
[tex]\begin{aligned}k &\approx \frac{18.15}{0.725 - L_{0}} \\ &\approx \frac{18.15}{0.725 -0.070} \approx 28\; {\rm N\cdot m^{-1}} \end{aligned}[/tex].
Apply unit conversion:
[tex]0.070\; {\rm m} = (0.070 \times 10^{2})\; {\rm cm} = 7.0\; {\rm cm}[/tex].
In other words, the unloaded length of the spring would be approximately [tex]7.0\; {\rm cm}[/tex].
The correct answer to part a) is, the force constant of the spring can be found using Hooke's Law and it is 3.83 N/m, and part b) is, the unloaded length of the spring is the same as the length when the 1.85 kg mass is hanging from it, which is 0.725 m.
Part (a) To find the force constant of the spring, we can use Hooke's Law, which states that the force exerted by a spring is equal to the spring constant multiplied by the displacement from equilibrium.
The equation for this is F = kx, where F is the force, k is the spring constant, and x is the displacement from equilibrium.
In this case, we can use the two given lengths and masses to find the displacement from equilibrium and the force exerted by the spring.
The displacement for the first mass is 0.15 m - 0.725 m = -0.575 m, and the force is 0.225 kg * 9.8 m/s^2 = 2.205 N. The displacement for the second mass is 0.725 m - 0.725 m = 0 m, and the force is 1.85 kg * 9.8 m/s^2 = 18.13 N.
We can then plug these values into the equation F = kx and solve for k:
2.205 N = k(-0.575 m)
k = -2.205 N / -0.575 m
k = 3.83 N/m
Therefore, the force constant of the spring is 3.83 N/m.
Part (b) To find the unloaded length of the spring, we can use the equation x = F/k, where x is the displacement from equilibrium, F is the force, and k is the spring constant.
Since the unloaded length of the spring is when the force is zero, we can plug in F = 0 and k = 3.83 N/m to solve for x:
x = 0 N / 3.83 N/m
x = 0 m
Since the displacement from equilibrium is zero, the unloaded length of the spring is the same as the length when the 1.85 kg mass is hanging from it, which is 0.725 m.
Therefore, the unloaded length of the spring is 0.725 m, or 72.5 cm.
To know more about Hooke's Law, refer here:
https://brainly.com/question/29126957#
#SPJ11
Can someone help me please.
The amount of loss in the mechanical energy of tha ball during the bounce is 7.35J (Option B)
How do i determine the amount of energy lost?We'll begin by obtaining the energy at the height of 5 m. Details below:Mass of object (m) = 0.5 KgInitial height (h₁) = 5 mAcceleration due to gravity (g) = 9.8 m/s² Energy at 5m (E₁) = ?E₁ = mgh₁
E₁ = 0.5 × 9.8 × 5
E₁ = 24.5 J
Next, we shall determine the energy during the bounce. Details below:
Mass of object (m) = 0.5 KgBounce height (h₂) = 3.5 mAcceleration due to gravity (g) = 9.8 m/s² Energy during bounce (E₂) = ?E₂ = mgh₂
E₂ = 0.5 × 9.8 × 3.5
E₂ = 17.15 J
Finally, we shall determine the loss in the amount energy during the bounce. This is shown below:
Energy at 5m (E₁) = 24.5 JEnergy during bounce (E₂) = 17.15 JLost energy (E) =?E = E₁ - E₂
E = 24.5 - 17.15
E = 7.35J
Thus, the lost energy is 7.35J (Option B)
Learn more about energy:
https://brainly.com/question/22274239
#SPJ1
06 two silt spaced 0. 450mm apart are placed 75. 0 cm from a screen. What is the distance between the second and third dark line of the interference pattern on the screen when the silt are illuminated with coherent light with a wave length of 500nm
The distance between the slits, d = 0.450 mm = 0.00045 m, The distance from the screen, L = 75.0 cm = 0.75 m,The wavelength of the coherent light, λ = 500 nm = 5.00 x 10^-7 m
The distance between the central maximum and the first dark line can be found using the formula: sin θ = mλ/d, where θ is the angle between the line connecting the slits and the screen, m is the order of the dark line (m = 1 for the first dark line), and λ is the wavelength of the light. Rearranging this formula gives: sin θ = mλ/d, θ = sin^-1(mλ/d). For the second dark line, m = 2, and for the third dark line, m = 3. So we can find the angles θ2 and θ3: θ2 = sin^-1(2λ/d) = sin^-1(2 x 5.00 x 10^-7 m / 0.00045 m) ≈ 0.140 radians, θ3 = sin^-1(3λ/d) = sin^-1(3 x 5.00 x 10^-7 m / 0.00045 m) ≈ 0.234 radians. Now we can use trigonometry to find the distances between the second and third dark lines on the screen. The distance between the central maximum and the second dark line is given by: y2 = L tan θ2 ≈ 0.099 m. Similarly, the distance between the central maximum and the third dark line is given by: y3 = L tan θ3 ≈ 0.165 m. Therefore, the distance between the second and third dark lines is: y3 - y2 ≈ 0.066 m. So the distance between the second and third dark lines of the interference pattern on the screen is approximately 0.066 m.
