3. The data in the table gives the number of barbeque sauce bottles (y) that are sold with orders of chicken wings (x) for each hour on a given day at Vonn's Grill. Use technology to write an equation for the line of best fit from the data in the table below. Round all values to two decimal places.

3. The Data In The Table Gives The Number Of Barbeque Sauce Bottles (y) That Are Sold With Orders Of

Answers

Answer 1

1) Let's visualize the points

2) To find the equation for the line of best fit we'll need to follow some steps.

2.1 Let's find the mean of the x values and the mean of the Y values

2.2 Now It's time to find the slope, with the summation of the difference between each value and the mean of x times each value minus the mean over the square of the difference of the mean of x and x.

To make it simpler, let's use this table:

The slope then is the summation of the 5th column over the 6th column, we're using the least square method

[tex]m=\frac{939.625}{1270.875}=0.7393\cong0.74[/tex]

The Linear coefficient

[tex]\begin{gathered} b=Y\text{ -m}X \\ b=14.625-0.73(19.875) \\ b=0.11625\cong0.12 \end{gathered}[/tex]

3) Finally the equation of the line that best fit is

[tex]y=0.73x+0.12[/tex]

3. The Data In The Table Gives The Number Of Barbeque Sauce Bottles (y) That Are Sold With Orders Of
3. The Data In The Table Gives The Number Of Barbeque Sauce Bottles (y) That Are Sold With Orders Of
3. The Data In The Table Gives The Number Of Barbeque Sauce Bottles (y) That Are Sold With Orders Of

Related Questions

A random sample of 41 people is taken. What is the probability that the main IQ score of people in the sample is less than 99? Round your answer to four decimal places if necessary(See picture )

Answers

Solution:

Given:

[tex]\begin{gathered} \mu=100 \\ \sigma=15 \\ n=41 \\ x=99 \end{gathered}[/tex]

From the Z-scores formula;

[tex]\begin{gathered} Z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}} \\ Z=\frac{99-100}{\frac{15}{\sqrt{41}}} \\ Z=-0.42687494916 \\ Z\approx-0.4269 \end{gathered}[/tex]

From Z-scores table, the probability that the mean IQ score of people in the sample is less than 99 is;

[tex]\begin{gathered} P(x

Therefore, to 4 decimal places, the probability that the mean IQ score of people in the sample is less than 99 is 0.3347

Which statements about the graph of the exponential function f(x) are TRUE?The x-intercept is 1.The y-intercept is 3.The asymptote is y = -3The range is all real numbers greater than -3The domain is all real numbers.f(x) is positive for all x-values greater than 1As x increases, f(x) approaches, but never reaches, -3.

Answers

1 The x-intercept is the value of x where the graph intersects the x-axis. The graph crosses the x-axis at x = 1. This statement is true.

2 The y-intercept is the value of y where the graph intersects the y-axis. The graph crosses the y-axis at y = -2. This statement is false.

3 The horizontal asymptote is the value of y to which the graph approaches but never reaches. This value seems to be y = -3, thus this statement is true.

4 The range is the set of values of y where the function exists. The graph exists only for values of y greater than -3. This statement is true.

5 We can give x any real value and the function exists, i.e., any vertical line would eventually intersect the graph. This statement is true.

To find the domain of a function when we are given the graph, we use the vertical line test. This consists of drawing an imaginary vertical line throughout the x-axis. If the line intersects the graph, that value of x is part of the domain.

This imaginary exercise gives us the centainty that there is no value of x that won't intercept the graph, thus the domain is the set of all the real values.

6 We can see the graph is positive exactly when the function has its x-intercept, thus This statement is true.

7 As x increases, y goes to infinity. The value of -3 is not a number where f(x) approaches when x increases, but when x decreases. This statement is false.

find the equation of the line?

