Answer:
D. not here
Step-by-step explanation:
because It's equal to 120cm
Ages Number of students 15-18 7 19-22 7 23-26 7 27-30 9 31-34 9 35-38 2 Find the relative frequency for the class with lower class limit 23 Relative Frequency
Answer:
14
Step-by-step explanation:
Relative Frequency = [tex]\frac{Frequency*100}{Total Frequency}[/tex]
Frequency for the class with lower class is 23 =7
Total Frequency= 7+7+7+9+9+9+2=50
Relative Frequency = [tex]\frac{7*100}{50}[/tex] = 14
The relative frequency for lower class limit 23 is 14
Quadrilateral ABCD ~ quadrilateral JKLM. What is the
length of LM?
Step-by-step explanation:
just ratio and need to identify which lines are pairs.
Let f(x) = x + 1 and g(x) = 1/x The graph of (fog)(x) is shown below. What is the range of (fog)(x)?
Answer:
Range is [tex]\{y|y\neq 1\}[/tex]
Step-by-step explanation:
[tex]f(x)=x+1\\g(x)=\frac{1}{x}\\ \\(f\circ g)(x)=f(g(x))=f(\frac{1}{x})=\frac{1}{x}+1[/tex]
Thus, the range of the composite function is [tex]\{y|y\neq 1\}[/tex], indicated by the horizontal asymptote.
sorry this is the picture
Answer:
ok so use the degrees
Step-by-step explanation:
x should be 8 + 17 and then multiply the 110 degrees by 8 + 17
Answer:
x = 6
The marked angle is 110°
Step-by-step explanation:
See how there are 8 angles in this type of image. The angles either are EQUAL, or they ADD UP TO 180°. It's just two numbers for the degrees of these angles. Four of them are the same and the other four are the same.
In your question the 8 + 17x = 110°
Solve.
Subtract 8.
17x = 102
Divide by 17.
x = 6
If your question says find the measure of the angle it is 110°, if you are to find x, then x = 6.
Jfyi, four of these angles are 110°. The other four are 70°.
A delivery truck is transporting boxes of two sizes: large and small. The combined weight of a large box and a small box is 70 pounds. The truck is transporting 60 large boxes and 55 small boxes. If the truck is carrying a total of 4050 pounds in boxes, how much does each type of box weigh?
Answer:
the large boxes weigh 40 pounds and the smaller boxes weigh 30 pounds
Step-by-step explanation:
define variables:
b is the weight of large boxes and s is the weight of small boxes. you can create two equations to represent what you know:
b + s = 70 (the weight of one large box and one small box is 70 pounds)
60b+ 55s = 4050 (the total weight of the 60 large boxes and the 55 small boxes is 4050)
then by making one of the equations equal to a variable, you can use substitution to solve.
s = 70 - b
so 60b + 55s = 4050 now becomes:
60b + 55(70 - b) = 4050, and next you solve for b
60b + 3850 - 55b = 4050
5b = 200
b = 40.
now you know that the large boxes weigh 40 pounds. to solve for the small box weight, you plug in b in either equation. i am going to choose the first once since it's fewer steps
b + s = 70 -> 40 + s = 70
s = 30
and now you know that the smaller boxes weigh 30 pounds.
2. Find m<1, then find m<2
Answer:
Option A
Step-by-step explanation:
To find the angles, you have to subtract the opposing angle from 180
180 - 85 = 95
180 - 70 = 110
Angle 1: 95
Angle 2: 110
The perimeter of a rectangular garden is 262 m.
If the width of the garden is 54 m, what is its length?
Step-by-step explanation:
154 is my answer thank you
What is the answer to this question? (100 Points!)
#A
How far means measurement of perimeter or length not volume
No#B
Yes
#C
Tall means length not volume
No#D
Here she needs area not volume
Noi need help 5/9 = /45 fractions
Answer:
5/9 = 25/45
Step-by-step explanation
multiply 5/9 by 5/5 this will turn it into 25/45
5x5=25
5x9=45
if f(x) = 5x 1 and g(x)= x3 what is (g f)(0)?
Answer:
f(x)= -5x+1 and g(x)=x^3,
(g • f)(0)= g(f(0))
but f(0) = -5 (0)+1 = 1
(g • f)(0)= g(1) = 1^3 = 1
Step-by-step explanation:
hope this helps
Answer:
-1
Step-by-step explanation:
f(x) = 5x - 1
g(x) = x³
f(0) = 5(0) - 1
= -1
g(-1) = (-1)³
= -1
What is the volume of a cylinder , whose base diameter us of 20cm and height of 5cm.
