2. Simba pays $15 per month
for the phone he bought. His cell phone plan costs $49
per month and includes 15GB of
data. He also pays $5 for each additional 1GB
of data he uses over the 15GB limit. Using x to represent the GB of data
he uses over 15 GB, write an equation to represent Simba's monthly cell
phone bill and determine how much he will pay if one month he uses
23GB of data.

Answers

Answer 1

The equation can be given as B=64+5x

And the cost of phone bill if he uses 23GB will $104

What is an linear equation is one variable?

An linear equation is an equation of degree one. the highest exponent is 1 and one variable is number of variable is 1 in the equation

We are given that, Simba pays $15 per month for the phone he bought. His cell phone plan costs $49 per month.

He pay additional $5 for 1 gb data after 15gb data limit got over

Let the number of gb's used be x

Hence the total bill will be given by the equation

B= 15+49+5x

B= 64+5x

If he uses 23 gb of data the first 15 Gb are covered in his phone plan

And he has to pay $5 for each gb

The total cost is 8*5=$40

Hence the total phone bill is B=64+40

B=$104

Hence the equation can be given as B=64+5x

And the cost of phone bill if he uses 23GB will $104

To learn more about equation please refer

https://brainly.com/question/26310043

#SPJ13


Related Questions

The area in square millimeters of a wound has decreased by the same percentage every day since it began to heal. The table shows the wound's area at the end of each day.

Answers

Given the table showing the number of days since wound began to heal and area of wound in square millimeters

To determine the statement that are correct from the option provided

From the table shown it can be seen that as the day increases by 1, the area of wound in square millimeters decreases by a common ratio of

[tex]\frac{20}{25}=\frac{16}{20}=\frac{12.8}{16}=\frac{10.24}{12.8}=0.8[/tex]

Suppose that an expression to represent the area of wound is

[tex]ab^c[/tex]

The modelled expression from the table is

[tex]\begin{gathered} a=25 \\ b=0.8 \\ c=n-1 \\ \text{Therefore, we have} \\ 25(0.8^{n-1}) \end{gathered}[/tex]

Let us use the modelled expression to verify each of the given conditions

The modelled expression can be simplified as shown below:

[tex]\begin{gathered} 25(0.8^{n-1}) \\ \text{Note},\text{ using indices rule} \\ \frac{a^n}{a}=a^{n-1} \\ \text{Therefore:} \\ 0.8^{n-1}=\frac{0.8^n}{0.8} \end{gathered}[/tex]

Then, we have the modelled expression becomes

[tex]25(0.8^{n-1})=25\times\frac{0.8^n}{0.8}=\frac{25}{0.8}\times0.8^n=31.25(0.8^n)[/tex]

From the two modelled expression we can see that

[tex]\begin{gathered} \text{when:} \\ c=n-1,a=25,b=0.8 \\ c=n,a=31.25,b=0.8 \end{gathered}[/tex]

Then we can conclude that the two conditions that are true from the options are

If the value of c = n, the value of a is 31.25, and

If the value of c = n, the value of b is 0.8

Hello I I am confused because their are two different letters.

Answers

Let's begin by listing out the information given to us:

Line AB is parallel to Line CD; this implies that the angle formed by the two lines are right angles (90 degrees)

E is the intersecting point of both lines AB & CD (figure attached)

Let us put this into its mathematical form:

[tex]\begin{gathered} m\angle AED=(6x-24)=90^{\circ} \\ 6x-24=90\Rightarrow6x=90+24 \\ 6x=114\Rightarrow x=19 \\ x=19 \\ m\angle CEB=(4y+32)=90^{\circ} \\ 4y+32=90\Rightarrow4y=90-32 \\ 4y=58\Rightarrow y=17 \\ y=17 \end{gathered}[/tex]

5 Which equations have the same value of x as 6 2 3 -9? Select three options. -9(6) 5x+4=-54 5x+4=-9 5x=-13 5X=-58

Answers

The given equation is-

[tex]\frac{5}{6}x+\frac{2}{3}=-9[/tex]

If we multiply the equation by 6, we would have the same value for the variable x since we are multiplying the same number on each side. So, the second choice is an equivalent equation to the given one.

Let's multiply by 6.

[tex]\begin{gathered} 6\cdot\frac{5}{6}x+6\cdot\frac{2}{3}=-9\cdot6 \\ 5x+4=-54 \end{gathered}[/tex]

So, the third expression is also an equivalent expression.