Answers

Let's calculate the straight line equation

To do this we will take two points from the graph

A = (0,3)

B= (2,0)

For them we will first calculate the slope of the curve

[tex]m=\frac{y2-y1}{x2-x1}[/tex][tex]\begin{gathered} m=\frac{0-3}{2-0} \\ m=\frac{-3}{2} \end{gathered}[/tex]

Now let's calculate the y-axis intersection

[tex]\begin{gathered} b=y-mx \\ b=3-m\cdot0 \\ b=3 \end{gathered}[/tex]

The equation of the line in the slope-intercept form is

[tex]y=-\frac{3}{2}x+3[/tex]

In 1980 approximately 4,825 million metric tons of carbon dioxide emissions were recorded for the United States. That number rose to approximately 6,000 million metric tons in the year 2005. Here you have measurements of carbon dioxide emissions for two moments in time. If you treat this information as two ordered pairs (x, y), you can use those two points to create a linear equation that helps you make predictions about the future of carbon dioxide emissions!A) Organize the measurements into ordered pairs. B) Find the slope,C) Set up an equation in point-slope form,D) Show the equation in slope-intercept form,E) Predict emissions for the year 2020,

Answers

ANSWER and EXPLANATION

A) To organize the measurements in ordered pairs implies that we want to put them in the form:

[tex](x_1,y_1);(x_2,y_2)[/tex]

Therefore, the measurements in ordered pairs are:

[tex]\begin{gathered} (1980,4825) \\ (2005,6000) \end{gathered}[/tex]

Note: 4825 and 6000 are in millions (10⁶) of metric tons

B) To find the slope, apply the formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Therefore, the slope is:

[tex]\begin{gathered} m=\frac{6000-4825}{2005-1980} \\ m=\frac{1175}{25} \\ m=47\text{ million metric tons per year} \end{gathered}[/tex]

C) To find the in point-slope form, we apply the formula:

[tex]y-y_1=m(x-x_1)_{}[/tex]

Therefore, we have:

[tex]y-4825=47(x-1980)[/tex]

Note: the unit is in million metric tons

D) To show the equation in point-slope form, we have to put it in the form:

[tex]y=mx+b[/tex]

To do that, simplify the point-slope form of the equation:

[tex]\begin{gathered} y-4825=47(x-1980) \\ y=47x-93060+4825 \\ y=47x-88235 \end{gathered}[/tex]

E) To predict the emissions for the year 2020, substitute 2020 for x in the equation above:

[tex]\begin{gathered} y=47(2020)-88235 \\ y=94940-88235 \\ y=6705\text{ million metric tons} \end{gathered}[/tex]

That is the prediction for the year 2020.

Which of the following functions is graphed below?

Answers

So, y is a system two distinct exponential functions.

The function on the bottom is a cubic function with a y-intercept of -3, and the full dot means that point is included in the domain.

y = x^3 - 3, x ≤ 2

The other function is a quadratic function with a currently unknown y-intercept. The hollow dot on point 2 means that the point is not included in the domain of the function.

y = x^2 + b, x > 2

So, given that there is only one option that matches this, even with the unknown b value, we know:

[tex]y = \left \{ {{x^3 - 3, x\leq 2} \atop {x^2 + 6, x > 2}} \right.[/tex]

So the answer is C.

Write an equation in the form r(x) = p(x) / q(x) for each function shown below.Pls see pic for details

Answers

c.

The line equation is of the form

[tex]y=mx+c\ldots(1)[/tex]

From the graph, we observe and find these points

(1,5) and (0,4) lie on the given line.

Substituting x=1, y=5 in equation (1), we get

[tex]5=m(1)+c[/tex]

[tex]m+c=5\ldots\text{.}(2)[/tex]

Substituting x=0, y=4 in equation (1), we get

[tex]4=m(0)+c[/tex]

[tex]c=4[/tex]

Substituting c=4 in equation (2), we get

[tex]m+4=5[/tex]

[tex]m=5-4[/tex]

[tex]m=1[/tex]

Substituting c=4,m=1 in equation (1), we get

[tex]y=x+5[/tex]

We need to write this equation in the form of r(x) = p(x) / q(x).

[tex]r(x)=\frac{p(x)}{q(x)}\ldots(3)[/tex]

Let r(x)=x+5, q(x)=x, and subsitute in the equation , we get

[tex]x+5=\frac{p(x)}{x}[/tex]

Using the cross-product method, we get

[tex]x(x+5)=p(x)[/tex]

[tex]x\times x+x\times5=p(x)[/tex]

[tex]x^2+5x=p(x)[/tex]

Substitute values in equation (3), we get

[tex]x+5=\frac{x^2+5x}{x}[/tex]

Hence the required equation is

[tex]x+5=\frac{x^2+5x}{x}[/tex]

If f(x) = sin(x ^ 5) , find f^ prime (x)

Answers

Solution

Step 1

Write the function.