To learn more about wavelength click the link below
brainly.com/question/4112024
#SPJ4
a 500 g glider hits and sticks to the 250 g glider, compressing the spring to a minimum length of 22 cm. what was the speed of the 500 g glider just before impact?
The speed of the 500 g glider just before impact was 0 m/s.
To answer this question, we need to use the equation of conservation of momentum:
Pi = Pf, where P is the momentum and i and f stand for initial and final, respectively.
We can express the momentum of each glider as m*v, where m is the mass of the glider and v is its velocity.
Therefore, m1*v1i + m2*v2i = m1*v1f + m2*v2f
Given the masses of the gliders, we can solve for v1i:
v1i = (m1*v1f + m2*v2f) / m1
Since the spring compressed to a length of 22 cm, the final velocity of both gliders will be 0 m/s, giving us the following equation:
v1i = (500 g * 0 m/s + 250 g * 0 m/s) / 500 g
v1i = 0 m/s
Therefore, the speed of the 500 g glider just before impact was 0 m/s.
Know more about speed
https://brainly.com/question/13943409
#SPJ11
a fairground ride spins its occupants inside a flying saucer-shaped container. if the horizontal circular path the riders follow has a radius of 1 1 . 2 m 11.2 m, at what angular velocity will the riders be subjected to a centripetal acceleration whose magnitude is equal to 1.50 times the acceleration due to gravity? report you answer in units of revolutions/minute.
The angular velocity of the fairground ride is 29.19 revolutions/minute..
Angular velocity at which the riders are subjected to a centripetal acceleration of magnitude 1.5g when the radius is 11.2 m can be calculated as follows: Angular velocity formula:ω = v/rwhereω = angular velocity in radians/minute v = linear velocity r = radius of the circular path. The formula for centripetal acceleration is given as follows: a_c = v^2/rr = 11.2 mLet a = 1.5g = 1.5 x 9.81 m/s^2 = 14.715 m/s^2v^2/r = a_c => v^2 = a_c x rv^2 = 14.715 x 11.2v = √(14.715 x 11.2) = 10.81 m/sω = v/r = 10.81/11.2 = 0.966 rad/sThe angular velocity of the fairground ride is 0.966 rad/s. Now, converting radians/second to revolutions/minute as follows:1 revolution = 2π radiansω = 0.966 x 60/2π = 29.19 revolutions/minute. Hence, the angular velocity of the fairground ride is 29.19 revolutions/minute.
Know more about angular velocity
https://brainly.com/question/20432894
#SPJ11
Currently, electricity is the form of energy we use most in our daily lives. This means we are always using energy resources that can be transformed to electrical energy. You are an electrical engineer exploring different resources for producing electricity while also making sure to pick resources that are least harmful to the environment. Create a PowerPoint to include the below information:
1. What are the disadvantages of using fossil fuels for producing electricity?
2. Why do we depend so heavily on fossil fuels to produce electricity even when they cause air pollution?
3. Which energy resources seem to be the least harmful for the environment (this includes harmful to air, water, or living things)? Explain how you reached this conclusion.
4. Renewable energy resources affect the environment as well. Pick one renewable energy resource and describe how and why it affects the environment.
Answer:
1. The disadvantages of using fossil fuels for producing electricity include their contribution to air pollution and climate change, their finite supply, and the environmental damage caused by their extraction and transportation.
2. We depend heavily on fossil fuels to produce electricity because they are relatively cheap and abundant, and because our infrastructure is largely built around their use. Additionally, many people may not be aware of the negative environmental impacts of fossil fuel use or may not have access to alternative energy sources.
3. Renewable energy resources, such as solar, wind, and hydropower, are generally considered to be the least harmful to the environment because they produce little to no greenhouse gas emissions or other pollutants. Additionally, they do not require mining or drilling for fuel, and they do not produce toxic waste. However, the environmental impact of renewable energy sources can vary depending on factors such as the location of the power generation facilities and the materials used in the production of renewable energy technologies.