[tex]\boxed{\tt \pink{Given:}}[/tex]
[tex]\red\star[/tex]Diameter of base of a cylinder = 20 cm.
[tex]\red\star[/tex]Height of cylinder = 5cm.
[tex]\\\\[/tex]
[tex]\boxed{\tt \pink{To~Find:}}[/tex]
[tex]\red\star[/tex]Volume of Cylinder.
[tex]\\\\[/tex]
[tex]\boxed{\tt \pink{Solution}}[/tex]
To find volume of Cylinder first we should know radius of Cylinder. We can get radius by diameter using this formula:-
[tex]\boxed{\rm Diameter = 2 radius}[/tex]
[tex]\\\\[/tex]
[tex]\hookrightarrow\sf Diameter = 2 radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow\sf 20= 2 radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow\sf \dfrac{20}{2}= radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow\sf \dfrac{2\times10}{2}= radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow \sf \dfrac{\cancel2\times10}{\cancel2}= radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow \sf \dfrac{1\times10}{1}= radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow \sf 10= radius[/tex]
[tex]\\[/tex]
[tex]\hookrightarrow \bf radius = \pmb{\blue{10 cm}}[/tex]
[tex]\\\\[/tex]
Now Finally Let's find volume of Cylinder.
we know:-
[tex]\boxed{\rm Volume ~ of ~ Cylinder = \pi radius^2 \times height}[/tex]
[tex]\\\\[/tex]
So:-
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \pi radius^2\times height\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \pi (10)^2\times 5\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \pi 10\times10\times5\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \pi 100\times5\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \pi\times 500\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \dfrac{22}{7}\times 500\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\sf Volume ~of ~Cylinder = \dfrac{11000}{7}\\[/tex]
[tex]\\\\[/tex]
[tex]\dashrightarrow\bf Volume ~of ~Cylinder =\pmb{\blue{1,571.4~cm}}\\[/tex]
KNOW MORE:-[tex]\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc}\small\underline{\sf{\pmb{ \gray{More \: Formulae}}}} \\ \\ \bigstar \: \bold{CSA_{(cylinder)} = 2\pi \: rh}\\ \\\bigstar \: \bold{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bold{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bold{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar\: \bold{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bold{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bold{Volume_{(cube)} ={(side)}^{3} }\\ \\ \bigstar \: \bold{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bold{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\\bigstar \: \bold{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bold{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bold{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}[/tex]
If log, 7 -3 what is the value of x?
A. 21
B. 3V7
C. 37
D. 343
Answer:
B
Step-by-step explanation:
logₓ 7 = 3
x³ = 7
Take cube root both sides
[tex]x= \sqrt[3]{7}[/tex]
Please help, thank you!
Answer:
[tex]y=-\frac{1}{5} x+2[/tex]
Step-by-step explanation:
f(x) = [tex]\frac{5}{x}[/tex] ⇒ f(x) = [tex]5x^{-1[/tex]
Use the power rule to diferentiate:
f'(x) = [tex]-5x^{-2[/tex]
Plug in the value to differentiate at:
f'(5) = [tex]-5(5)^{-2[/tex] = [tex]-\frac{1}{5}[/tex] = [tex]m[/tex]
Plug into the equation of the tangent line:
[tex]y-f(5)=f'(5)(x-5)[/tex]
[tex]y=f'(5)(x-5)+f(5)[/tex]
[tex]y=-\frac{1}{5} (x-5)+1[/tex]
[tex]y=-\frac{1}{5} x+2[/tex]
Find the value of in the isosceles triangle shown below.
A x= √5
B x= √13
C x= √49
D x= √12
Answer:
B
Step-by-step explanation:
The height of 3 cut the base in half and perpendicular to the base, so
[tex]x = \sqrt{(4/2)^2 + 3^2}= \sqrt{13|[/tex]
That is B
Find the length of the hypotenuse of a 45°-45°-90° triangle with a leg length of 77 centimeters.
The sum of the square of the hypotenuse is equal to the sum of the square of the other sides.The length of the hypotenuse of the triangle is l = √14
Pythagoras theoremThe sum of the square of the hypotenuse is equal to the sum of the square of the other sides.