[tex]f(x)\text{ = sin\lparen x}^5)[/tex]

Step 2

Use the chain rule to find f'(x)

[tex]\begin{gathered} f^{\prime}(x)\text{ = }\frac{df}{du}\times\frac{du}{dx} \\ \\ u\text{ = x}^5 \\ \\ \frac{du}{dx}\text{ = 5x}^4 \\ f(x)\text{ = sinu} \\ \\ \frac{df}{du}\text{ = cosu} \end{gathered}[/tex]

Step 3

[tex]\begin{gathered} f^{\prime}(x)\text{ = 5x}^4\text{ }\times\text{ cosu} \\ \\ f^{\prime}(x)\text{ = 5x}^4cos(x^5) \end{gathered}[/tex]

Step 4

Substitute x = 4 to find f'(4).

[tex]\begin{gathered} f^{\prime}(4)\text{ = 5}\times4^4\times cos(4^5) \\ \\ f^{\prime}(4)=\text{ 1280}\times cos1024 \\ \\ f^{\prime}(x)\text{ = 715.8} \end{gathered}[/tex]

Final answer

Subtract the following polynomials 1) (2x + 43) - (-3x-9)2) (f+9) - (12f 79)3) (75 X²)+ 23 + 13) - (15 X² - X + 40)

Answers

for 1.

2x+43+3x+9=5x+52

2.

f+9-12f+9=f-12f+9-9=-11f

3.

75x^2 +23x+13-15x^2+x-40=

=60x^2+24x-27

for 2)

23d^3+(7g^9)^13

remember that power to the power means that you need to multipy the exponents

=23d^3+7^13g^117

34x(2x-11)=68x^2-374x

2m(m+3n)=2 m^2+6mn

we have lenght

l=2x+5

w=x+7

area, A= lxw

A= (2x+5)(x+7)

this is the polynomial for the area

if we have x=12

l= (2*12)+5=24+5=29

w=12+7=19

A=29*19=551 ft^2

how do I solve (4w+3x+5)-(4w-3x+2)

Answers

Answer:

6x + 3

Explanation:

To solve the initial expression, we need to write it without the parenthesis as:

( 4w + 3x + 5 ) - ( 4w - 3x + 2)

4w + 3x + 5 - 4w + 3x - 2

Then, we need to identify the like terms as:

4w and -4w are like terms

3x and 3x are like terms

5 and -2 are like terms

Now, we can organize the terms as:

4w - 4w + 3x + 3x + 5 - 2

Adding like terms, we get:

(4w - 4w) + (3x + 3x) + (5 - 2)

0 + 6x + 3

6x + 3

Therefore, the answer is 6x + 3

12. Find DC.
A
20
54°
B
D
28°
C

Answers

The measure of the DC is 30.43 units after applying the trigonometric ratios in the right-angle triangle.

What is the triangle?

In terms of geometry, a triangle is a three-sided polygon with three edges and three vertices. The triangle's interior angles add up to 180°.

It is given that:

A triangle is shown in the picture.

From the figure:

Applying sin ratio in triangle ADB

sin54 = BD/20

BD = 20sin54

BD = 16.18

Applying the tan ratio in triangle CDB

tan28 = 16.18/DC

DC = 30.43 units

Thus, the measure of the DC is 30.43 units after applying the trigonometric ratios in the right-angle triangle.

Learn more about the triangle here:

brainly.com/question/25813512

#SPJ1

2 dot plots. Both number lines go from 0 to 10. Plot 1 is titled fifth grade. There are 2 dots above 1, 3 above 2, 1 above 3, 4 above 4, 5 above 5, 5 above 6, 2 above 7, 2 above 8, 0 above 9, 0 above 10. Plot 2 is titled seventh grade. There are 2 dots above 0, 2 above 1, 3 above 2, 5 above 3, 5 above 4, 3 above 5, 3 above 6, 1 above 7, and 0 above 8, 9, and 10.
The dot plot shows the number of hours, to the nearest hour, that a sample of 5th graders and 7th graders spend watching television each week. What are the mean and median?

The 5th-grade mean is
.

The 7th-grade mean is
.

The 5th-grade median is
.

The 7th-grade median is
.

Answers

The mean of the 5th grade students is 4.67

The mean of the 7th grade students is 3.46

The median of the 5th grade students is 5

The median of the 7th grade students is 3.5

What are the mean and median?