4. One renewable energy resource that affects the environment is hydropower. While hydropower is a clean and renewable energy source, it can have significant environmental impacts, particularly on aquatic ecosystems. The construction of dams and other hydropower facilities can alter river flows and disrupt fish migration patterns, and the flooding of large areas for reservoirs can displace communities and cause other ecological disruptions. Additionally, the decommissioning of hydropower facilities can also have environmental impacts, such as the release of sediment and other materials that have accumulated behind the dams. To mitigate these impacts, it is important to carefully consider the location and design of hydropower facilities and to prioritize ecological considerations in the planning and implementation of hydropower projects.
Hope this helps you! If not, I'm sorry! If you need more help, ask me! :]
A 1. 2 kg block is held at rest against the spring with a force constant k= 730 N/m. Initially, the spring is compressed a distance d. When the block is released, it slides across a surface that is frictionless except for a rough patch of width 5. 0 cm that has a coefficient of kinetic friction = 0. 44. Find d, such that the block's speed after crossing the rough patch is 2. 3 m/s
The initial compression of the spring required for the block to have a speed of 2.3 m/s after crossing the rough patch is 0.067 m.
The initial potential energy of the block when held at rest against the spring is given by:
PE = (1/2)kx², where k is the force constant of the spring and x is the distance the spring is compressed. Therefore, we have:
PE = (1/2)(730 N/m)d²
When the block is released, it starts moving and loses some of its initial energy due to friction on the rough patch. The work done by friction can be found by:
W = μN(d), where μ is the coefficient of kinetic friction, N is the normal force, and d is the width of the rough patch.
The normal force is given by:
N = mg, where m is the mass of the block and g is the acceleration due to gravity.
Thus, the work done by friction is:
W = μmg(d)
The change in kinetic energy of the block is equal to the work done by the spring minus the work done by friction. Therefore:
(1/2)mv² = (1/2)kx² - μmgd
Substituting the given values of mass, coefficient of friction, and final velocity, we get:
(1/2)(1.2 kg)(2.3 m/s)² = (1/2)(730 N/m)d² - (0.44)(9.8 m/s²)(1.2 kg)(0.05 m)d
Solving for d, we get:
d ≈ 0.097 m
Therefore, the block should be compressed by approximately 9.7 cm for it to have a speed of 2.3 m/s after crossing the rough patch.
Note: This solution assumes that the spring is a linear spring obeying Hooke's Law.
Learn more about kinetic friction here: brainly.com/question/30886698
#SPJ4
If it actually hits the ground with a speed of 8. 50 m/s , what is the magnitude of the average force of air resistance exerted on it?
the magnitude of the average force of air resistance exerted on the object is approximately 1.05 N.
The magnitude of the average force of air resistance exerted on an object depends on various factors such as the shape, size, speed, and density of the object, as well as the density and viscosity of the air.
F = (1/2) * rho * Cd * A * v
we can estimate the density of air at sea level as 1.225 kg/m, and assume a drag coefficient of 0.5 for a spherical object.
F = (1/2) * rho * Cd * A * v
= (1/2) * 1.225 kg/m * 0.5 * pi * (0.1 m)* (8.50 m/s)
= 1.05 N (to two significant figures)
learn more about magnitude here:
https://brainly.com/question/29766788
#SPJ4
What is the y component of puck 2 velocity after the collision
In this collision, momentum is conserved as there is no external force acting on the system. We can use the conservation of momentum to find the final velocity of puck 2.
The initial momentum of the system is :pinitial = m1v1 + m2v2
where m1 and m2 are the masses of puck 1 and puck 2 respectively, and v1 and v2 are their initial velocities. Since puck 2 is initially at rest, we have:
pinitial = m1×v1
Substituting the given values, we get:
pinitial = (0.35 kg)×(2.5 m/s) = 0.875 kg m/s
After the collision, puck 1 is deflected at an angle of 30 degrees with a speed of 1.7 m/s. We can use trigonometry to find the x and y components of its final velocity:
v1x = v1cos(30) = 1.7cos(30) = 1.47 m/s v1y = v1sin(30) = 1.7sin(30) = 0.85 m/s
The final momentum of the system is:
pfinal = m1v1 + m2v2'
where v2' is the final velocity of puck 2. Since momentum is conserved, we have:
pinitial = pfinal
Substituting the given values, we get:
0.875 kg m/s = (0.35 kg)×(1.47 m/s) + (0.51 kg)×v2'
Solving for v2', we get:
v_2' = (0.875 kg m/s - 0.51 kg*(1.47 m/s)) / 0.51 kg = -0.94 m/s
Therefore, the final velocity of puck 2 is -0.94 m/s in the negative x direction (i.e., towards the left).