Given that one of the sides is √7, hence;
l^2 = (√7)^2 + (√7)^2
l^2 = 7 + 7
l^2 = 14
l = √14
Hence the length of the hypotenuse of the triangle is l = √14
Learn more on pythagoras theorem here: https://brainly.com/question/343682
1.10 friends are at a party and they decided the party was boring and decided to go to a
club in two different cars. One of the friends, Susan, has an SUV that can carry 7
passengers. So, Susan can take 6 more of the 9 friends with her. How many
different groups of 6 people are possible from the 9 remaining friends?
Using the combination formula, it is found that 84 different groups of 6 people are possible from the 9 remaining friends.
The order in which the friends are chosen is not important, hence the combination formula is used to solve this question.
What is the combination formula?[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this problem, 6 friends are chosen from a set of 9, hence:
[tex]C_{9,6} = \frac{9!}{6!3!} = 84[/tex]
84 different groups of 6 people are possible from the 9 remaining friends.
More can be learned about the combination formula at https://brainly.com/question/25821700
Answer:
this wrong
Step-by-step explanation:
Find the slope and the y-intercept of the line.
y= 3/4-1/5x
Answer:
Slope = -1/5
y-intercept = 3/4
Step-by-step explanation:
Equation of Straight Line in the Form y=mx+c
where m is the Slope and c is the y-intercept.
Answer:
Slope = -0.400/2.000 = -0.200
x-intercept = 15/4 = 3.75000
y-intercept = 15/20 = 3/4 = 0.75000
Step-by-step explanation:
* BE AWARE, THIS ANSWER IS NOT TO BE PLAGERIZED AS IT IS CONSIDERED CHEATING IF THIS IS A TEST OR HOMEWORK QUESTION, MOST LIKELY IT IS* - Purpose is to help understanding of the concept.
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
y-(3/4-1/5*x)=0
STEP 1:
simplify 1/5
Equation at the end of step 1:
y -(3/4-(1/5• x)) = 0
Step 2:
Simplify 3/4
Equation at the end of step 2:
y-)(3/4-x/5)=0
Step 3:
Calculating the Least Common Multiple :
ind the Least Common Multiple
The left denominator is : 4
The right denominator is : 5
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 2 0 2
5 0 1 1
Product of all
Prime Factors 4 5 20
Least Common Multiple:
20
Calculating Multipliers :
3.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 5
Right_M = L.C.M / R_Deno = 4
Making Equivalent Fractions :
3.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier. L. Mult. • L. Num. 3 • 5
—————————————————— = —————
L.C.M 20
R. Mult. • R. Num. x • 4
—————————————————— = —————
L.C.M 20
Adding fractions that have a common denominator :
3.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
3 • 5 - (x • 4) 15 - 4x
——————————————— = ———————
20 20
Equation at the end of step
3
:
(15 - 4x)
y - ————————— = 0
20
STEP
4
:
Rewriting the whole as an Equivalent Fraction :
4.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using 20 as the denominator :
y y • 20
y = — = ——————
1 20
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
y • 20 - ((15-4x)) 20y + 4x - 15
—————————————————— = —————————————
20 20
Equation at the end of step
4
:
20y + 4x - 15
————————————— = 0
20
STEP
5
:
When a fraction equals zero :
5.1 When a fraction equals zero ...
Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.
Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.
Here's how:
20y+4x-15
————————— • 20 = 0 • 20
20
Now, on the left hand side, the 20 cancels out the denominator, while, on the right hand side, zero times anything is still zero.
The equation now takes the shape :
20y+4x-15 = 0
Equation of a Straight Line
5.2 Solve 20y+4x-15 = 0
Tiger recognizes that we have here an equation of a straight line. Such an equation is usually written y=mx+b ("y=mx+c" in the UK).
"y=mx+b" is the formula of a straight line drawn on Cartesian coordinate system in which "y" is the vertical axis and "x" the horizontal axis.