A dot plot is a graph used to represent a dataset. A dot plot is made up of a number line and dots.  The dots in the dot plot represent the frequency of the data. The greater the frequency of a data, the greater the number of dots.

Mean is the average of a dataset. It is determined by adding all the numbers in the dataset together and dividing it by the total numbers in the dataset.

Mean = sum of numbers / total numbers in the dataset

Mean of the 5th grade students = ( 1 + 1 + 2 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 5 + 5 + 5 + 5 + 5 + 6 + 6 + 6 + 6 + 6 + 7 + 7 + 8 + 8 ) / 24

112 / 24 = 4.67

Mean of the 7th grade students = ( 0, 0, 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 4 + 4 + 5 + 5 + 5 + 6 + 6 + 6 + 7) / 24

83 / 24 = 3.46

Median is the number that is in the middle of a dataset.

Median = (n + 1) / 2

Median of the 5th grade students = (24 + 1) / 2 = 12.5 terms = 5

Median of the 7th grade students = (24 + 1) / 2 = 12.5 term = (3 + 4) / 2 = 3.5.

To learn more about dot plots, please check: brainly.com/question/21862696

#SPJ1

A rectangular board is 1200 millimeters long and 900 millimeters wide what is the area of the board in square meters? do not round your answer

Answers

Answer: Area of the rectangular board is 1.08 square meters

The length of the rectangular board = 1200 milimeters

The width of the rectangular board = 900 milimeters

Area of a rectangle = Length x width

Firstly, we need to convert the milimeter to meters

1000mm = 1m

1200mm = xm

Cross multiply

x * 1000 = 1200 x 1

1000x = 1200

Divide both sides by 1000

x = 1200/100

x = 1.2 meters

For the width

1000mm = 1m

900mm = xm

cross multiply

1000 * x = 900 * 1

1000x = 900

Divide both sides by 1000

x = 900/1000

x = 0.9m

Length = 1.2 meters

Width = 0.9 meter

Area = length x width

Area = 1.2 x 0.9

Area = 1.08 square meters

has overdrawn his bank account Jim has overdrawn his bank account and has a balance of -$3.47.he received a paycheck of $292.54 he deposits $163.93 of his paycheck into his account how much does Jim have in his bank account after the deposit is made

Answers

Since Jim deposits $ 163.93 of his paycheck into his account and there has a balance of - $ 3.47, then he has in his account:

[tex]\text{\$}$163.93$-\text{\$}3.47=\text{ \$}160.46[/tex]

Therefore, Jim has $ 160.46 in his bank account after the deposit is made.

HELP PLEASE!!!!!!!!!!! ILL MARK BRAINLIEST

Answers

The rational number - 91 / 200 is a number between the decimal numbers - 0.45 and - 0.46.

How to determine a rational number between two decimal numbers

In this problem we find two decimal numbers, of which we need to find a rational number between these numbers. Please notice that the decimal numbers are also rational numbers. First, we transform each decimal number into rational numbers:

- 0.45 = - 45 / 100

- 0.46 = - 46 / 100

Second, find a possible rational number between the two ends by the midpoint formula:

x = (1 / 2) · (- 45 / 100) + (1 / 2) · (- 46 / 100)

x = - 45 / 200 - 46 / 200

x = - 91 / 200

Then, the rational number - 91 / 200 is a number between - 0.45 and - 0.46.

To learn more on rational numbers: https://brainly.com/question/24398433

#SPJ1

A person has 29 1/2 -yd of material available to make a doll outfit. Each outfit requires 3/4 yd of material. a. How many outfits can be made? b. How much material will be left over?​

Answers

A: They can make 39 outfits. B: They would have 1/4 yd left over

Write this algebraic expression into a verbal expression: 1/3 ( h - 1 )

Answers

Answer:

One-third of the difference of h and 1

Which of these tables doesn't show a proportional relationship? MY 2 B 4 12. 18 X 1 2 2 4 3 6 X Y 0 - 2 1 에 1 2 4 X Y 0 0 1 1 2 2

Answers

Answer:

The third table.

Explanation:

In a proportional relationship, the and y values are in a constant ratio.