The complete and correct question isConsider a collision between two pucks on a frictionless air hockey table. Puck 1 has a mass of 350 g and an initial velocity of 2.5 m/s in the +x direction. Puck 2 has a mass of 510 g and is initially at rest.
After the collision puck 1 has been deflected by 30 degrees and has a speed of 1.7 m/s. What is the speed and direction of puck 2 after the collision?
To know more about Collision and Velocity , visit :
https://brainly.com/question/17127206
#SPJ9
A system of two objects has ΔKtot = 6 J and ΔUint = -3 J
The ΔKtot represents the change in the total kinetic energy of the system, and the ΔUint represents the change in the total internal energy of the system.
Since the system consists of two objects, we can assume that the change in kinetic energy is due to the transfer of energy between the two objects, while the change in internal energy is due to a change in the potential energy of the system. The positive value of ΔKtot indicates that the total kinetic energy of the system has increased by 6 J. This means that one of the objects has gained kinetic energy while the other has lost the same amount of kinetic energy. This could happen if the two objects collided and transferred energy between each other. The negative value of ΔUint indicates that the total internal energy of the system has decreased by 3 J. This means that the potential energy of the system has decreased by the same amount, which could happen if the objects moved closer together and the force of attraction between them decreased. Overall, the change in kinetic energy and internal energy in the system shows that there has been a transfer of energy between the objects and a decrease in the potential energy of the system. This suggests that the objects may have undergone a collision or moved closer together due to the force of attraction between them.
To learn more about Kinetic Energy click the link below
brainly.com/question/26472013
#SPJ4
A sealed, empty 1. 0 L plastic sports bottle is sitting on a porch
in the hot sunlight. The temperature of the air inside the bottle
is 39 °C (312 K). When the sun goes down, the air in the bottle
cools to 20. °C (293 K). Assuming that the bottle is completely
flexible, what is the volume of air at the cooler temperature?
The volume of air in the bottle at the cooler temperature is 1.064 L.
How to calculate volume of air at the cooler temperature?
To solve this problem, we can apply the Ideal Gas Law:
PV = nRT
where P is the gas's pressure, V is its volume, n is the number of moles in the gas, R is the ideal gas constant, and T is its absolute temperature.
Since the bottle is completely flexible, we can assume that the pressure inside the bottle remains constant throughout the process. Therefore, we can set the pressures of the gas at both temperatures equal to each other:
P1V1 = P2V2
where P1 and T1 are the pressure and temperature of the gas at the initial state (when it is hot) and P2 and T2 are the pressure and temperature of the gas at the final state (when it is cool).
We can rewrite this equation to find V2:
V2 = (P1/P2) * V1 * (T2/T1)
where V1 is the gas's initial volume.
Now, we can plug in the values:
V1 = 1.0 L
P1 = P2 (since the bottle is completely flexible)
T1 = 39 °C = 312 K
T2 = 20 °C = 293 K
The ideal gas constant R is 8.31 J/(mol*K), but we do not need to use it here since we are not given the number of moles of gas in the bottle.
Thus, we have:
V2 = (312/293) * 1.0 L = 1.064 L
Therefore, the volume of air in the bottle at the cooler temperature is 1.064 L.
To learn more about volume, visit: https://brainly.com/question/27030789
#SPJ1
A 3520 kg truck moving north at
26.0 m/s makes an INELASTIC
collision with a 1480 kg car
moving 13.0 m/s east. What is the
direction of their (joint) velocity
after the collision?
The direction of their (joint) velocity after the collision is to the northeast.
What is their direction after the collision?To solve this problem, we need to use the conservation of momentum principle.
In this case, the truck and car form a closed system, and we can use the following equation to solve for their joint velocity:
(m1 * v1) + (m2 * v2) = (m1 + m2) * v
where:
m1 = 3520 kg (mass of truck)v1 = 26.0 m/s (velocity of truck)m2 = 1480 kg (mass of car)v2 = 13.0 m/s (velocity of car)v = joint velocity of truck and car after collisionFirst, we need to break down the initial velocities of the truck and car into their x and y components.
For the truck:
vx1 = 0 m/s (moving north)
vy1 = 26.0 m/s (moving north)
For the car:
vx2 = 13.0 m/s (moving east)
vy2 = 0 m/s (not moving in the y-direction)
Next, we need to find the total x and y momentum of the system before the collision.
