When the magnesium ribbon is burned, it enters the carbon dioxide gas jar and continues to burn. The carbon is left behind as a black soot and extra energy is released as a result of the reaction where the magnesium atoms join the oxygen in the carbon dioxide to form magnesium oxide.
Magnesium ribbon is used in pyrotechnics to ignite thermite reactions or to create certain firework mixes. One of the most popular techniques to start chemical reactions that need a higher temperature to ignite is with magnesium ribbon.The light produced by the burning magnesium ribbon is strong enough to temporarily impair vision. Avert looking at the light source directly. Magnesium combustion in air generates strong heat that can result in burns and start the combustion process in combustible materials.To know more about magnesium ribbon
https://brainly.com/question/28841910
#SPJ1
number of litres of gas in 4.51 mol Xe
First, we assume STP conditions and Ideal gas conditions.
In STP conditions, we say that:
1 mol of any gas = 22.4 L (liters)
Procedure:
1 mol Xe ------ 22.4 L (STP)
4.51 moles Xe ------- X
X = 101 L
Answer: 101 L
A bike rides at an average speed of 25 km/h. How many minutes will it take for this rider to ride a distance of 20 km?
Answer:
48 minutes
Explanation:
60 divided by 25 equals 2.4 then you times 2.4 by 20
3. 135 g of ice is placed in a beaker of water. The water temperature in the beaker is 67 °C. After all the icemelts, the final water temperature in the beaker is 19.7 °C. 4 ptsHeat of fusion for water = 334 J/g. Specific heat of water = 4.184 J/g °C. T2-T1 = 47.3 °C.Note there are a couple different ways to solve this problems to sove this por(a) Determine the initial volume of water in the beaker (before the ice was added).(b) Determine the final volume of water in the beaker (after all the ice has melted).
Answer:
Explanation:
Answer to the 1st one. I have my doubts for the second one so didn't post :)
How do I write the Empirical Formula for: A compound composed of: 9.93% carbon, 58.6% chlorine, and 31.4% fluorine
The empirical formula for a compound composed of 9.93% carbon, 58.6% chlorine, and 31.4% fluorine is CCl₂F₂.
To write the empirical formula, let us assume that total mass of the compound is 100 g, then-
Mass of carbon = 9.93 g
Mass of chlorine = 58.6 g
Mass of fluorine = 31.4 g
We know that,
Molar mass of Carbon = 12.0 g/mol
Molar mass of Chlorine = 35.5 g/mol
Molar mass of Fluorine = 18.9 g/mol
Now, we will calculate the number of moles of each using the formula -
Number of moles = Given mass
Molar mass
Moles of Carbon = 9.93 g = 0.82 mol
12.01 g/mol
Moles of Chlorine = 58.6 g = 1.65 mol
35.5 g/mol
Moles of fluorine = 31.4 g = 1.66 mol
18.9 g/mol
Now, divide each value with the smallest amount of mole we got,
carbon = 0.82 = 1
0.82
chlorine = 1.65 = 2
0.82
fluorine = 1.66 = 2
0.82
Therefore, the empirical formula of the compound can be written as - CCl₂F₂
To learn more about empirical formula,
brainly.com/question/14044066
#SPJ1
Which of the following will not affect the rate of a reaction?nature of the reactantscolor of reactanttemperatureconcentration of a reactant
Color of reactant. Option B is correct
Explanations:What is a rate of reactions?This is defined as the speed at which a reaction takes place. It can be expressed in terms of the concentration of reactants or products formed per unit time.
The following are the factors that affects reaction rate.
- concentration of a reactant
- Temperature
- Nature of the reactant
- Surface Area
- Catalysts.
Based on the explanations above, we can conclude that the color of reactant will not affect the rate of a reaction