250 flights land each day at oakland airport. assume that each flight has a 10% chance of being late, independently of whether any other flights are late. what is the expected number of flights that are not late?

Answers

Answer 1

Probability is a way to gauge how likely something is to happen. We can quantify uncertainty and make predictions based on the information at hand thanks to a fundamental idea in mathematics and statistics.

The expected number of flights that are not late can be obtained by calculating the complement of the probability that a flight will be late.

Since there is a 10% risk that any flight will be late, the likelihood that a flight won't be late is 1 - 0.1 = 0.9.

The formula for the expected value can be used to determine the anticipated proportion of on-time flights among the 250 total flights:

Expected number is total flights times the likelihood that they won't be running late.

Expected number: 225 (250 times 0.9).

225 flights are therefore anticipated to depart on time.

To know more about Probability visit:

https://brainly.com/question/30034780

#SPJ11


Related Questions

1. 2x+ 16x + 32x² = 0 2. X4-37x+36=0
3. 4x7-28x=-48x5
4. 3x4+11x2=4x2
5. X4+100=29x2

Answers

The given equations are solved by factoring or simplifying them to obtain the respective solutions, except for one equation which may require numerical methods.

1.   The equation 2x + 16x + 32x² = 0 can be factored as 2x(1 + 8x + 16x) = 0. Applying the zero-product property, we set each factor equal to zero: 2x = 0 gives x = 0, and 1 + 8x + 16x = 0 can be solved as a quadratic equation, yielding x = -1/8.

2.    The equation x^4 - 37x + 36 = 0 can be factored using the rational root theorem or by trial and error. The factored form is (x - 4)(x + 1)(x - 9)(x - 1) = 0, which gives solutions x = 4, x = -1, x = 9, and x = 1.

 3.   The equation 4x^7 - 28x = -48x^5 can be simplified by dividing both sides by 4x, resulting in x(x^6 - 7) = -12x^4. Rearranging the equation, we have x(x^6 - 7) + 12x^5 = 0.

4.   The equation 3x^4 + 11x^2 = 4x^2 can be simplified by subtracting 4x^2 from both sides, giving 3x^4 + 7x^2 = 0. Factoring out x^2, we have x^2(3x^2 + 7) = 0. This equation has solutions x = 0 and x = ±√(-7/3).

  5.  The equation x^4 + 100 = 29x^2 can be rearranged as x^4 - 29x^2 + 100 = 0. This quartic equation does not have simple factorization, so it may require the use of numerical methods or the quadratic formula to find the solutions.

To learn more about equations - brainly.com/question/30939447

#SPJ11

If event A has high positive correlation with even B, which of the following is NOT true?
If event A increases, event B will also increase
The correlation coefficient is approximately .8 or higher
Event A causes event B to increase
All of the above are true

Answers

If event A has a high positive correlation with event B, it means that there is a strong relationship between the two events and they tend to move in the same direction. The statement "All of the above are true" is incorrect.

If event A has a high positive correlation with event B, it implies that there is a strong positive relationship between the two events. This means that as event A increases, event B is more likely to increase as well. Therefore, the statement "If event A increases, event B will also increase" is true.

Additionally, a correlation coefficient of approximately 0.8 or higher indicates a strong positive correlation between the two events. Hence, the statement "The correlation coefficient is approximately 0.8 or higher" is also true.

However, it is not accurate to say that event A causes event B to increase solely based on a high positive correlation. Correlation does not imply causation. While there may be a strong relationship between event A and event B, it does not necessarily mean that one event is causing the other to occur. Other factors or variables could be influencing both events simultaneously. Therefore, the statement "Event A causes event B to increase" is not necessarily true.

In summary, all of the statements provided are not true. While event A and event B have a high positive correlation and tend to increase together, it does not imply a causal relationship between the events.

To learn more about correlation coefficient : brainly.com/question/29704223

#SPJ11

7.33 In one area along the interstate, the number of dropped wireless phone connections per call follows a Poisson distribution. From four calls, the number of dropped connections is 2 0 3 1 (a) Find the maximum likelihood estimate of lambda. (b) Obtain the maximum likelihood estimate that the next two calls will be completed without any ac- cidental drops.

Answers

(A) The maximum likelihood estimate of lambda is 1.5.

(B) The maximum likelihood estimate that the next two calls will be completed without any accidental drops is e^(-3).

To find the maximum likelihood estimate of lambda in a Poisson distribution representing the number of dropped wireless phone connections per call, we can analyze the given data. From four calls with the number of dropped connections as 2, 0, 3, and 1, we can determine the lambda value that maximizes the likelihood of observing these specific outcomes. Using the maximum likelihood estimation, we can also estimate the likelihood of the next two calls being completed without any accidental drops.

(a) To find the maximum likelihood estimate of lambda, we need to determine the parameter that maximizes the likelihood of observing the given data. In a Poisson distribution, the probability mass function is given by P(X = x) = (e^(-lambda) * lambdaˣ) / x!, where X is the number of dropped connections and lambda is the average number of dropped connections per call.

Given the data: 2, 0, 3, 1, we calculate the likelihood function L(lambda) as the product of the individual probabilities:

L(lambda) = P(X = 2) * P(X = 0) * P(X = 3) * P(X = 1)

To find the maximum likelihood estimate, we differentiate the logarithm of the likelihood function with respect to lambda, set it equal to zero, and solve for lambda. However, for simplicity, we can directly observe that the likelihood is maximized when lambda is the average of the given data points:

lambda = (2 + 0 + 3 + 1) / 4

lambda = 6 / 4

lambda = 1.5

Therefore, the maximum likelihood estimate of lambda is 1.5.

(b) To estimate the likelihood of the next two calls being completed without any accidental drops, we can use the maximum likelihood estimate of lambda obtained in part (a). In a Poisson distribution, the probability of observing zero dropped connections in a call is given by P(X = 0) = (e^(-lambda) * lambda^0) / 0!, which simplifies to e^(-lambda).

Using lambda = 1.5, we can calculate the probability of zero dropped connections in a call:

P(X = 0) = e^(-1.5)

To estimate the likelihood of two consecutive calls without any drops, we multiply the individual probabilities:

P(X = 0 in call 1 and call 2) = P(X = 0) * P(X = 0) = (e^(-1.5))^2 = e^(-3)

Therefore, the maximum likelihood estimate that the next two calls will be completed without any accidental drops is e^(-3).

Learn more about Maximum:

brainly.com/question/29130692

#SPJ11

FILL THE BLANK. assume that the current exchange rate is €1 = $1.20. if you exchange 2,000 us dollars for euros, you will receive ____.

Answers

If the current exchange rate is €1 = $1.20, and you exchange $2,000 US dollars, you will receive €1,666.67.

Start with the amount of US dollars you want to exchange, which is $2,000.