Px = m1 * vx1 + m2 * vx2
= (3520 kg) * 0 m/s + (1480 kg) * 13.0 m/s
= 19240 kg*m/s (to the right)
Py = m1 * vy1 + m2 * vy2
= (3520 kg) * 26.0 m/s + (1480 kg) * 0 m/s
= 91520 kg*m/s (moving north)
The total momentum of the system before the collision is therefore:
P = √(Px^2 + Py^2)
= √((19240 kgm/s)^2 + (91520 kgm/s)^2)
= 97397.59 kg*m/s
Now we can use the conservation of momentum principle to solve for the joint velocity of the truck and car after the collision:
(m1 * v1) + (m2 * v2) = (m1 + m2) * v
(3520 kg * 0 m/s) + (1480 kg * 13.0 m/s) + (3520 kg + 1480 kg) * v = 97397.59 kg*m/s
v = (3520 kg * 0 m/s + 1480 kg * 13.0 m/s) / (3520 kg + 1480 kg)
= 8.60 m/s (to the northeast)
Learn more about momentum here: https://brainly.com/question/7538238
#SPJ1
80% of the heat supplied to a 30g block of ice at 0°c completely melt it to water 0°C. Calculate the total heat energy supplied=336jg^-1k
Given: mass of ice = 30g, specific heat of ice = 336 Jg^-1K^-1, specific heat of water = 4186 Jg^-1K^-1
Let x be the heat energy supplied to melt the ice. Heat energy required to raise the temperature of 30g of ice from 0°C to 0°C (its melting point) is given by: Q1 = mass x specific heat of ice x change in temperature, Q1 = 30g x 336 Jg^-1K^-1 x (0 - 0) = 0 J. Since 80% of the heat supplied completely melts the ice, the remaining 20% of the heat energy supplied is used to raise the temperature of the melted ice (now water) from 0°C to 0°C: Q2 = 0.2 x total heat energy supplied, Q2 = 0.2 x x. The total heat energy supplied is given by: total heat energy supplied = Q1 + Q2, x = (total heat energy supplied - Q1)/0.2, x = (336 Jg^-1K^-1 x 30g - 0)/0.2
x = 201600 J. Therefore, the total heat energy supplied to melt the ice completely to water at 0°C is 201600 J.
To learn more about Specific heat of ice click the link below
brainly.com/question/20343609
#SPJ4
Two magnets with opposite poles facing each other are held close to each other but are not touching. When released, the magnets snap together. When this happens, what evidence is there that energy is being transformed?
20 Points! Please have explanation
When the magnets snap together, the kinetic energy of their motion is transformed into potential energy as they become magnetically attached.
This can be seen as an increase in the temperature of the magnets due to the friction produced as they come together. Additionally, sound waves are produced that are evidence of the energy being transformed from kinetic to potential.
When two magnets with opposite poles facing each other are held close to each other but not touching and released, the kinetic energy of their motion is transformed into potential energy as they become magnetically attached. This can be seen as an increase in the temperature of the magnets due to the friction produced as they come together, as well as sound waves that are evidence of the energy transformation.
What is Energy?
Energy is the ability to do work. It exists in many forms, such as kinetic, potential, thermal, electrical, chemical, and nuclear energy. It can be transferred from one form to another, and can be converted into other forms of energy.
What is Kinetic Energy?
Kinetic energy is the energy of motion. It is the energy of an object due to its movement, and can be calculated by taking the mass of the object and multiplying it by the square of its velocity.
What is Potential Energy?
Potential energy is the energy that an object has due to its position or configuration. It is the energy stored in an object as a result of its position relative to other objects, and can be converted into other forms of energy.
Energy is the ability to do work, and exists in many forms such as kinetic, potential, thermal, electrical, chemical, and nuclear energy. Kinetic energy is the energy of motion, while potential energy is the energy stored in an object due to its position relative to other objects. These two forms of energy can be converted into other forms, and can be used to do work.
Learn more about Energy from the given link:
https://brainly.com/question/13881533
#SPJ1
When the magnets snap together, the kinetic energy of their motion is transformed into potential energy as they become magnetically attached.
This can be seen as an increase in the temperature of the magnets due to the friction produced as they come together. Additionally, sound waves are produced that are evidence of the energy being transformed from kinetic to potential.
When two magnets with opposite poles facing each other are held close to each other but not touching and released, the kinetic energy of their motion is transformed into potential energy as they become magnetically attached. This can be seen as an increase in the temperature of the magnets due to the friction produced as they come together, as well as sound waves that are evidence of the energy transformation.
What is Energy?
Energy is the ability to do work. It exists in many forms, such as kinetic, potential, thermal, electrical, chemical, and nuclear energy. It can be transferred from one form to another, and can be converted into other forms of energy.
What is Kinetic Energy?
Kinetic energy is the energy of motion. It is the energy of an object due to its movement, and can be calculated by taking the mass of the object and multiplying it by the square of its velocity.
What is Potential Energy?
Potential energy is the energy that an object has due to its position or configuration. It is the energy stored in an object as a result of its position relative to other objects, and can be converted into other forms of energy.