Then, let's subtract 4 on each side.

[tex]\begin{gathered} 5x+4-4=-54-4 \\ 5x=-58 \end{gathered}[/tex]

The last choice is also an equivalent expression.

Therefore, the right choices are 2, 3, and 6.

Find the minimum weight resistance possible for A 230 pound man

Answers

Hello there. To find this minimum weight resistance, we need to convert the percentage value to decimals and multiply it by the weight of the person.

8% converted to decimals is equal to 0.08.

Now, multiply it by the weight of the 230 pound man

0.08 * 230 = 18.4 pounds

This is the minimum weight resistance this U gym offers to the customers.

Find the sum of the arithmetic series 31+37 +43 +49 +... where n=8,OA. 416B. 1668OC. 832D. 834Reset Selection

Answers

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given details

[tex]\begin{gathered} a_1=31 \\ n=8 \\ d=37-31=6 \end{gathered}[/tex]

STEP 2: Write the formula for finding sum of arithmetic series

STEP 3: Find the sum of the series

By substitution,

[tex]\begin{gathered} S_8=\frac{8}{2}[2(31)+(8-1)6] \\ S_8=4(62+42) \\ S_8=4(104)=416 \end{gathered}[/tex]

Hence, the sum is 416

2. The product of two consecutive odd numbers is 143. Find the numbers. (Hint: If the first odd number is x, what is the next odd number?)​

Answers

Step-by-step explanation:

we have the 2 numbers x and (x+2).

x × (x + 2) = 143

x² + 2x = 143

x² + 2x - 143 = 0

the general solution to such a quadratic equation

ax² + bx + c = 0

is

x = (-b ± sqrt(b² - 4ac))/(2a)

in our case this is

x = (-2 ± sqrt(2² - 4×1×-143))/(2×1) =

= (-2 ± sqrt(4 + 572))/2 = (-2 ± sqrt(576))/2 =

= (-2 ± 24)/2 = (-1 ± 12)

x1 = -1 + 12 = 11

x2 = -1 - 12 = -13

so, we have 2 solutions : 11 and 13, -13 and -11

11× 13 = 143

-11×-13 = 143

Find the equation for the line that passes through the point (1,0), and that is perpendicular to the line with the

Answers

step 1

Find out the slope of the given line

we have

-(4/3)x+2y=4/3

isolate the variable y

2y=(4/3)x+(4/3)

Divide both sides by 2

y=(4/6)x+(4/6)

simplify

y=(2/3)x+(2/3)

the slope is m=2/3

Remember that

If two lines are perpendicular, then their slopes are negative reciprocal

that means

the slope of the perpendicular line to the given line is

m=-3/2

step 2

Find out the equation in slope-intercept form of the perpendicular line

y=mx+b

we have

m=-3/2

point ( 1,0)

substitute and solve for b

0=-(3/2)(1)+b

0=-(3/2)+b

b=3/2

therefore

the equation is

y=-(3/2)x+(3/2)ory=-1.5x+1.5

!!PLEASE HELP IMMEDIATELY!!


Solve the inequality

-1/3x - 12 > 21 or -6x + 10 < -2

x < ? or x > ?

solve for both

Answers

Answer:

x < 2 or x > -11

Step-by-step explanation:

b. 1. add 12 to both sides to get -1/3x > 33

2. multiply by -3/1 to both sides to get x > -11

a. 1) subtract 10 to both sides

2) divide by -6 to both sides

Exercise 2 Find a formula for Y in terms of X

Answers

Given:

y is inversely proportional to square of x.

The equation is written as,

[tex]\begin{gathered} y\propto\frac{1}{x^2} \\ y=\frac{c}{x^2}\ldots\ldots\ldots c\text{ is constant} \end{gathered}[/tex]

Also y = 0.25 when x = 5.

[tex]\begin{gathered} y=\frac{c}{x^2} \\ 0.25=\frac{c}{5^2} \\ 25\times0.25=c \\ c=\frac{25}{4} \end{gathered}[/tex]

So, the equation of y interms of x is,

[tex]y=\frac{25}{4x^2}[/tex]

When x increases,

[tex]\begin{gathered} \lim _{x\to\infty}y=\lim _{x\to\infty}(\frac{25}{4x^2}) \\ =\frac{25}{4}\lim _{x\to\infty}(\frac{1}{x^2}) \\ =0 \end{gathered}[/tex]

Hence, the value of x increases then y decreases.