The exchange rate is given as €1 = $1.20, which means that 1 Euro is equivalent to 1.20 US dollars.

To find out how many Euros you will receive, you need to convert the US dollars to Euros. This can be done by dividing the amount of US dollars by the exchange rate.

Using the calculation $2,000 / $1.20, you get €1,666.67.

Therefore, when you exchange $2,000 US dollars at the given exchange rate of €1 = $1.20, you will receive approximately €1,666.67.

Please note that exchange rates may vary depending on where you exchange your currency, and additional fees or commissions may apply, which could affect the final amount you receive.

To know more about exchange rate,

https://brainly.com/question/14675454

#SPJ11

in exercises 3–10 find the curl and the divergence of the given vector field.
3. F(x, y) = xi+yj 4. F(x, y) = x/x^2 + y^2 i + y/x^2+y^2 j
5. F(x, y, z) = x^2i + y^2j + z^2k 6. F(x, y, z) = cos xi + sin yj+e^xy k

Answers

For the given vector fields 3. The curl of F is zero. 4, The curl of F is  (x² - y²)/(x² + y²)²j + (-2xy)/(x² + y²)²i. 5, The divergence of F is 2x + 2y + 2z = 2(x + y + z). 6, The divergence of F is -sin(x) + cos(y).

3, To find the curl of F(x, y) = xi + yj:

The curl of F is given by ∇ × F = (∂Fz/∂y - ∂Fy/∂z)i + (∂Fx/∂z - ∂Fz/∂x)j + (∂Fy/∂x - ∂Fx/∂y)k.

Since F(x, y) = xi + yj, we have Fz = 0, Fx = x, and Fy = y.

Therefore, the curl of F is ∇ × F = 0k.

4, To find the curl of F(x, y) = x/(x² + y²)i + y/(x² + y²)j:

Again, we use the formula ∇ × F = (∂Fz/∂y - ∂Fy/∂z)i + (∂Fx/∂z - ∂Fz/∂x)j + (∂Fy/∂x - ∂Fx/∂y)k.

Here, Fz = 0, Fx = x/(x² + y²), and Fy = y/(x² + y²).

Taking the partial derivatives, we find ∂Fz/∂y = 0, ∂Fy/∂z = 0, ∂Fx/∂z = 0, ∂Fz/∂x = 0, ∂Fy/∂x = (x² - y²)/(x² + y²)², and ∂Fx/∂y = (-2xy)/(x² + y²)².

Therefore, the curl of F is ∇ × F = (x² - y²)/(x² + y²)²j + (-2xy)/(x² + y²)²i.

5, To find the divergence of F(x, y, z) = x²i + y²j + z²k:

The divergence of F is given by ∇ · F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z.

Here, Fx = x², Fy = y², and Fz = z².

Taking the partial derivatives, we have ∂Fx/∂x = 2x, ∂Fy/∂y = 2y, and ∂Fz/∂z = 2z.

Therefore, the divergence of F is ∇ · F = 2x + 2y + 2z = 2(x + y + z).

6, To find the divergence of F(x, y, z) = cos(xi) + sin(yj) + e^(xy)k:

Again, using the formula for divergence, we have ∇ · F = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z.

Here, Fx = cos(x), Fy = sin(y), and Fz = e^(xy).

Taking the partial derivatives, we find ∂Fx/∂x = -sin(x), ∂Fy/∂y = cos(y), and ∂Fz/∂z = 0.

Therefore, the divergence of F is ∇ · F = -sin(x) + cos(y).

To know more about curl and divergence:

https://brainly.com/question/31428777

#SPJ4

Calculate the value of B(rate excluding VAT)

Answers

To calculate the value of B (rate excluding VAT), divide the original amount including VAT by 1 plus the VAT rate (converted to a decimal). This will give you the value excluding VAT.

To calculate the value of B (rate excluding VAT), you need to understand how VAT (Value Added Tax) works.

VAT is a tax added to the purchase price of goods or services. It is expressed as a percentage of the total amount including VAT. To find the value excluding VAT, you need to subtract the VAT amount from the total amount.

The formula to calculate the value excluding VAT is:

B = A / (1 + (VAT rate/100))

Where:

B is the value excluding VAT

A is the original amount including VAT

VAT rate is the rate of VAT in percentage

By dividing the original amount including VAT by 1 plus the VAT rate (converted to a decimal), you can obtain the value excluding VAT.

For example, if the original amount including VAT is $120 and the VAT rate is 20%, you can calculate the value excluding VAT as:

B = 120 / (1 + (20/100))

B = 120 / 1.2

B = 100

Therefore, the value of B (rate excluding VAT) in this case would be $100.

To know more about VAT:

https://brainly.com/question/31341634

#SPJ4

The foot size of each of 16 men was measured, resulting in the sample mean of
27.32 cm. Assume that the distribution of foot sizes is normal with o = 1.2 cm.
a.
Test if the population mean of men's foot sizes is 28.0 cm using o = 0.01.
b. If = 0.01 is used, what is the probability of a type II error when the population
mean is 27.0 cm?
C.
Find the sample size required to ensure that the type II error probability
B(27) = 0.1 when a = 0.01.

Answers

a. Perform a one-sample t-test using the given sample mean, population mean, sample size, and standard deviation, with a significance level of 0.01, to test the population mean of men's foot sizes.

b. Calculate the probability of a type II error when the population mean is 27.0 cm, assuming a specific alternative hypothesis and using a significance level of 0.01.

c. Determine the sample size required to achieve a type II error probability of 0.1 when the significance level is 0.01.

a. To test if the population mean of men's foot sizes is 28.0 cm, we can perform a one-sample t-test. The null hypothesis (H0) is that the population mean is equal to 28.0 cm, and the alternative hypothesis (H1) is that the population mean is not equal to 28.0 cm.

Given that the distribution is normal with a known standard deviation of 1.2 cm, we can calculate the t-value using the sample mean, population mean, sample size, and standard deviation. With a significance level (α) of 0.01, we compare the calculated t-value to the critical t-value from the t-distribution table to determine if we reject or fail to reject the null hypothesis.

b. To find the probability of a type II error when the population mean is 27.0 cm, we need to specify the alternative hypothesis more precisely. If we assume the alternative hypothesis is that the population mean is less than 28.0 cm, we can calculate the probability of a type II error using the given information, sample size, and the desired significance level (α).

This can be done by calculating the power of the test, which is equal to 1 minus the type II error probability.

c. To find the sample size required to ensure that the type II error probability B(27) = 0.1 when α = 0.01, we need to use the power calculation. We can determine the required sample size by specifying the desired power level, the significance level, the population mean, and the population standard deviation.

By solving for the sample size, we can determine the number of observations needed to achieve the desired power while maintaining a certain level of significance.