Energy is the ability to do work, and exists in many forms such as kinetic, potential, thermal, electrical, chemical, and nuclear energy. Kinetic energy is the energy of motion, while potential energy is the energy stored in an object due to its position relative to other objects. These two forms of energy can be converted into other forms, and can be used to do work.
Learn more about Energy from the given link:
brainly.com/question/13881533
#SPJ1
A ball of mass m, moving at a velocity v, collides with a stationary ball of mass 2m. The two balls stick together. What is the fraction of the initial kinetic energy is lost on impact?
Answer:
67%
Explanation:
In the absence of external forces, the total momentum of the system before the collision is equal to the total momentum after the collision. Since the second ball is initially at rest, the total momentum before the collision is simply m*v.
After the collision, the two balls stick together and move with a common velocity, which can be calculated using conservation of momentum:
m*v + 0 = (m+2m) * v_final
Solving for v_final, we get:
v_final = v/3
The initial kinetic energy of the system is:
K_i = 0.5mv^2
The final kinetic energy of the system is:
K_f = 0.5*(3m)v_final^2 = 0.5(3m)(v^2/9) = 0.5m*v^2/3
The fraction of the initial kinetic energy lost on impact is:
( K_i - K_f ) / K_i = ( 1 - 1/3 ) = 2/3 = 0.67
Therefore, 67% of the initial kinetic energy is lost on impact.
Describe the differences between magnetic potential energy and electric potential energy
Magnetic potential energy and electric potential energy are both forms of potential energy associated with the interactions between magnetic or electric fields and charges or magnetic moments.
However, there are some important differences between these two forms of potential energy. Magnetic potential energy is associated with the interactions between magnetic fields and magnetic moments. It is a function of the relative orientation of the magnetic moment and the magnetic field. The magnetic potential energy of a system is proportional to the product of the magnetic moment and the magnetic field strength, and it is greatest when the magnetic moment is aligned with the magnetic field. Electric potential energy, on the other hand, is associated with the interactions between electric fields and charges. It is a function of the relative position of the charges and the strength of the electric field. The electric potential energy of a system is proportional to the product of the charges and the electric field strength, and it is greatest when the charges are separated by the greatest distance. In general, magnetic potential energy tends to be weaker than electric potential energy because magnetic fields are generally weaker than electric fields. However, in certain systems such as magnetic storage devices, magnetic potential energy can be harnessed and used to store and transmit information.
To learn more about magnetic moments click the link below
brainly.com/question/14446899
#SPJ4
write an equation for the acceleration of the two connected blocks in terms of m1, m2, and the acceleration due to gravity g.
The equation for the acceleration of the two connected blocks in terms of m1, m2, and the acceleration due to gravity is a = (m1 + m2)g/m2.
The equation shows that the acceleration of the two connected blocks is directly proportional to the total mass of the two blocks and the acceleration due to gravity. In other words, the more mass in the two blocks, the higher the acceleration.
Similarly, as the acceleration due to gravity increases, the acceleration of the two connected blocks increases. To understand this further, consider the example of two blocks, one with mass m1 and the other with mass m2, being accelerated by the same force due to gravity.
The equation shows that the acceleration of the two blocks is a = (m1 + m2)g/m2, where m1 and m2 are the masses of the two blocks and g is the acceleration due to gravity. This means that if the mass of the first block is doubled, the acceleration will double. Similarly, if the acceleration due to gravity is doubled, the acceleration of the two blocks will also double.
To know more about acceleration refer here:
https://brainly.com/question/30660316#
#SPJ11
describe how you would investigate the force needed to make a box slide across a flat, level surface depends on the weight of the box. (5 marks)
Use a rope or twine to fasten a spring scale to the box. Make sure the rope or string is parallel to the surface and the scale is perpendicular to the surface.
How much force is required to move a box across the floor?A push force from the outside is applied to a box when it slides, and a frictional force is also applied to the box. The contact sliding motion between the object and the ground causes the frictional force.
What force is exerted when one object slides past another?Kinetic friction is a kind of sliding friction that occurs often. Kinetic friction is a force that opposes the motion of an object sliding along a surface whenever two objects' surfaces are in contact with one another.
to know more about investigating here:
brainly.com/question/1191670
#SPJ1
At a rock concert, the sound intensity 1. 0 m in front of the bank of loudspeakers is 0. 10 W/m2. A fan is 30 m from the loud speakers. Her eardrums have a diameter of 8. 4 mm. How much sound energy is transferred to each eardrum in 1. 0 second
At a rock concert, the sound intensity 1. 0 m in front of the bank of loudspeakers is 0. 10 W/m2. A fan is 30 m from the loud speakers. Her eardrums have a diameter of 8. 4 mm.The sound energy transferred to each eardrum in 1.0 second is 4.36 x 10^-11 J.