In terms of trigonometry ratios for triangle BCE what is the length of line CE. Insert text on the triangle to show the length of line CE.When you are done using the formula for the triangle area Area equals 1/2 times base times height write an expression for the area of triangle ABC Base your answer on the work you did above

Answers

CE can be written as:

[tex]\frac{BE}{CE}=\frac{CE}{AE}[/tex]

Solve for CE:

[tex]\begin{gathered} CE^2=BE\cdot AE \\ CE=\sqrt[]{BE\cdot AE} \end{gathered}[/tex]

The area is:

[tex]\begin{gathered} A=\frac{b\cdot h}{2} \\ _{\text{ }}where\colon \\ _{\text{ }}b=AB \\ h=CE=\sqrt[]{BE\cdot AE} \\ so\colon \\ A=\frac{AB\cdot\sqrt[]{BE\cdot AE}}{2} \end{gathered}[/tex]

What is the product of 3√6 and 5√12 in simplest radical form?

Answers

In order to calculate and simplify this product, we need to use the following properties:

[tex]\begin{gathered} \sqrt[]{a}\cdot\sqrt[]{b}=\sqrt[]{a\cdot b} \\ \sqrt[c]{a^b}=a\sqrt[c]{a^{b-c}} \end{gathered}[/tex]

So we have that:

[tex]\begin{gathered} 3\sqrt[]{6}\cdot5\sqrt[]{12} \\ =(3\cdot5)\cdot(\sqrt[]{6}\cdot\sqrt[]{2\cdot6}) \\ =15\cdot\sqrt[]{2\cdot6^2} \\ =15\cdot6\cdot\sqrt[]{2} \\ =90\sqrt[]{2} \end{gathered}[/tex]

So the result in the simplest radical form is 90√2.

I need help solving this and figuring out the plotting points.

Answers

SOLUTION

It is gien that the monthly salary is $2200

It is given that Keren receives additional $80 for every copy of English is fun she sells.

Let the number of English is fun she sells be n and let the total amount earned in the month be s

Thus the equation representing the total amount earned is:

[tex]s=2200+8n[/tex]

The graph of the equation is shown:

Space shuttle astronauts each consume an average of 3000 calories per day. One meal normally consists of a main dish, a vegetable dish, and two different desserts. The astronauts can choose from 11 main dishes, 7 vegetable dishes, and 12 desserts. How many different meals are possible?

Answers

Okay, here we have this:

Considering the provided information, we are going to calculate how many different meals are possible, so we obtain the following:

There are 11 ways to choose a main dish, 7 ways to choose a vegetable, 12 ways to choose the first dessert, and 11 ways to choose the second dessert. Then:

We multiply to find the possible number of combinations:

[tex]\begin{gathered} 11\cdot7\cdot12\cdot11 \\ =10164 \end{gathered}[/tex]

Finally we obtain that there are 10164 different meals possible.

find the measures of the angles of a right triangle where one of the acute angles is *3.5* times the other

Answers

Lets draw a picture of our problem:

where x denotes the measure of the base angle.

Since interior angles of any triangle add up to 180, we have

[tex]x+3.5x+90=180[/tex]

which gives

[tex]4.5x+90=180[/tex]

By subtracting 90 to both sides, we have

[tex]\begin{gathered} 4.5x=180-90 \\ 4.5x=90 \end{gathered}[/tex]

Finally, by dividing both sides by 4.5, we get

[tex]\begin{gathered} x=\frac{90}{4.5} \\ x=20 \end{gathered}[/tex]

Then, the base angle measures 20 degrees and the upper angle measure

[tex]3.5\times20=70[/tex]

Therefore, the searched angles measure

[tex]20,70\text{ and 90}[/tex]

Which expression simplifies to 5. A. 27/3 - 14. B. 27/3+4. C. -27/3-4. D. -27/3+14

Answers

D, -27/3 plus 14 would have to be the correct answer. -27/3 is essentially -27 divided into 3 which is -9, add 14 to -9 and you get 5.

Find the measure of angle CDB. Explain your reasoning, including the theorem or postulate you used. (2 pts.) b) Find the measure of angle. (1 pt.)

Answers

The triangle is isosceles, since two of its sides are equal. Besides, the little triangles ABD and CBD are congruent and this can be concluding using the criterion SSS , since they share one side, and the other sides are equal. Then the angles are congruent, and the angles ADB and CDB are congruent and have the same measure. Then

[tex]\begin{gathered} m\angle ADB+m\angle CDB=m\angle ADC \\ 2m\angle CDB=m\angle ADC \\ m\angle CDB=\frac{72}{2} \\ m\angle CDB=32 \end{gathered}[/tex]

Then, the measure of angle CDB is 32 degrees.