To know more about standard deviation refer here:

https://brainly.com/question/29115611

#SPJ11

Find the values of x and y. Write your answers in simplest form.

Answers

Answer:

y = 9 units

x = 9√3 units

Step-by-step explanation:

We know that this is a 30-60-90 triangle since the sum of the interior angles in a triangle is 180 and 180 - (90 + 30) = 60.

In a 30-60-90 triangle, the measures of the sides are related by the following ratios:

We can call the side opposite the 30° angle "s" and its the shorter leg.The side opposite the 60° angle is √3 times the length of the shorter leg and its the longer leg.  So it's s√3 The hypotenuse (side always opposite the 90° or right angle) is twice the length of the shorter side.  So it's 2s.

Step 1:  Since the hypotenuse is 18 units, we can find y by dividing 18 by 2:

y = 18/2

y = 9

Thus, the length of y is 9 units

Step 2:  Since we now know that the length of the side opposite the 30° angle by √3 to find x:

x = 9√3

9√3 is already simplified so x = 9√3

What Is The Meaning Of x In Algebra

Answers

Answer:

In algebra, the variable "x" is typically used to represent an unknown or generic value. It is called a variable because its value can vary or change depending on the context or the problem being solved.

In equations and expressions, "x" is used as a placeholder that represents an unknown quantity that we are trying to find or determine. By assigning different values to "x" and solving the equation or expression, we can determine the value of "x" and solve the problem.

For example, consider the equation: 2x + 5 = 15. In this equation, "x" represents the unknown value that we need to find. By solving the equation, we can determine that x = 5.

In algebra, other letters or symbols can also be used as variables, but "x" is the most commonly used symbol. Other letters, such as "y," "z," or even Greek letters like "θ" or "α," may be used as variables depending on the specific context or problem.

Answer: Its a term we use when solving questions for example what is 3 times 9 divided by x (don't answer it) but yeah its a term used in equations

Step-by-step explanation:

One of the main criticisms of differential opportunity theory is that
a. it is class-oriented
b. it only identifies three types of gangs
c. it overlooks the fact that most delinquents become law-abiding adults
d. it ignores differential parental aspirations

Answers

The main criticism of differential opportunity theory is that it overlooks the fact that most delinquents become law-abiding adults (option c).

Differential opportunity theory, developed by Richard Cloward and Lloyd Ohlin, focuses on how individuals in disadvantaged communities may turn to criminal activities as a result of limited legitimate opportunities for success.

However, critics argue that the theory fails to account for the fact that many individuals who engage in delinquency during their youth go on to become law-abiding adults.

This criticism highlights the idea that delinquent behavior is not necessarily a lifelong pattern and that individuals can change their behavior and adopt prosocial lifestyles as they mature.

While differential opportunity theory provides insights into the relationship between limited opportunities and delinquency, it does not fully address the complexities of individual development and the potential for desistance from criminal behavior.

Critics suggest that factors such as personal growth, social support, rehabilitation programs, and the influence of life events play a significant role in individuals transitioning from delinquency to law-abiding adulthood.

To know more about  law-abiding adults refer here:

https://brainly.com/question/28317923

#SPJ11

Find the measure of the three missing angles in the rhombus below.

Answers

The missing angles of the rhombus are the following: z° = x° = 59° and y° = 121°.

How to find the measures of all missing angles in a rhombus

According to the statement, we find a rhombus that is also a parallelogram, that is a quadrilateral with two pairs of parallel sides. Herein we must determine the value of all missing angles, based on the following parallelogram properties:

121° + x° = 180°

121° + z° = 180°

y° + z° = 180°

Now we proceed to determine the values of the missing angles:

z° = x° = 180° - 121°

z° = x° = 59°

y° = 180° - z°

y° = 180° - 59°

y° = 121°

To learn more on parallelograms: https://brainly.com/question/11220936

#SPJ1

Use integration by parts to calculate ... fraction numerator cos to the power of 5 x over denominator 5 end fraction minus fraction. b. fraction numerator ...

Answers

The results back into the original expression: ∫ [tex](cos^5(x) / 5) dx - ∫ (x^2 * e^x) dx = (cos^5(x) / 5) * x - (5/4) * cos^5(x) + C - ∫ (x^2 * e^x)[/tex]dx where C represents the constant of integration.

How we integrate the expression?

To integrate the expression using integration by parts, I'll assume that you're referring to the following integral:

∫ [tex](cos^5(x) / 5) dx - ∫ (x^2 * e^x) dx[/tex]

Integration by parts involves choosing one part of the integrand as the "u" term and the other part as the "dv" term. We can apply the formula: ∫ u dv = u * v - ∫ v du

Let's proceed with the calculation.

For the first integral:

[tex]u = cos^5(x)[/tex]

dv = dx

Differentiating u:

[tex]du = -5 * cos^4(x) * sin(x) dx[/tex]

Integrating dv:

v = x

Applying the integration by parts formula, we have:

∫ [tex](cos^5(x) / 5) dx = u * v - ∫ v du[/tex]

= [tex](cos^5(x) / 5) * x - ∫ x * (-5 * cos^4(x) * sin(x)) dx[/tex]

Simplifying the expression inside the integral:

∫ x *[tex](-5 * cos^4(x) * sin(x)) dx = -5 ∫ x * cos^4(x) * sin(x) dx[/tex]

Now, we need to apply integration by parts again to the remaining integral:

u = x

[tex]dv = -5 * cos^4(x) * sin(x) dx[/tex]

Differentiating u:

du = dx

Integrating dv:

[tex]v = ∫ (-5 * cos^4(x) * sin(x)) dx[/tex]

This integral can be solved using standard trigonometric identities. After evaluating the integral, we can substitute the values back into the integration by parts formula:

[tex]∫ x * (-5 * cos^4(x) * sin(x)) dx = -5 * (-(1/4) * cos^5(x)) + C= (5/4) * cos^5(x) + C[/tex]

Learn more about Integration

brainly.com/question/31401227

#SPJ11

a student drove to the university from her home and noted that the odometer reading of her car increased by 14.0 km. the trip took 16.0 min. (for each answer, enter a number.)

Answers

The student's average speed was approximately 52.5 km/h, where he drove a distance of 14.0 km in 16.0 minutes.

The student drove a distance of 14.0 km in 16.0 minutes. To find the average speed, we need to convert the time to hours and then use the formula:

Average speed is a measure of the total distance traveled divided by the total time taken. It represents the average rate at which an object or person covers a certain distance over a given period of time.

Mathematically, average speed is calculated using the formula:

Average speed = Total distance traveled / Total time taken

First, convert 16.0 minutes to hours:

16.0 minutes * (1 hour / 60 minutes) = 0.2667 hours

Now, calculate the average speed:

Average speed = 14.0 km / 0.2667 hours ≈ 52.5 km/h.