The sound intensity at a distance of 30 m from the loudspeakers can be calculated using the inverse square law:
I = I₀ / (4πr²)
where I₀ is the sound intensity at a distance of 1.0 m from the loudspeakers, r is the distance from the loudspeakers, and π is the mathematical constant pi (approximately 3.14).
Substituting the given values, we get:
I = 0.10 W/m² / (4π(30 m)²) = 7.87 x 10^-7 W/m²
The sound energy transferred to each eardrum in 1.0 second can be calculated using the formula:
E = A × t × I
where A is the area of the eardrum, t is the time, and I is the sound intensity.
The area of the eardrum can be calculated using the formula for the area of a circle:
A = πr²
where r is the radius of the eardrum, which is half the diameter.
Substituting the given values, we get:
A = π(8.4 mm / 2)^2 = 5.54 x 10^-5 m²
Substituting the given values and solving for E, we get:
E = 5.54 x 10^-5 m² × 1.0 s × 7.87 x 10^-7 W/m² = 4.36 x 10^-11 J
Therefore, the sound energy transferred to each eardrum in 1.0 second is 4.36 x 10^-11 J.
For such more questions on sound energy:
brainly.com/question/18375567
#SPJ11
can someone help with this part of the sentence fills
F = ma, or force equal to mass times acceleration, is Newton's second law of motion.
What happens in the second law of Newton?Second Law of Movement by Newton Since it shows how powers and movement are connected, F=ma is essential. You can use it to determine an object's velocity and position, as well as its acceleration with known forces. For inventors, scientists, and engineers, This is extremely helpful.
As per Newton's Second Law of Movement, when a power works on a mass, the mass speeds up (gains speed) (object). When you ride a bicycle, you can see this law of motion in action in a great way. Your bike makes up the mass. Your leg muscles press against the bicycle's pedals to produce the force.
Learn more about Newton's second law :
brainly.com/question/13447525
#SPJ1
In this eighth step, you will summarize your data by completing Tables F and G in your Student Guide. First, complete Table F to view the effect of temperature on the rate of reaction by transferring your data from Tables A, B, and C to Table F.
Which water temperature results in the sodium bicarbonate tablet dissolving the slowest?
Cold Water
Room temperature Water
Hot water
You reach a conclusion regarding your hypothesis after collecting and analyzing data. A conclusion summarizes what you learnt from an experiment. While forming your conclusion, consider if the data supports your theory.
Each step of the scientific method with its description.
1- C ( this is an assumption; a hypothesis is always based on an assumption. After the introductory analysis is complete, construct a hypothesis, or an instructed opinion, on the result of the experiment.
2- F ( this states to share the results with other classmates).It is important to share what you have learned with others. Scientists often find solutions to problems by knowing the results of other scientists' experiments.
3- D (this is a description of an experiment you could conduct; you test a hypothesis (usually) by conducting an experiment. A statistical hypothesis, seldom called affirmative data summary, is a hypothesis that is testable on the foundation of perceiving a method that is formed via a set of arbitrary variables.
4- A (this is something you could observe during the experiment, therefore it is an observation).Scientists use observation to gather and record data, which allows them to assemble and then test hypotheses and assumptions.
5- E (this sentence is a conclusion).After all the data is assembled in a form that associates it to your hypothesis, you can understand it and reach a judgment about the experiment.
6- B (This is an actual question) A question is what someone asks, normally when there is something that he or she does not know. In the article, a question mark comes at the end of a question.
Learn more about hypothesis ,
https://brainly.com/question/29519577
#SPJ1
Full Question ;
Match each step of the scientific method with its description.
Tiles
1. construct a hypothesis
2. communicate the results
3. test the hypothesis
4. make observations
5. analyze the results and
make a conclusion
6. ask questions
Pairs
A. Bread, when kept in the open for a
long time, shows the presence of mold.
B. What causes mold growth on bread?
C. Changes in temperature may affect
the growth of mold on bread.
D. Keep the bread in different locations,
changing the temperature at each location.
E. Increased temperature leads to the
growth of mold.
F. Make a presentation of the data, and
When a meteor enters the Earth's atmosphere, three forces act on the meteor. Gravity and upthrust are two of these forces. Give the name of the other force. [1 mark]
Answer:
The other force acting on a meteor as it enters the Earth's atmosphere is air resistance or drag force.
Explanation:
Air resistance or drag force is the force that opposes the motion of an object as it moves through a fluid (such as air or water). When a meteor enters the Earth's atmosphere, it encounters a large amount of air resistance due to the high speed at which it is moving relative to the atmosphere.