Which of the following shows a matrix and its inverse?

Answers

To find the inverse matrix, augment it with the identity matrix and perform row operations trying to make the identity matrix to the left. Then to the right will be the inverse matrix.

[tex]\mleft[\begin{array}{cc|cc}-2 & 1 & 1 & 0 \\ 0 & -3 & 0 & 1\end{array}\mright][/tex][tex]\begin{gathered} R_1=\frac{R_{1}}{2}\mleft[\begin{array}{cc|cc}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -3 & 0 & 1\end{array}\mright] \\ R_2=\frac{R_{2}}{3}\mleft[\begin{array}{cc|cc}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 & -\frac{1}{3}\end{array}\mright] \\ R_1=R_1+\frac{R_{2}}{2}\mleft[\begin{array}{cc|cc}1 & 0 & \frac{1}{2} & \frac{1}{6} \\ 0 & 1 & 0 & \frac{1}{3}\end{array}\mright] \end{gathered}[/tex]

These corresponds to:

[tex]\mleft[\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\mright]\mleft[\begin{array}{cc}\frac{1}{2} & \frac{1}{6} \\ 0 & \frac{1}{3}\end{array}\mright][/tex]

I need help with math. I have a big exam coming up but I do t understand this lesson at all. Can I have help answering all the questions?

Answers

Step 1

Given;

[tex]\begin{gathered} Head\text{ represent male} \\ Tail\text{ represent female} \end{gathered}[/tex]

The total number of puppies is 4 represented by 4 coins.

Step 2

Find the experimental probability that exactly 3 of the puppies will be female

[tex]\begin{gathered} From\text{ table we find that THTT, TTHT, HTTT and HTTT are the only outcomes that } \\ \text{show exactly 3 females} \\ Remember\text{ tail\lparen t\rparen is for female puppies} \end{gathered}[/tex]

Therefore, the total number of samples/coin tosses=20

The formula for probability is;

[tex]Pr\left(event\right)=\frac{Numberofrequiredevent}{Total\text{ number of events}}[/tex]

Total number of events =the total number of samples/coin tosses=20

Number of required events= outcomes with 3 T's from the tab;e=4

Hence.

[tex]=\frac{4}{20}=0.2=0.2\times100=20\text{\%}[/tex]

Answer;

[tex]\frac{4}{20}=0.20=20\text{\%}[/tex]

system by applications i belive the answer is A can you check?

Answers

Let's use the variable x to represent the cost of a senior ticket and y to represent the cost of a child ticket.

If the cost of 1 senior ticket and 1 child ticket is $18, we have:

[tex]x+y=18[/tex]

If 2 senior tickets and 1 child tickets cost $27, we have:

[tex]2x+y=27[/tex]

Subtracting the first equation from the second one, we can solve the result for x:

[tex]\begin{gathered} 2x+y-(x+y)=27-18 \\ 2x+y-x-y=9 \\ x=9 \end{gathered}[/tex]

Now, solving for y:

[tex]\begin{gathered} x+y=18 \\ 9+y=18 \\ y=18-9 \\ y=9 \end{gathered}[/tex]

Therefore the cost of one senior ticket is $9 and the cost of one child ticket is $9.

Correct option: D.

A baker has 85 cups of flour to make bread. She uses 6 1/4 cups of flour for each loaf of bread. How many loaf of bread can she make

Answers

Answer;

The number of loaf of bread she can make is;

[tex]13\text{ loaves}[/tex]

Explanation:

Given that a baker has 85 cups of flour to make bread.

[tex]A=85\text{ cups}[/tex]

And for each bread she uses 6 1/4 cups of flour.

[tex]r=6\frac{1}{4}\text{ cups}[/tex]

The number of loaf of bread she can make can be calculated by dividing the total amount of flour by the amount of flour per bread;

[tex]\begin{gathered} n=\frac{A}{r}=\frac{85}{6\frac{1}{4}}=\frac{85}{6.25} \\ n=13.6 \end{gathered}[/tex]

Since it will not complete the 14th loaf of bread.