You roll a die. What is the probability that you’ll get a number less than 3?0.3330.50.6670.75

Answers

Recall that the numbers in a die are 1,2,3,4,5,6.

[tex]S=\mleft\lbrace1,2,3,4,5,6\mright\rbrace[/tex]

Hence the number of possible outcomes is 6.

[tex]n(S)=6[/tex]

We need a number less than 3. Let A be this event.

[tex]A=\mleft\lbrace1,2\mright\rbrace[/tex]

The favorable outcome is 2.

[tex]n(A)=\mleft\lbrace1,2\mright\rbrace[/tex]

Since there are 1,2 less than 3 in a die.

[tex]P(A)=\frac{Favourable\text{ outcomes}}{\text{Total outcomes}}=\frac{n(A)}{n(S)}[/tex]

Substitute n(A)=2 and n(S)=6, we get

[tex]P(A)=\frac{2}{6}=\frac{1}{3}=0.333[/tex]

Hence the required probability is 0.333.

Two functions, function A and function B, are shown below:Function Axy714816918Which statement best compares the rate of change of the two functions?The rate of change of both functions is 2.The rate of change of both functions is 3.The rate of change of function A is greater than the rate of change of function B.The rate of change of function B is greater than the rate of change of function A.

Answers

Answer

The rate of change of both functions is 2.

Explanation

To know the statement that best compares the rate of change of the two functions, we need to first calculate the rate of change for each function.

Rate of change of function A

Using x₁ = 7, y₁ = 14, x₂ = 8 and y₂ = 16

Rate of change = Δy/Δx

Δy = (y₂ - y₁) = 16 - 14 = 2

Δx = (x₂ - x₁) = 8 - 7 = 1

⇒ Rate of change = 2/1 = 2

Rate of change of function B

From the graph

Using coordinate x₁ = 2, y₁ = 4, x₂ = 3 and y₂ = 6

Rate of change = Δy/Δx

Δy = (y₂ - y₁) = 6 - 4 = 2

Δx = (x₂ - x₁) = 3 - 2 = 1

⇒ Rate of change = 2/1 = 2

Since the rate of both functions are the same (2), then the statement that best compares the rate of change of the two functions in the options given is "The rate of change of both functions is 2"

15 points?Solve for A 5/A = P A = ???? That’s all it saysPlease state what A is.

Answers

[tex]\text{ We know that }\frac{5}{A}\text{ = P}[/tex][tex]\begin{gathered} \text{If we multiply by A on both sides we get. } \\ \frac{5}{A}\cdot A\text{ = P}\cdot A \end{gathered}[/tex][tex]\begin{gathered} \text{ THen we cancell A and get that } \\ 5\text{ = P}\cdot A \end{gathered}[/tex][tex]\begin{gathered} \text{Then divide by P on both sides of the equation } \\ \frac{5}{P}\text{ = }\frac{P\cdot A}{P} \end{gathered}[/tex][tex]\begin{gathered} \text{And from that part, we cancell P and get } \\ \frac{5}{P}\text{ = A} \\ \text{Which is the final answer. } \end{gathered}[/tex]

One angle measures 140°, and another angle measures (5k + 85)°. If the angles are vertical angles, determine the value of k.

Answers

The value of k when one angle measures 140°, and another angle measures (5k + 85)° and if the angles are vertical angles is 11.

What is vertical angles?

Vertical angles are angles opposite each other where two lines cross.

Note: Vertical angles are equal.

To calculate the value of k, we use the principle of vertical angle

From the question,

140 = (5k+85)°

Solve for k

5k = (140-85)5k = 55

Divide both side by the coefficient of k (5)

5k/5 = 55/5k = 11

Hence, the value of k is 11.

Learn more about vertical angle here: https://brainly.com/question/14362353

#SPJ1

A rectangular garden plot measure 3.1 meters by 5.6 meters as shown Find the area of the garden in square meters

Answers

Given:

Length(l) of the garden is 3.1 meters

Width(w) of the rectangular garden is 5.6 meters

[tex]\begin{gathered} \text{Area of the garden=}l\times w \\ =3.1\times5.6 \\ =17.36 \end{gathered}[/tex]

Area of the garden is 17.36 square meters.