To know more about average speed, visit:

https://brainly.com/question/10449029

#SPJ11

find the amount a in an account after t years given the following conditions. da dt=0.07a a(0)=7,000

Answers

To find the amount a in an account after t years, we need to solve the differential equation da/dt = 0.07a with the initial condition a(0) = 7,000.

Answer : a = 7,000 * e^(0.07t)

Separating variables, we have:

(1/a) da = 0.07 dt

Integrating both sides:

∫ (1/a) da = ∫ 0.07 dt

ln|a| = 0.07t + C1

Taking the exponential of both sides:

|a| = e^(0.07t + C1)

Since a must be positive, we can drop the absolute value:

a = e^(0.07t + C1)

Now, using the initial condition a(0) = 7,000, we substitute t = 0 and a = 7,000:

7,000 = e^(0.07 * 0 + C1)

7,000 = e^C1

Taking the natural logarithm of both sides:

ln(7,000) = C1

So, C1 = ln(7,000).

Substituting this value back into the equation, we have:

a = e^(0.07t + ln(7,000))

Simplifying further:

a = e^(0.07t) * e^(ln(7,000))

a = 7,000 * e^(0.07t)

Therefore, the amount a in the account after t years is given by the equation:

a = 7,000 * e^(0.07t)

Learn more about Integrating : brainly.com/question/30900582

#SPJ11

find the indicated measure.

Answers

The measure of arc EH is 84 degrees

The measure of angle G is 42 degrees

We have to find the arc EH

We know that the measure of the central angle is half times the arc length

42 =1/2(Arc EH)

Multiply both sides by 2

42×2 =Arc EH

84 = EH

Hence, the measure of arc EH is 84 degrees

To learn more on Coordinate Geometry click:

brainly.com/question/27326241

#SPJ1

suppose you have a golden rectangle cut out of a piece of paper. now suppose you fold it in half along its base and then in half along its width. you have just created a new, smaller rectangle. is that rectangle a golden rectangle?

Answers

Answer:

  yes

Step-by-step explanation:

You dilate a golden rectangle by a factor of 1/2, and you want to know if the result is a golden rectangle.

Dilation

Multiplying dimensions by a constant creates a similar figure, one with all the same dimension ratios as the original.

Golden rectangle

A "golden rectangle" is one that has an aspect ratio of Φ = (1+√5)/2 ≈ 1.618. Reducing its dimensions horizontally and vertically by a factor of 1/2 does not change that aspect ratio. It is still a golden rectangle.

<95141404393>

A real-valued signal, which is absolutely summable, which has the following irrational z- transform X(z) = X1(2) – X1(2-1), where = X1(z) = (1 – 2-2/2)-1.5. 2 (i) Expand X1(z) and hence expree X(z) using a power series expansion method. (ii) From the above step, find x(n), the inverse z-transform of X (2) its ROC. (iii) Plot x(n), showing only 8 significant number of terms. (iv) Find the energy of x(n). (v) Determine and plot the magnitude of Fourier transform.

Answers

(i) To expand X1(z), we first simplify the expression inside the parentheses as:

1 - 2^(-2/2) = 1 - sqrt(2)/2

Therefore, X1(z) can be written as:

X1(z) = (1 - sqrt(2)/2)^(-3/2)

We can now use the binomial series expansion to find a power series for X1(z):

(1 + x)^(-a) = 1 - ax + a(a+1)x^2/2! - a(a+1)(a+2)x^3/3! + ...

Substituting x = -sqrt(2)/2 and a = 3/2, we get:

X1(z) = 1 + 3sqrt(2)/4*z^(-1) + 15/8*z^(-2) + 105sqrt(2)/32*z^(-3) + ...

Now we can use the given expression for X(z) to get:

X(z) = X1(2) - X1(2-z^(-1)) = 1 + 3sqrt(2)/4 - (1 - sqrt(2)/2)z^(-1) - (15/8 + 3sqrt(2)/4)z^(-2) - ...

(ii) To find the inverse z-transform of X(z), we use the formula for the inverse z-transform of a power series:

x(n) = Residue[ X(z) * z^(n-1), z = 0 ]

Using the power series expansion for X(z) from part (i), we get:

x(n) = Residue[ (1 + 3sqrt(2)/4*z^(-1) - (1 - sqrt(2)/2)z^(-1) - (15/8 + 3sqrt(2)/4)z^(-2) - ...) * z^(n-1), z = 0 ]

We can simplify this expression by multiplying out the terms in the brackets and collecting the coefficients of z^(-1) and z^(-2):

x(n) = 1/2^n - (3sqrt(2)/4)*(-1)^n + (n+3/2)*sqrt(2)/4*(-1)^n*2^(-n-1) - ...

The region of convergence (ROC) of X(z) is the annulus between the two circles |z| = 1 and |z| = 2. The ROC of x(n) is the intersection of this annulus with the outer half-plane, i.e., the region |z| > 1.

(iii) To plot x(n), we can use the formula from part (ii) with a limited number of terms:

x(n) = 1/2^n - (3sqrt(2)/4)*(-1)^n + (n+3/2)*sqrt(2)/4*(-1)^n*2^(-n-1) - ...

For example, the first 8 terms are:

x(0) = 0.6516

x(1) = -0.3536

x(2) = -0.1979

x(3) = 0.1423

x(4) = 0.1036

x(5) = -0.0769

x(6) = -0.0574

x(7) = 0.0432

(iv) The energy of x(n) is given by:

E = sum[ |x(n)|^2, n = -inf to inf ]

Using the formula for x(n) from part (ii)

To know more about parentheses refer here

https://brainly.com/question/3572440#

#SPJ11

i)[tex]X(z) = X_1(2) - X_1(2-z^{(-1)}) = 1 + 3\sqrt(2)/4 - (1 - \sqrt(2)/2)z^{(-1)} - (15/8 + 3\sqrt(2)/4)z^{(-2)} - ...[/tex]

ii) The ROC of x(n) is the intersection of this annulus with the outer half-plane, i.e., the region |z| > 1.

iii) the first 8 terms are:

x(0) = 0.6516, x(1) = -0.3536, x(2) = -0.1979, x(3) = 0.142, x(4) = 0.1036, x(5) = -0.0769, x(6) = -0.0574, x(7) = 0.0432

iv) The energy of x(n) is given by:

E = sum[ |x(n)|², n = -inf to inf ]

What is the equivalent expression?

Equivalent expressions are expressions that perform the same function despite their appearance. If two algebraic expressions are equivalent, they have the same value when we use the same variable value.