So, the number of loaf of bread she can make is;

[tex]13\text{ loaves}[/tex]

Find the slope of the line passing through points -8, 8 and 7,8

Answers

We can calculate the slope of a line using the formula

[tex]m=\frac{y_b-y_a_{}}{x_b-x_a}[/tex]

Let's say that

[tex]\begin{gathered} A=(-8,8) \\ B=(7,8) \end{gathered}[/tex]

Therefore

[tex]\begin{gathered} x_a=-8,y_a=8 \\ x_b=7,y_b=8 \end{gathered}[/tex]

Using the formula

[tex]m=\frac{y_b-y_a}{x_b-x_a}=\frac{8-8}{7-(-8)}=\frac{0}{15}=0[/tex]

The slope of the line passing through points (-8, 8) and (7,8) is 0. Which means it's a constant function (horizontal line).

5000 + 300 + 8 in standard form

Answers

Answer:[tex]\text{ 5.308 }\times10^3[/tex]Explanations:

The given arithmetic expression is:

5000 + 300 + 8

This sum can be computed as shown below:

Therefore, 5000 + 300 + 8 = 5308

Convert 5308 to standard form

[tex]5308\text{ = 5.308 }\times10^3[/tex]

Other Questions
The distance to the nearest exit door is less than 200 feet. Tanya tries pushing a box of books across a table and is surprised that her first attempt barely moves it. What does Tanya need to increase to move the box? Question 3 options: lift gravity weight force venierCompleta con la forma correcta del verbo apropiado.muchas clases difciles.*tenierGabriela(tener Do you think the election of 1800 proved Washington's point that political larties would be dangerous the most common route by which a drug is ingested into the body is oral administration, while one of the most rapid ways of getting the effects of a drug is . Suppose that $2000 is invested at a rate of 2.8%, compounded quarterly. Assuming that no withdrawals are made, find the total amount after 5 years.Do not round any intermediate computations, and round your answer to the nearest cent. Why did George and Lennie leave their last job in weed , California?It didn't pay enoughLennie was accused of rap eThey moved south when the weather got coldThe boss didn't like George Find the probability that a randomly selected passenger has a waiting time greater than 2.25 minutes. From the following list, identify those that are likely to serve as source documents. (You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect.)Sales ticketTrial balanceBalance sheetTelephone billInvoice from supplierCompany revenue accountIncome statementBank statementPrepaid insurance Which equation demonstrates the identity property?? (question 2\10 in 6th g math) ( be fast pls need this right now)A. (3x4)+(3x5)=3(4+5)B. 3x5=5x3C. 3(4x5)=(3x4)x5D. 4x1=4(15 points) find the slope of the line that passes through (10,2) and (2,10) But answer this question:The First Amendment Protections are broad, but they are not unlimited. Where would you draw the line between what should be protected and what shouldn't?Each Group should focus on one protected freedom:Group 1- ReligionGroup 2-AssemblyGroup 3-PetitionGroup 4 - PressGroup 5-SpeechReply Shawn and his bike have a total mass of48.1 kg. Shawn rides his bike 1.5 km in12.5 min at a constant velocity.The acceleration of gravity is 9.8 m/s2.What is Shawns kinetic energy?Answer in units of J. What is the name of the enzyme that some viruses use to turn their RNA into DNA? an oil prospector will drill a succession of holes attempting to find a productive well. assume the probability of being successful on any drilling is 0.15, and that outcomes of drillings are independent. what is the expected number of drilling attempts needed in order to find a productive well? what is the probability that the first productive well is found on the third attempt? if the prospector can only afford to drill five holes, what is the probability that the prospector will fail to find a productive well 7.5 is 15% of what number? A bakery makes and sells hot cocoa bombs during the holidays. The first 12 hot cocoa bombs of an order cost is $4.00 each. Each of the next 6 hot cocoa bombs cost $3.50 each. For orders exceeding 18, the cost drops to $3 each. The function C(x) represents the bakery's pricing. without having a plan in place, managers may focus only on instead of keeping a long-range view and anticipating new opportunities. multiple choice question. despite having mastered the skills and processes related to their day-to-day jobs, the firefighters of the lake hogan fire department train constantly to increase their muscle memory and to keep their skills honed so that they can respond quickly in emergency situations. this best exemplifies Which of the following sentences punctuates the appositive or appositive phrase correctly? A. My friend, who is much older than me, helps me a lot with my homework. B. My friend who is much older than me, helps me alot with, my homework. C. My friend who is much older than me, helps me alot with my homework. D. My friend, who is much older than me helps me alot with my homework.