Maria is at the top of a cliff and sees a seal in the water. If the cliff is 40 feet above the water, Marla's eye-level is 5.5 feet, and the angle of depression is 52°, what is the horizontal distance from the seal to the cliff, tothe nearest foot?

Answers

SOLUTION

Let us make a diagram to interpret the question

from the diagram above, we can make the right-angle triangle as follows

So we can use SOHCAHTOA to solve this. The opposite side to the angle 52 degrees is 45.5 ft, this is gotten by adding the height of the cliff to Maria's height from her feet to her eyes.

The adjacent side is d, that is the distance from the seal to the cliff, so we have

[tex]\begin{gathered} TOA\text{ tan}\theta\text{ = }\frac{opposite}{adjacent} \\ tan52\degree=\frac{45.5}{d} \\ cross\text{ multiply, we have } \\ tan52\degree d=45.5 \\ d=\frac{45.5}{tan52} \\ d=35.54849 \end{gathered}[/tex]

Hence the answer is 36 foot to the nearest foot

Write the equation in point slope and slope intercept form of a line that passes through the given point and has given slope m.(5,-6);m=-1

Answers

Given:

A line passes through the point,

[tex](x_1,y_1)=(5,-6)[/tex]

The slope of the line is m = -1.

The objective is to find the equation of the line in point-slope and slope-intercept form.

Explanation:

To find equation in point-slope form:

The general formula of point-slope form is,

[tex]y-y_1=m(x-x_1)\text{ . . . . . . ..(1)}[/tex]

On plugging the given values in equation (1),

[tex]\begin{gathered} y-(-6)=-1(x-5) \\ y+6=-x+5\text{ . . . . . .(2)} \end{gathered}[/tex]

To find the equation in slope-intercept form,

The general formula of slope-intercept form is,

[tex]y=mx+b\text{ . . . . (3)}[/tex]

On further solving the equation (2),

[tex]\begin{gathered} y+6=-x+5 \\ y=-x+5-6 \\ y=-x-1 \end{gathered}[/tex]

Hence,

The equation of the line in point-slope form is y+6 = -x+5.

The equation of the line in slope-intercept form is y = -x-1.

Convert the function p(x) = 2(x – 4)(x + 3)

Answers

Expanding the expression,

[tex]\begin{gathered} p(x)=2(x-4)(x+3) \\ \rightarrow p(x)=2(x^2+3x-4x-12) \\ \rightarrow p(x)=2(x^2-x-12) \\ \rightarrow p(x)=2x^2-2x-24 \end{gathered}[/tex]

We get that:

[tex]p(x)=2x^2-2x-24[/tex]

Identify the values of a, b, and c for the quadratic equation given:y=-x2 +9a =b =C=

Answers

Question:

Solution:

A quadratic Equation in Standard Form is given by the following formula:

[tex]ax^2+bx\text{ + c = 0}[/tex]

now, the given equation is

[tex]y=-x^2+9[/tex]

this is equivalent to:

[tex]f(x)=-x^2+9[/tex]

According to the Quadratic Equation in Standard Form, we can conclude that

[tex]a\text{ = -1}[/tex][tex]b\text{ = 0}[/tex]

and

[tex]c\text{ = 9}[/tex]

In an all boys school, the heights of the student body are normally distributed with a mean of 70 inches and a standard deviation of 3 inches. What is the probability that a randomly selected student will be taller than 71 inches tall, to the nearest thousandth?

Answers

The probability that a randomly selected student will be taller than 71 inches tall is 0.010.

We use z score formula to calculate :

z = (x-μ)/σ

where,

z = standard score

x = observed value

μ = mean of students height

σ = standard deviation of students height

x  = 63 inches

μ = 70 inches

σ = 3 inches

For x shorter than 63 inches we calculate

Z = (x - μ)/σ

then put the given values in above equation.

= (63 - 70)/3

= -2.33333

Probability value is :

P(x<63) = 0.0098153

Approximately to the nearest thousandth = 0.010

The probability that a randomly selected student will be taller than 71 inches tall is 0.010.

To know more about probability

https://brainly.com/question/24046164

#SPJ1

Graph the line with the given slope m and y-intercept b.
m = 4, b = -5

Answers

Answer:

Step-by-step explanation:

What we know:

m = 4, b = -5

y = mx + b where m is the gradient/slope and b is the y-intercept

Substitute m and b values:

y = 4x + -5 which is the same as y = 4x - 5

Substitute all x values to find y coordinate:

When x = -7, y = (4 x -7) - 5 = -33

When x = -6, y = (4 x -6) - 5 = -29

When x = -5, y = …

Continue for all x values

Find the interval in which the following quadratic is decreasing.