(i) To expand X1(z), we first simplify the expression inside the parentheses as:

[tex]1 - 2^{(-2/2)} = 1 - \sqrt(2)/2[/tex]

Therefore, X₁(z) can be written as:

[tex]X_1(z) = (1 - \sqrt(2)/2)^{(-3/2)}[/tex]

We can now use the binomial series expansion to find a power series for X₁(z) :

[tex](1 + x)^{(-a)} = 1 - ax + a(a+1)x^2/2! - a(a+1)(a+2)x^3/3! + ...[/tex]

Substituting [tex]x = -\sqrt(2)/2[/tex] and a = 3/2, we get:

[tex]X_1(z) = 1 + 3\sqrt(2)/4*z^{(-1)} + 15/8*z^{(-2)} + 105\sqrt(2)/32*z^{(-3)} + ...[/tex]

Now we can use the given expression for X(z) to get:

[tex]X(z) = X_1(2) - X_1(2-z^{(-1)}) = 1 + 3\sqrt(2)/4 - (1 - \sqrt(2)/2)z^{(-1)} - (15/8 + 3\sqrt(2)/4)z^{(-2)} - ...[/tex]

(ii) To find the inverse z-transform of X(z), we use the formula for the inverse z-transform of a power series:

[tex]x(n) = Residue[ X(z) * z^{(n-1)}, z = 0][/tex]

Using the power series expansion for X(z) from part (i), we get:

[tex]x(n) = Residue[ (1 + 3\sqrt(2)/4*z^(-1) - (1 - \sqrt(2)/2)z^(-1) - (15/8 + 3\sqrt(2)/4)z^{(-2)} - ...) * z^{(n-1)}, z = 0 ][/tex]

We can simplify this expression by multiplying out the terms in the brackets and collecting the coefficients of [tex]z^{(-1)}[/tex] and [tex]z^{(-2)}[/tex]:

[tex]x(n) = 1/2^n - (3\sqrt(2)/4)*(-1)^n + (n+3/2)*\sqrt(2)/4*(-1)^n*2^{(-n-1)} - ...[/tex]

The region of convergence (ROC) of X(z) is the annulus between the two circles |z| = 1 and |z| = 2. The ROC of x(n) is the intersection of this annulus with the outer half-plane, i.e., the region |z| > 1.

(iii) To plot x(n), we can use the formula from part (ii) with a limited number of terms:

[tex]x(n) = 1/2^n - (3\sqrt(2)/4)*(-1)^n + (n+3/2)*\sqrt(2)/4*(-1)^n*2^{(-n-1)} - ...[/tex]

For example, the first 8 terms are:

x(0) = 0.6516

x(1) = -0.3536

x(2) = -0.1979

x(3) = 0.1423

x(4) = 0.1036

x(5) = -0.0769

x(6) = -0.0574

x(7) = 0.0432

(iv) The energy of x(n) is given by:

E = sum[ |x(n)|², n = -inf to inf ]

Using the formula for x(n) from part (ii)

i)[tex]X(z) = X_1(2) - X_1(2-z^{(-1)}) = 1 + 3\sqrt(2)/4 - (1 - \sqrt(2)/2)z^{(-1)} - (15/8 + 3\sqrt(2)/4)z^{(-2)} - ...[/tex]

ii) The ROC of x(n) is the intersection of this annulus with the outer half-plane, i.e., the region |z| > 1.

iii) the first 8 terms are:

x(0) = 0.6516, x(1) = -0.3536, x(2) = -0.1979, x(3) = 0.142, x(4) = 0.1036, x(5) = -0.0769, x(6) = -0.0574, x(7) = 0.0432

iv) The energy of x(n) is given by:

E = sum[ |x(n)|², n = -inf to inf ]

To learn more about the equivalent expression visit:

https://brainly.com/question/2972832

#SPJ4

Need help with this question please

Answers

Note that the two possible points where the tangent is zero are the ones drawn in the image attached.

what is the explanation for this?

For a point defined bt a radius R, and an angle θ measured from the positive x-axis (like the one in the image)

The transformation to rectangular coordinates is written as:

x = R  *  cos(θ)

y = R  * sin(θ)

Here we are in the unit circle, so we have a radius equal to 1, so R = 1.

Then the exact coordinates of the point are:

(cos(θ), sin(θ))

2) We want to mark a point Q in the unit circle sch that the tangent has a value of 0.

Remember that:

tan(x) = sin (x)/cos (x)

So if sin(x) = 0, then:

tan(x) = sin(x)/cos(x) = 0/cos(x) = 0

So tan(x) is 0 in the points such that the sine function is zero.

These values are:

sin(0°) = 0

sin(180°) = 0

So this means that  the two possible points where the tangent is zero are the ones drawn in the image attached..

Learn more about tangent:
https://brainly.com/question/10053881
#SPJ1

In the household measurement system, 8 oz is equivalent to ____
a. 1 tsp
b. 1 pt
c. 1 tbsp
d. 1 qt
e. 1 c

Answers

Answer:

It is equal to 1 cup

Step-by-step explanation:

In the household measurement system, 8 oz is equivalent to: c. 1 tbsp.

In the United States customary system of measurement, which is commonly used in household cooking and baking, the abbreviation "oz" stands for ounces, and "tbsp" stands for tablespoons.

1 tablespoon (tbsp) is equivalent to 0.5 fluid ounces (fl oz), and since 8 fluid ounces is equivalent to 16 tablespoons, we can conclude that 8 oz is equal to 1 tablespoon (tbsp).

A tablespoon (tbsp) is a unit of volume commonly used in cooking and culinary measurements. It is part of the household measurement system, also known as the United States customary system, which is predominantly used in the United States for recipes and cooking measurements.

1 tablespoon is equal to approximately 14.79 milliliters (ml) or 0.5 fluid ounces (fl oz). It is typically abbreviated as "tbsp" or "T" (capital T) in recipes and on measuring spoons.

In cooking, tablespoons are often used to measure ingredients such as spices, oils, sauces, and other liquids. They provide a convenient way to measure small to moderate amounts of ingredients more accurately than using just a teaspoon or a cup.

To learn more about tablespoon

https://brainly.com/question/13212414

#SPJ11

A circular pool has a footpath around the circumference. The equation x2 + y2 = 2,500, with units in feet, models the outside edge of the pool. The equation x2 + y2 = 3,422. 25, with units in feet, models the outside edge of the footpath. What is the width of the footpath?

Answers

The width of the footpath is approximately 21.21 feet.To find the width of the footpath, we need to determine the difference in radii between the pool and the footpath.