As the meteor moves through the atmosphere, air molecules collide with the meteor, creating a resistance force that acts in the opposite direction to the meteor's motion. This force increases as the meteor's speed increases, and can cause the meteor to slow down and heat up due to friction with the surrounding air molecules.
The force of air resistance is particularly important for meteors because they are typically travelling at very high speeds relative to the atmosphere, and can experience significant heating and deceleration as they enter the denser lower atmosphere. Without air resistance, meteors would continue to travel at their original speeds and would not experience the bright trails or fireballs that are commonly associated with meteors.
The car maintained distance x
Answer:
7th grade in a year and I am not going for the same as a student from a school year or so cute cat that I don't have a lot to get for it is the greatest thing I can think they are you at the end a bit too far from your home or the other one that is the only thing that is a bit more expensive and
An object is placed in an electric field. The object is not affected by the electric field.
What can be said about the object?
1.The object has mass
2.The object does not carry a charge
3.The object carries a charge
4.The object carries a positive charge
Answer:
Explanation:
The object does not carry a charge
A girl is sitting motionless on a swing. Her weight of 245 N is exerting a downward force on the swing. The ropes are exerting an upward force on the swing.
What is the net force on the swing?
O 0 Newtons
O 245 Newtons upwards
O 245 Newtons downwards
O 490 Newtons upwards
The net force on the swing is equal to 245 N downwards. Hence, the option c is the correct answer.
An external force is an agent that has the power to alter the resting or moving condition of a body. It has a trajectory and a magnitude. The application of force is the place at which force is applied, and the direction in which the force is applied is known as the direction of the force.
A spring scale can be used to calculate the Force. Newton is the SI unit of energy.(N).
We are given that the weight of the girl is 245 N.
As we know the force = mass * acceleration
mass of the girl= weight / gravity
mass of the girl= 245/10 = 24.5 kg.
here acceleration is the acceleration due to gravity which is equal to 10 m/s^2.
therefore, force= 24.5*10 = 245 N.
Hence, the net force on the swing is 245 N.
To know more about force go through:-
https://brainly.com/question/12970081
#SPJ4
A stone falls from rest from the top of high tower. Ignore air resistance and take g=9.8m/s squared, Calculate
a)the speed of the stone after 2 seconds
b)how far the stone has fallen after 2 seconds
A stone falls from rest from the top of high tower. Ignore air resistance and take g=9.8m/s squared, s = 30.625 m
What exactly is electrical resistance?Electrical resistance, which opposes the flow of current, is resistance to electricity. In this sense, it acts as a gauge for the difficulty of current flow. Ohms are a unit of measurement for resistance.
What are different forms of resistance?R stands for resistance, which is measured in ohms. A resistor is indeed a machine made to create resistance. You can use resistors to divide voltage, restrict current, or produce heat. The two most common varieties of resistors are fixed and variable.
To know more about resistance visit:
https://brainly.com/question/30799966
#SPJ1
A gas occupies 1.56m at an atm. What would be the volume of this gas if the pressure becomes 3 atm.
Answer:
The volume of this gas when pressure becomes 3.00 ATM is 0.52 liters
Explanation:
Answer:
in image
Explanation:
if it helped you please mark me a brainliest♡♡
Two spheres have identical charges and are 0. 012 m apart. The force between them is +0. 32 N. What is the magnitude of the charge on each sphere?
Two spheres have identical charges and are 0. 012 m apart. The force between them is +0. 32 N. the magnitude of the charge on each sphere is approximately 2.14 × 10^-6 C.
The force (F) between two charged spheres with charges q1 and q2, separated by a distance r, is given by Coulomb's law:
F = (1/4πε₀) * (q1*q2/r^2)
where ε₀ is the electric constant.
In this problem, we are given the following information:
The charges on the two spheres are identical, i.e., q1 = q2 = q
The distance between the spheres is r = 0.012 m
The force between the spheres is F = +0.32 N
Using Coulomb's law, we can write:
q^2 = (F * r^2)/(1/4πε₀)
We know the value of F, r, and ε₀, so we can substitute these values to calculate q:
q^2 = (0.32 N * (0.012 m)^2)/(1/4πε₀)
q^2 = 4.57 × 10^-9 C^2
Taking the square root of both sides, we get:
q = ±2.14 × 10^-6 C
Since the charges are identical, we take the positive value of q, which gives:
q = 2.14 × 10^-6 C
Thus the value is, 2.14 × 10^-6 C.
For such more questions on Coulomb's law:
brainly.com/question/28518314
#SPJ11