In this formula :
y tells us how far up the line goes
x tells us how far along
m is the Slope or Gradient i.e. how steep the line is
b is the Y-intercept i.e. where the line crosses the Y axis
The X and Y intercepts and the Slope are called the line properties. We shall now graph the line 20y+4x-15 = 0 and calculate its properties
Graph of a Straight Line :
Calculate the Y-Intercept :
Notice that when x = 0 the value of y is 3/4 so this line "cuts" the y axis at y= 0.75000
y-intercept = 15/20 = 3/4 = 0.75000
Calculate the X-Intercept :
When y = 0 the value of x is 15/4 Our line therefore "cuts" the x axis at x= 3.75000
x-intercept = 15/4 = 3.75000
Calculate the Slope :
Slope is defined as the change in y divided by the change in x. We note that for x=0, the value of y is 0.750 and for x=2.000, the value of y is 0.350. So, for a change of 2.000 in x (The change in x is sometimes referred to as "RUN") we get a change of 0.350 - 0.750 = -0.400 in y. (The change in y is sometimes referred to as "RISE" and the Slope is m = RISE / RUN)
Slope = -0.400/2.000 = -0.200
Geometric figure: Straight Line
Slope = -0.400/2.000 = -0.200
x-intercept = 15/4 = 3.75000
y-intercept = 15/20 = 3/4 = 0.75000
Find the mean of the distribution class 1-3 3-5 5-7 7-9. frequency 9 22 27 17
Answer:
Hope this helps you
Step-by-step explanation:
Mean= [tex]\frac{404}{75} = 5.386666666666667[/tex]
Therefore, the mean of the given distribution =5.39 or 3.4
If you did not understand anything you can ask in the comments
polygon having eight sides is called a/an
Answer:
A polygon that has eight sides is called a Octagon
Step-by-step explanation:
Answer:
an octagon
Step-by-step explanation:
'oct' means 8 and 'gon' means sides
Hope this helps!
Enter the polynomial function with the least degree and a leading coefficient of 1 that has the given
zeros.
3i, 2, and -2
Answer:
±4i, ±3
p(x) = A(x - 4i)(x + 4i)(x - 3)(x + 3), with A = 1.
Step-by-step explanation:
±4i, ±3
p(x) = A(x - 4i)(x + 4i)(x - 3)(x + 3), with A = 1.
find the inverse of F(x) -5/3x - 8
Answer:
Step-by-step explanation
Write the inequality this number line represents.
Answer:
19 is equal or less than X
Step-by-step explanation:
I know this because wherever the arrow goes, that’s equal to X. We also know that if the dot is colored, that means it equals: 19 is equal or less than X.
is this true 8ft equals 3 yards
Answer:
No
Step-by-step explanation:
1 yard = 3 feet, so 3 yards = 9 feet
Hope this helps :)
you take out a mortgage for 350,000$ at 4% compounded monthly your payment is 1671$ write a recursive formula
Answer:
Not sure if this is right but it might be something like
350,000-4%+1671m
or
3500,000-4%y/1671m
Step-by-step explanation:
The numbers we know are 350,000 4% and 1671 per month
350,000 is the full mortgage
4% is the APR or annual percentage rate like interest
and we know the monthly for the mortgage is 1671 per month
In the diagram, △ABC∼△DEF. Find the value of x.
Given -
△ABC ∼ △DEF
To find -
the value of x.
Solution -
If △ABC ∼ △DEF then,
[tex]\frac{AB}{DE} =\frac{BC}{EF}[/tex]
➡ [tex]x=\frac{\cancel{12}^4}{\cancel{3}_1}\times2[/tex]
➡ [tex]x=4\times2[/tex]
➡ [tex]x=8[/tex]
Hence, the value of x is equal to 8.
If you have a 91.66% A and you have an exam worth 100 points what would your final grade be if u didn’t do so well on the exam?
Answer:
%70.83
Step-by-step explanation:
91.66 + 50 = 141.66
141.66÷2=70.83
Six more than the product of seven and a number is 55.
Answer:
7
Step-by-step explanation:
6 + 7x = 55
7x = 55 - 6
7x = 49
x = 49/7
therefore x = 7
Find the value of x.
х
x = [?]
Give your answer in simplest form.
Answer:
x = [12]
Step-by-step explanation:
=> [tex] \frac{x}{6} = \frac{6}{3} [/tex]
=> x = 2 × 6
=> x = 12
Part A. Dario purchased a party size sub, and he decides to share it with three of his friends. so he cuts the sub into four equal pieces. however another one of his friends also showed up, and they are now five people in total now that the sun will be shared equally among five people will each person get more or less sub briefly state why do you think so. Part B. Dario decide to take each one of the four pieces and shared equally among the five of them first he divides one piece into five equal parts in shares it then the next one and so on what fraction of the party say sub did each person get after all the parts were shared out explain your reasoning
Answer: 4/6 = 2/32/3 = 2/3
Step-by-step explanation: hope this help
Find the length of the missing side of the right triangle. 15 C 36
The value of c in the missing triangle is 39
Right angle triangle:A right angle triangle is a triangle that has one of its angle as 90 degrees.The side c can be found using Pythagoras theorem.
Therefore,
c² = a² + b²
c² = 36² + 15²
c² = 1296 + 225
c = √1521
c = 39
learn more on right triangle here: https://brainly.com/question/278669