The equation x^2 + y^2 = 2,500 represents the outside edge of the pool, which is a circle. The general equation for a circle is x^2 + y^2 = r^2, where r is the radius. In this case, the radius of the pool is √2,500 or 50 feet.Similarly, the equation x^2 + y^2 = 3,422.25 represents the outside edge of the footpath, which is also a circle. The radius of the footpath is √3,422.25 or approximately 58.50 feet.The width of the footpath can be determined by calculating the difference in radii between the pool and the footpath:Width of footpath = Radius of footpath - Radius of pool = 58.50 - 50 = 8.50 feet Therefore, the width of the footpath is approximately 8.50 feet. Alternatively, we can find the width of the footpath by subtracting the square roots of the two equations: Width of footpath

[tex]= √(3,422.25) - √(2,500)\\≈ 58.50 - 50\\= 8.50 feet[/tex]

Both methods yield the same result. In summary, to find the width of the footpath, we calculate the difference in radii between the pool and the footpath. By subtracting the radius of the pool from the radius of the footpath, we determine that the width of the footpath is approximately 8.50 feet.

learn more about footpath here :

https://brainly.com/question/28766467

#SPJ11

Solve the right triangle

Answers

The missing measurements are m ∠U = 69.34°, m ∠W = 20.66° and UW = 8.5.

Given that a right triangle UVW, we need to find the missing measurements,

Here, UW is the hypotenuse.

Using the Pythagoras theorem,

UW² = VU² + VW²

UW = √3²+8²

UW = √9+64

UW = √73

UW = 8.5

Using the Sine law,

So,

Sin W / VU = Sin V / UW

Sin W / 3 = Sin 90° / 8.5

Sin W = 3 / 8.5

Sin W = 0.3529

W = Sin⁻¹(0.3529)

W = 20.66

m ∠W = 20.66°

Since we know that the sum of the acute angles of the right triangles is 90°.

So, m ∠U = 90° - 20.66°

m ∠U = 69.34°

Hence the missing measurements are m ∠U = 69.34°, m ∠W = 20.66° and UW = 8.5.

Learn more about Sine law, click;

https://brainly.com/question/13098194

#SPJ1

Differential Equation: y' + 16y' + 128y = 0 describes a series inductor-capacitor-resistor circuit in electrical engineering. The voltage across the capacitor is y (volts). The independent variable is t (seconds). Boundary conditions at t=0 are: y= 5 volts and y'= 4 volts/sec. Determine the capacitor voltage at t=0.50 seconds

Answers

The capacitor voltage at `t = 0.50 sec` is `y = 0.082 volts`.

Given differential equation: `y' + 16y' + 128y = 0`

The voltage across the capacitor is y (volts)

The independent variable is t (seconds)

Boundary conditions at `t=0` are: `y= 5 volts` and `y'= 4 volts/sec`.

To find out the value of `y` or voltage at `t = 0.50 sec`, we need to solve the given differential equation using the following steps:

To solve the given differential equation, we need to use the standard form of differential equations that is `dy/dt + py = q`.

Here, `p = 16` and `q = 0`.So, we get `dy/dt + 16y = 0`.

To solve the above differential equation, we use the method of integrating factors, which states that if `dy/dt + py = q`, then multiplying each side by the integrating factor `I`, we have `I(dy/dt + py) = Iq`.

Now, we use the product rule of derivatives and get `d/dt(Iy) = Iq`.

Solving for `y`, we get:

`y = 1/I∫Iq dt + c`

where `c` is an arbitrary constant.

To find the value of `I`, we multiply the coefficient of `y` by `t`, that is `pt = 16t`.

We have, `I = e^(∫pt dt) = [tex]e^{(16t)}[/tex].

Multiplying the given differential equation by `e^(16t)`, we get:

[tex]e^{(16t)}[/tex]dy/dt + 16[tex]e^{(16t)}[/tex]y = 0

Using the product rule of derivatives, we get:

d/dt ([tex]e^{(16t)}[/tex]y) = 0`.

So, we have [tex]e^{(16t)}[/tex]y = c` (where c is an arbitrary constant).Using the boundary condition at `t = 0`, we have ,

`y = 5` and `y' = 4`.

So, at `t = 0`, we get:

[tex]e^{(16*0)}[/tex]×5 = c`.

So, `c = 5`.

Hence, we have [tex]e^{(16t)}[/tex]y = 5.

Solving for y, we get

y = 5/[tex]e^{(16t)}[/tex]

Substituting the value of `t = 0.50`, we get:

y = 5/[tex]e^{(16*0.50)}[/tex]

So, y = 5/[tex]e^8[/tex]

Therefore, the capacitor voltage at t = 0.50 sec is y = 0.082 volts.

To know more about differential, visit

https://brainly.com/question/13958985

#SPJ11

The voltage across the capacitor at t=0.50 seconds is approximately 2.12 volts.

The differential equation is: y′+16y′+128y=0

To solve the given differential equation we assume the solution of the form [tex]y= e^{(rt)[/tex],

Taking the derivative of y with respect to t gives:

[tex]y′= re^{(rt)[/tex]

Substituting these into the differential equation gives:

[tex]r^2e^{(rt)}+16re^{(rt)}+128e^{(rt)}=0[/tex]

Factoring out e^(rt) from the above expression gives:

[tex]r^2+16r+128=0[/tex]

This is a quadratic equation and we can solve it using the quadratic formula:

[tex]r=-b \pm b^2-4ac\sqrt2a[/tex]

[tex]= -(16) \pm \sqrt(16^2-4(1)(128)) / 2(1)[/tex]

= -8 ± 8i

Since r is complex, the solution to the differential equation is of the form:

[tex]y=e^{(-8t)}(C_1cos(8t)+C_2sin(8t))[/tex]

To find C₁ and C₂, we use the initial conditions:

y = 5 volts

at t = 0

⇒ C₁ = 5

To find C₂ we differentiate the solution and use the second initial condition:

y'=4 volts/sec

at t=0

⇒ C₂ = -3

Substituting C₁ and C₂ in the solution we get:

[tex]y=e^{(-8t)}(5cos(8t)-3sin(8t))[/tex]

To find the voltage across the capacitor at t=0.5 seconds,

we substitute t=0.5 into the solution:

[tex]y(0.5) = e^{(-4)}(5cos(4)-3sin(4)) \approx 2.12 volts[/tex]

Therefore, the voltage across the capacitor at t=0.50 seconds is approximately 2.12 volts.

To know more about differential equation, visit:

https://brainly.com/question/32645495

#SPJ11

Esab QE To thight be so Find the area of a triangle with sides a = 12, b = 15 and c = 13.​

Answers

As per the details given, the area of the triangle with sides a = 12, b = 15, and c = 13 is approximately 74.83 square units.

To calculate the area of a triangle with given sides a = 12, b = 15, and c = 13, one can use Heron's formula.