Answers

The quadratic is decreasing in the interval in which the y values decrease with the increase in x values.

In the interval, (-∞, 0), the y values decrease with increase in x values.

Hence, the quadratic is decreasing in the interval (-∞, 0),

The wholesale price for a bookcase is 152$. A certain furniture marks up the wholesale price by 36%. find the price of the bookcase in the furniture store. round answer by the nearest cent, as necessary

Answers

Answer:

The price of the bookcase in the funiture store is:

$206.72

Explanation:

Given that the markup is 36% of $152

This is:

0.36 * 152 = $54.72

Therefore, the price of the bookcase in the funiture store is:

$152 + $54.72

= $206.72

3. An equation that crosses the y-axis at -5 and crosses the x-axis at 24. An equation that crosses the y-axis at -5 and crosses the x-axis at -65. An equation that crosses the y-axis at -5 and crosses the point (2,3)

Answers

3.

We need to find the equation of the line which:

• crosses the y-axis at -5

,

• crosses the x-axis at 2

The y-axis cutting point is (0,-5)

The x-axis cutting point is (2,0)

The equation of line is:

[tex]y=mx+b[/tex]

Where m is the slope and b is the y-axis cutting point

m is given by:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Where

y_2 = 0

y_1 = -5

x_2 = 2

x_1 = 0

So, slope is:

[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{0--5}{2-0}=\frac{0+5}{2}=\frac{5}{2}[/tex]

We got m, we also know b.

The y cutting point is -5, so b = -5

The equation is:

[tex]y=\frac{5}{2}x-5[/tex]

The graph would look like:

More clear version:

An 80% confidence interval for a proportion is found to be (0.27, 0.33). Whatis the sample proportion?

Answers

Step 1

Given;

Step 2

When repeated random samples of a certain size n are taken from a population of values for a categorical variable, the mean of all sample proportions equals the population percentage (p).

[tex]\begin{gathered} Sample\text{ proportion=}\hat{p} \\ \hat{p}\pm margin\text{ error=cofidence interval} \end{gathered}[/tex]

Thus;

[tex]\begin{gathered} Let\text{ }\hat{p}=x \\ Margin\text{ of error=y} \\ x-y=0.27 \\ x+y=0.33 \end{gathered}[/tex]

checking properly, the sample proportion =0.30, because

[tex]\begin{gathered} 0.30-0.03=0.27 \\ 0.30+0.03=0.33 \end{gathered}[/tex]

Answer; Option D

[tex]0.30[/tex]

solve 2x^2+5x-3>0 quadratic inequalities

Answers

The solution set of the inequality 2 · x² + 5 · x - 3 > 0 is (- ∞, - 3) ∪ (1 / 2, + ∞).

How to solve a quadratic inequality

Herein we find a quadratic inequality, whose solution set can be found by factoring the expression and determine the interval where the expression is greater than zero. Initially, we use the quadratic formula to determine the roots of the quadratic function:

2 · x² + 5 · x - 3 = 0

x₁₂ = [- 5 ± √[5² - 4 · 2 · (- 3)]] / (2 · 2)

x₁₂ = (- 5 ± 7) / 4

x₁ = 1 / 2, x₂ = - 3

Then, the factored form of the inequality is:

(x - 1 / 2) · (x + 3) > 0

In accordance with the law of signs, we must look for that intervals such that: (i) (x - 1 / 2) > 0, (ii) (x + 3) > 0, (ii) (x - 1 / 2) < 0, (x + 3) < 0. Then, the solution set of the quadratic inequality is:

Inequality form - x > 1 / 2 ∨ x < - 3

Interval form - (- ∞, - 3) ∪ (1 / 2, + ∞)

The solution set of the inequality is (- ∞, - 3) ∪ (1 / 2, + ∞).

To learn more on quadratic inequalities: https://brainly.com/question/6069010

#SPJ1

segment C prime D prime has endpoints located at C′(0, 0) and D′(4, 0). It was dilated at a scale factor of one half from center (4, 0). Which statement describes the pre-image?A-segment CD is located at C(2, 0) and D(6, 0) and is half the length of segment C prime D prime periodB- segment CD is located at C(2, 0) and D(6, 0) and is twice the length of segment C prime D prime periodC- segment CD is located at C(−4, 0) and D(4, 0) and is twice the length of segment C prime D prime periodD-segment CD is located at C(−4, 0) and D(4, 0) and is half the length of segment C prime D prime period

Answers

Segment C prime D prime has endpoints located at C′(0, 0) and D′(4, 0). It was dilated at a scale factor of one half from centre (4, 0). the pre-image

B- segment CD is located at C(2, 0) and D(6, 0) and is twice the length of segment C prime D prime period

According to the question,

Segment C prime D prime has endpoints located at C' (0, 0) and D' (2, 0).

The coordinates are given as:

C' (0, 0) and D' (4, 0).

Since,

Centre of dilation = D = (4,0)

Here, CD seems to be the dilated image of CD by something like a factor of two. It follows that M must have been at (0,0).

It's one-half units left from the centre of dilated.

Then, C` = 1/2 x 4  = 2

Since the dilation is (4, 0),

C = (2+4, 0) = (6,0)

Hence,

segment CD is located at C(2, 0) and D(6, 0) and is twice the length of segment C prime D prime period

What is segment?

Segment simplifies  data collection and integrates new tools, allowing you to spend more time using data and less time collecting it. A segment allows you to track events that occur when a user interacts with user interfaces. "Interfaces" is the segment's umbrella term for all the digital real estate you own: your website, mobile apps and processes running on a server or OTT device.

When you capture interaction data in a segment, you can send it (often in real time) to your marketing, product and analytics tools and data warehouses. In most cases, you don't even need to touch the tracking code to connect to the new tools.

To learn more about segment, refer;

https://brainly.com/question/12728072?

#SPJ1

Finding supplementary and complementary angles (a) An angle measures 50°. What is the measure of its complement? (b) An angle measures 135°. What is the measure of its supplement? measure of the complement: measure of the supplement: 0 0 O X ?

Answers

SOLUTION

(a) Complementary angles are angles that add up to 90 degrees. So the angle that will complement 50 degrees will add to it to get 90. Let the angle be x, we have

[tex]\begin{gathered} 50\degree+x\degree=90\degree \\ 50+x=90 \\ x=90-50 \\ x=40\degree \end{gathered}[/tex]

Hence the measure of the compelement is 40 degrees

(b) Supplementary angles are angles that add up to 180 degrees. So the angle that will supplement 135 degree will add to it to make it 180 degrees. Let this angle be y, so we have

[tex]\begin{gathered} 135\degree+y\degree=180\degree \\ y=180-135 \\ y=45\degree \end{gathered}[/tex]

Hence measure of the supplement is 45 degrees

You are selling drinks at the carnival to raise money for your club. You sell lemonadefor $6 for 2 cups and orange drinks for $9 for 3 cups. Your sales totaled $240. Let xbe the number of cups of lemonade and y be the number of orange drinks. Write anyequation in standard form for the relationship above.

Answers

Let x be the number of cups of lemonade sold, and y the number of cups of orange drinks sold, then we can set the following equation:

[tex]6(\frac{x}{2})+9(\frac{y}{3})=240.[/tex]

Now, recall that the standard form of a linear equation is:

[tex]Ax+By=C,[/tex]

Where, A≥0, B and C are integers.

Simplifying the first equation, we get:

[tex]3x+3y=240.[/tex]

Answer:

[tex]3x+3y=240.[/tex]

What is the slope of the line that passes through the points (6,-10) and (3,-13)? Write in simplist form

Answers

Use the slope formula to find the slope of a line that goes through two points:

[tex]\begin{gathered} \text{Coordinates of two points}\rightarrow\text{ }(x_1,y_1),(x_2,y_2) \\ \text{Slope of a line through those points}\rightarrow m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

Substitute the coordinates (6,-10) and (3,-13) into the slope formula:

[tex]\begin{gathered} m=\frac{(-13)-(-10)}{(3)-(6)} \\ =\frac{-13+10}{3-6} \\ =\frac{-3}{-3} \\ =1 \end{gathered}[/tex]

Therefore, the slope of a line that passes through those points, is 1.

The displacement (in meters) of a particle moving in a straight line is given by s = t^2 - 9t + 15,where t is measured in seconds.(A)(i) Find the average velocity over the time interval [3,4].Average Velocity = ___ meters per second(ii) Find the average velocity over the time interval [3.5,4].Average Velocity=____meters per second(iii) Find the average velocity over the time interval [4,5].Average Velocity= ____meters per second(iv) Find the average velocity over the time interval (4,4.5] Average Velocity = ____meters per.(B) Find the instantaneous velocity when t=4.Instantaneous velocity= ____ meters per second.