Heron's formula implies that the area (A) of a triangle with sides a, b, and c can be found using the semi-perimeter (s) and the lengths of the sides:

s = (a + b + c) / 2

A = sqrt(s * (s - a) * (s - b) * (s - c))

After putting the values:

a = 12

b = 15

c = 13

First, the semi-perimeter wil be:

s = (a + b + c) / 2

s = (12 + 15 + 13) / 2

s = 40 / 2

s = 20

Now, use Heron's formula to find the area:

A = sqrt(s * (s - a) * (s - b) * (s - c))

A = sqrt(20 * (20 - 12) * (20 - 15) * (20 - 13))

A = sqrt(20 * 8 * 5 * 7)

A = sqrt(5600)

A ≈ 74.83

Thus, the area of the triangle with sides a = 12, b = 15, and c = 13 is approximately 74.83 square units.

For more details regarding Heron's formula, visit:

https://brainly.com/question/15188806

#SPJ1

T/F. When modeling E(y) with a single qualitative independent variable, the number of 0—1 dummy variables in the model is equal to the number of levels of the qualitative variable.

Answers

True. When modeling E(y) with a single qualitative independent variable, we use 0-1 dummy variables in the model. The number of dummy variables is equal to the number of levels of the qualitative variable minus one.

1. Identify the qualitative independent variable with multiple levels.

2. Determine the number of levels in the qualitative variable. Let's denote this number as "n".

3. Subtract one from the number of levels, resulting in n-1.

4. Create n-1 0-1 dummy variables to represent the different levels of the qualitative variable.

5. Assign a value of 1 to the corresponding dummy variable if the observation belongs to that level and assign a value of 0 to all other dummy variables.

6. Include these dummy variables in the regression model to estimate the effect of each level on the dependent variable.

7. The coefficients associated with the dummy variables represent the difference in the expected value of the dependent variable between each level and the reference level (the level not represented by a dummy variable).

Learn more about qualitative  : brainly.com/question/29004144

#SPJ11

What's New?
There's something new going on here.
How is this parking lot similar to the ones you've
already.seen? How is it different?
Similarities:
Differences:
Share With Class

Answers

The Ohio Constitution divides state power into the legislative, executive, and judicial departments separately from the federal Constitution. Each branch has established powers and responsibilities and is separate from the other two.

Both have a preamble, three departments of government, bicameral legislatures, a Bill of Rights, and the Supreme Court is the highest court. Power is derived from the agreement of the governed in both.

The balance of power between the legislative and executive departments is one significant distinction between the Ohio and United States Constitutions. The legislative was far more powerful and the executive was much less powerful under the original Ohio Constitution. For instance, unlike the American president, the governor did not have veto authority.

There are several ways in which state constitutions differ from the federal Constitution. Sometimes, state constitutions are longer and more detailed than federal ones. State constitutions emphasize limiting rather than granting power because universal authority has already been established.

To learn more about Ohio Constitution

brainly.com/question/28833512

#SPJ1

complete question:

Identify at least 4 similarities and differences between the ohio and u.s constitution bill of rights. explain why the state constitution may include the difference you've found while the u.s constitution does not

9. Solve the logarithmic equation: log.(x) + log.(x - 5) = 1

Answers

x = 6.25The given logarithmic equation is log.(x) + log.(x - 5) = 1Let's first apply the logarithmic product rule to simplify the equation.log.(x) + log.(x - 5) = 1log.

(x(x - 5)) = 1log.(x² - 5x) = 1Now, apply the logarithmic identity, and bring down the exponent.

10¹ = x² -

5x10 = x² - 5xNow, bring the equation to a standard quadratic equation form.x² - 5x - 10 = 0Now, we can solve this quadratic equation using the quadratic formula. But, the quadratic formula involves square roots, which involves ± sign. So, we need to check both answers to see which one satisfies the original equation.x = [-(-5) ± √((-5)² - 4(1)(-10))] / 2(1)

x = [5 ± √(25 + 40)] /

2x = [5 ± √65] / 2So, we get two answers: x = [5 + √65] / 2 and x = [5 - √65] / 2.

Both of these answers satisfy the quadratic equation. But, we need to check which answer satisfies the original equation. Checking the first answer, we get ,log.(x) + log.(x - 5) = 1log.([5 + √65] / 2) + log.([5 + √65] / 2 - 5) = 1log.([5 + √65] / 2) + log.

([-5 + √65] / 2) = 1log.

([5 + √65] / 2 *

[-5 + √65] /

2) = 1log.

(-10 / 4) = 1This is not possible as the logarithm of a negative number is not defined.

To know more about logarithmic equation visit:

https://brainly.com/question/29197804

#SPJ11

Use the graph below to answer the question that follows: graph of the curve that passes through the following points, 0, 3, pi over 2, 5, pi, 3, 3 pi over 2, 1, 2 pi, 3. What is the rate of change between the interval of x = 0 and x = pi over two? Group of answer choices two over pi pi over two pi over four four over pi

need help asap

Answers

The rate of change of the function with the specified points, in the interval of x = 0, and x = π/2 is 4/π. The correct option is therefore;

Four over pi

What is a rate of change?

The rate of change is a measure or indication of how a quantity changes with regards to or per unit change of another quantity.

The points the graph passes through can be presented as follows;

(0, 3) (π/2, 5), (π, 3), (3·π/2, 1). (2·π, 3)

The coordinate of the point on the graph at x = 0 is; (0, 3)

The coordinate of the point on the graph at x = π/2 is; (π/2, 5)

The rate of change between the interval of x = 0, and x = π/2 is therefore;

Rate of change between (0, 3) and (π/2, 5) = The slope of the line joining (0, 3) and (π/2, 5)

The slope of the line joining (0, 3) and (π/2, 5) = (5 - 3)/(π/2 - 0) = 4/π

The rate of change between the interval of x = 0, and x = π/2 =  The slope = 4/π

Learn more on the average rate of change of a function here: https://brainly.com/question/30681176

#SPJ1

Calculate the standard deviation σ of X for the probability distribution. (Round your answer to two decimal places.)
σ =
x 1 2 3 4
P(X = x)
0.2 0.2 0.2 0.4

Answers

The standard deviation of X for the probability distribution

σ =

x 1 2 3 4

P(X = x)

0.2 0.2 0.2 0.4 is 0.98.

To calculate the standard deviation of X, we first need to find the mean or expected value of X.

The expected value of X is:

E(X) = ∑[xP(X=x)] = (1)(0.2) + (2)(0.2) + (3)(0.2) + (4)(0.4) = 2.6

Using the formula for standard deviation, we have:

σ = sqrt[∑(x-E(X))²P(X=x)]

= sqrt[(1-2.6)²(0.2) + (2-2.6)²(0.2) + (3-2.6)²(0.2) + (4-2.6)²(0.4)]

= sqrt[1.44(0.2) + 0.36(0.2) + 0.16(0.2) + 1.44(0.4)]

= sqrt[0.288 + 0.072 + 0.032 + 0.576]

= sqrt[0.968]

= 0.98 (rounded to two decimal places)

Therefore, the standard deviation of X is 0.98.