Answers

Given

The displacement (in meters) of a particle moving in a straight line is given by s = t^2 - 9t + 15,

Other Questions
xyz company sold merchandise for $5,000, with payment terms of 2/10,n/30. if the customer pays within the discount period and takes the discount, xyz will receive . multiple choice question. $3,500 $4,900 $5,000 $100 Jenna buys three boxes of cocoa.She gives one box to Keanu and one box to Jacoby.What fraction of cocoa did Jenna give to her friends? a 5.75 percent coupon bond with 12 years left to maturity is offered for sale at $978.83. what yield to maturity is the bond offering? (assume interest payments are paid semiannually and par value is $1,000.) multiple choice 3.00 percent 3.09 percent 5.75 percent 6.00 percent Write the slope-intercept form of the equation of the line graphed on the coordinate plane. Your family used 27.5 gallons of gas to drive 654.5 miles. how many miles did you drive for each gallon? Given a Figure whose points are A(9, 1), B(2, 3), C(-2, 4).What would be the image of that figure if it goes under a translation (x, y) -> (x - 5, y + 8), what is thecoordinate of B'?A. B'(-14, 11)B. B'(3, 11)C. B'(14, 11)D. B'(-3, 11) Which accurately describes 19th-century revolutions in Latin America? The Leaning Tower of Pisawas completed in 1372 andmakes an 86* angle withthe ground. The tower isabout 57 meters tall, measuredvertically from the groundto its highest point. If youwere to climb to the top andthen accidently drop yourkeys, where would youstart looking for them?How far from the base of.the tower would they land? PLS BE DONE RIGHT AWAY. NO NEED TO GRAPH JUST SOLVE whenever valerie experiences intense feelings of fear, she is overwhelmed with childhood memories of her abusive parents. valerie's experience best illustrates: buying stock with a market order you would like to buy shares of ralph lauren (rl). the current bid and ask quotes are $85.13 and $85.20, respectively. you place a market buy-order for 500 shares that executes at these quoted prices. how much money did it cost to buy these shares? multiple choice $42,600 $35 $42,565 $85,165 Reviewing Facts about Gravity, Mass, and DistanceUse what you learned about the relationship among gravity, mass, and distance to form sentences.Mass iscaused by gravity affecting mass.QuickCheckActiveWeight isThe force of gravity increasesThe force of gravity decreasesWthe amount of matter in an object.when an object's mass increases.when distance increases. please fill in the missing here i reposted it, if you see it answer it please! i put the picture down below and if you cant fit a lot of it in your answer just put it in the comments bill buyer and sam seller have a contract with an inspection objection deadline of may 1. bill undertakes inspections and notifies sam on the morning of may 2 that he objects to a hole in the roof and asks sam to repair it. sam refuses to fix it. what are the parties' rights? the contract has a liquidated damages provision. Atrazine is one of the most widely used herbicides throughoutthe world. Some studies have shown that the chemical has affectedthe sexual development of frogs, most notably, leopard frogs (Rana pipiens).femalemaleOne study suggested that male tadpoles exposed to the herbicide develop into female frogs. These mutated female frogs, accordingto the study, have the ability to reproduce with other males. However, the mutated frogs can only produce male offspring.This case demonstrates howA. the activities of organisms can change the environments in which they live.OB. chemicals introduced to the environment by humans affect only the organisms they were designed to affect.OC. factors in the environment can change the characteristics of organisms.D. chemicals introduced to the environment by humans have no effect on the ecosystem. I need help with this If an object is thrown horizontally, travels with an average x-component of its velocity equal to 5m/s, and does not hit the ground, what will be the x-component of the displacement after 20s? A rock is thrown off of a 120 foot cliff with an upward velocity of 20 ft/s. As a result its height after t seconds is given by the formula:h(t) = 120 + 20t - 5t^2What is its height after 2 seconds?___What is its velocity after 2 seconds?____(Positive velocity means it is on the way up, negative velocity means it is on the way down.) technician a says to use masking tape temporarily over the lining material to help prevent getting grease on the lining. technician b says that grease on the brake lining can cause the brakes to grab. which technician is correct?