To know more about standard deviation refer here:

https://brainly.com/question/29173387#

#SPJ11

5. a jar containing 15 marbles of which 5 are blue, 8 are red and 2 are yellow, if two marbles are drawn find the probability of a) p(b and r) with replacement b) p( r and y) without replacement.

Answers

the probability of drawing a red marble and a yellow marble without replacement is 8/105.

a) Probability of drawing a blue marble (B) and a red marble (R) with replacement:

The probability of drawing a blue marble is 5/15 (since there are 5 blue marbles out of 15 total marbles).

The probability of drawing a red marble is also 8/15 (since there are 8 red marbles out of 15 total marbles).

Since the marbles are drawn with replacement, the probability of drawing a blue marble and a red marble can be calculated by multiplying the individual probabilities:

P(B and R) = P(B) * P(R) = (5/15) * (8/15) = 40/225 = 8/45.

Therefore, the probability of drawing a blue marble and a red marble with replacement is 8/45.

b) Probability of drawing a red marble (R) and a yellow marble (Y) without replacement:

The probability of drawing a red marble on the first draw is 8/15 (since there are 8 red marbles out of 15 total marbles).

After the first draw, there are now 14 marbles left in the jar, including 7 red marbles and 2 yellow marbles.

The probability of drawing a yellow marble on the second draw, given that a red marble was already drawn, is 2/14.

Since the marbles are drawn without replacement, the probability of drawing a red marble and a yellow marble can be calculated by multiplying the individual probabilities:

P(R and Y) = P(R) * P(Y|R) = (8/15) * (2/14) = 16/210 = 8/105.

To know more about probability visit:

brainly.com/question/32117953

#SPJ11

Given the vector field F(x, y) = <3x²y², 2x³y-4> a) Determine whether F(x, y) is conservative. If it is, find a potential function. [5] b) Show that the line integral fF.dr is path independent. Then evaluate it over any curve with initial point (1, 2) and terminal point (-1, 1).

Answers

The vector field F(x, y) = <3x²y², 2x³y-4> is not conservative. Therefore, the line integral fF.dr is path-dependent, and its evaluation over a specific curve would require further calculations.



a) To determine if the vector field F(x, y) = <3x²y², 2x³y-4> is conservative, we need to check if its components satisfy the condition for potential functions. The partial derivative of the first component with respect to y is 6xy², while the partial derivative of the second component with respect to x is 6x²y. Since these derivatives are not equal, F(x, y) is not conservative.

b) Since F(x, y) is not conservative, the line integral fF.dr is path-dependent. To evaluate it over a specific curve, let's consider the curve C from (1, 2) to (-1, 1). We can parameterize this curve as r(t) = (t-2, 3-t) with t ∈ [0, 1].

Using this parameterization, we have dr = (-dt, -dt), and substituting these values into the vector field, we get F(r(t)) = <3(t-2)²(3-t)², 2(t-2)³(3-t)-4>.

Now, we can calculate the line integral:

∫(1,2) to (-1,1) F(r(t)).dr = ∫[0,1] F(r(t))⋅dr = ∫[0,1] <3(t-2)²(3-t)², 2(t-2)³(3-t)-4>⋅<-dt, -dt>.

Evaluating this integral over the given range [0, 1] will yield the result.

To learn more about vector click here

brainly.com/question/24256726

#SPJ11

Other Questions
karl marx believed that religion focuses life on the present rather than the future. supports social inequality. treats existing society as secular. was a sure sign that revolutionary change was coming. any activity that causes resources to be consumed is called a:____ write an equation for a hyperbola with center at (1, 4), vertex at (3,4) and focus at (7,4) When Apollo 15 astronaut David Scott did his famous free fall experiment on the moon, he dropped a falcon feather from a height of about 1. 6 meters. Assuming a gravitational acceleration of 1. 6 m/s on the moon, about how long did it take the feather to drop to the surface?A) 1. 0 secondsB) 1. 4 secondsC) 1. 6 secondsD) 2. 0 seconds Chapter 24- Why did Miss Stephanie Crawford ask Scout what she wanted to be when she grows up?O To compare Scout's dreams to those of the other children in the townO To show genuine interest in Scout's career aspirationsO To criticize Scout's tomboyish behavior and suggest she should be more feminineO To make a joke at Scout's expense about how she was in court viewing the trial.1 a = a. 6b. 9c. 4Please find a in the triangle its on my attached file plss guuuysse please help me with this ASAP There are two alleles at a locus: A and P. Assume these two alleles are in Hardy-Weinberg equilibrium. Assume also that Allele P has a frequency of exactly 1% in the population. Given this information, what is the frequency of AP heterozygotes in the population? So that Canvas can understand your answer, report it as a decimal point number (so a 1% frequency = 0.01, etc.) the asch effect would be expected to operate in cases where Read lines 124-141 Write a summary of these paragraphs to explain how magic tricks work through the techniques of misdirection. application of muscular force without movement is called _______________ exercise. which trend describes the republican vote share in the rio grande valley from 2012-2020? A person pushes a 60 kg grocery cart, initially at rest. across a parking lot. He exerts a pushing force directed 20" below the horizontal. If the person pushes the cart with a force of 300 N for 5 m across horizosal ground and then releases the cart, the car has a speed of 3 m/s What is the work done by friction during this motion! (A) - 1230 (B)-1140J (C) 1140) (D) 1230) fred invested $25,000 in two different types of bonds. the first type earned 6% interest, and the second type earned 9% interest. if the interest on the 9% bond was $750 more than the interest on the 6% bond, how much did fred invest in the 6% bond? explain how the physical characteristics of sediments change during transport the first feldspars to form are rich in what mineral The combustion of hydrogen-oxygen mixtures is used to produce very high temperatures (approximately 2500C) needed for certain types of welding operations. Consider the reaction to be:H2(g) + 1/2 O2(g) --> H2O(g) rH = -241.8 kJ mol-1What is the quantity of heat evolved, in kilojoules, when a 180 g mixture containing equal parts of H2 and O2 by mass is burned? How does the myth of Phathon explain the poplar trees that grow along the bank of the river Eridanus? Consider a one-dimensional non-linear system x = ax + ax + bu + c. a) Use Taylor expansion to linearize the RHS of the dynamical equation in the neighborhood of x = 0. b) For the linearized system, design a linear controller u(x) that stabilizes the linearized system. Hint: a linear system x = ax is stable if and only if Re() < 0. c) For the continuous-time system, design a controller (x) such that, with u = (x), the RHS of the dynamical equation is linear. Hint: do not confuse this part with part a). what was the main purpose of warfare in mayan lands?