the approximate area of the surface obtained by rotating the given curve about the x-axis is 804 square units.
What is Area?
In geometry, the area can be defined as the space occupied by a flat shape or the surface of an object. Generally, the area is the size of the surface
To find the area of the surface obtained by rotating the curve x = t², y = 2t (where 0 ≤ t ≤ 9) about the x-axis, we can use the formula for the surface area of revolution.
The formula for the surface area of revolution is given by:
A = 2π∫[a,b] y(t) √(1 + (dy/dt)²) dt
In this case, we have:
y(t) = 2t
dy/dt = 2
Substituting these values into the formula, we have:
A = 2π∫[0,9] 2t √(1 + 4) dt
A = 2π∫[0,9] 2t √(5) dt
A = 4π√5 ∫[0,9] t dt
A = 4π√5 [t²/2] [0,9]
A = 4π√5 [(9²/2) - (0²/2)]
A = 4π√5 [81/2]
A = 162π√5
Rounding this value to the nearest whole number, we get:
A ≈ 804
Therefore, the approximate area of the surface obtained by rotating the given curve about the x-axis is 804 square units.
To learn more about area from the given link
https://brainly.com/question/30307509
#SPJ4
the approximate area of the surface obtained by rotating the given curve about the x-axis is 804 square units.
What is Area?
In geometry, the area can be defined as the space occupied by a flat shape or the surface of an object. Generally, the area is the size of the surface
To find the area of the surface obtained by rotating the curve x = t², y = 2t (where 0 ≤ t ≤ 9) about the x-axis, we can use the formula for the surface area of revolution.
The formula for the surface area of revolution is given by:
A = 2π∫[a,b] y(t) √(1 + (dy/dt)²) dt
In this case, we have:
y(t) = 2t
dy/dt = 2
Substituting these values into the formula, we have:
A = 2π∫[0,9] 2t √(1 + 4) dt
A = 2π∫[0,9] 2t √(5) dt
A = 4π√5 ∫[0,9] t dt
A = 4π√5 [t²/2] [0,9]
A = 4π√5 [(9²/2) - (0²/2)]
A = 4π√5 [81/2]
A = 162π√5
Rounding this value to the nearest whole number, we get:
A ≈ 804
Therefore, the approximate area of the surface obtained by rotating the given curve about the x-axis is 804 square units.
To learn more about area from the given link
https://brainly.com/question/30307509
#SPJ4
Find the area bounded by the function f(x) = 0.273 -0.82? + 17, the z-axis, and the lines = 2 and 2 = 8. Round to 2 decimal places, if necessary А TIP Enter your answer as an integer or decimal number. Examples: 3, 4, 5.5172 Enter DNE for Does Not Exist, oo for Infinity Get Help: Video eBook Points possible: 1 This is attempt 1 of 3. Lk
The given function is f(x) = -0.82x² + 17x + 0.273. The area bounded by the function f(x) = -0.82x² + 17x + 0.273, the z-axis, and the lines x = 2 and x = 8 is given by:∫[2, 8] [-0.82x² + 17x + 0.273] dx= [-0.82 * (x³/3)] + [17 * (x²/2)] + [0.273 * x] |[2, 8]= -0.82 * (8³/3) + 17 * (8²/2) + 0.273 * 8- [-0.82 * (2³/3) + 17 * (2²/2) + 0.273 * 2]= -175.4132 + 507.728 + 2.184 - [-3.4717 + 34 + 0.546]= 357.4712.
Thus, the area bounded by the function f(x) = -0.82x² + 17x + 0.273, the z-axis, and the lines x = 2 and x = 8 is 357.4712 square units (rounded to 2 decimal places).
Therefore, the area is 357.47 square units (rounded to 2 decimal places).
Answer: 357.47 square units.
Learn more about area here ;
https://brainly.com/question/1631786
#SPJ11
A custodian has a large key ring that has a diameter of 4 inches. What is the approximate area of the key ring? Use 3. 14 for π 12. 56 in2 50. 24 in2 25. 12 in2 15. 26 in2
The approximate area of the key ring is 12.56 square inches.
The area of a circle can be calculated using the formula:
A = π * r²
where A is the area and r is the radius of the circle.
In this case, the diameter of the key ring is given as 4 inches. The radius (r) is half the diameter, so the radius is 4 / 2 = 2 inches.
Substituting the value of the radius into the formula, we have:
A = 3.14 * (2²)
A = 3.14 * 4
A ≈ 12.56 in²
Thus, the correct answer is option 12.56 in².
Learn more about area here:
https://brainly.com/question/30236634
#SPJ11
Determine whether the given conditions justify using the margin of error E = Zalpha/2^σ/√n when finding a confidence
interval estimate of the population mean μ.
11) The sample size is n = 286 and σ =15. 12) The sample size is n = 10 and σ is not known.
The margin of error formula, E = Zα/2 * σ/√n, is used to estimate the confidence interval for the population mean μ. In the given conditions, we need to determine whether the formula can be applied based on the sample size and the knowledge of the population standard deviation σ.
11. For the condition where the sample size is n = 286 and σ = 15, the margin of error formula E = Zα/2 * σ/√n can be used. In this case, the sample size is relatively large (n > 30), which satisfies the condition for using the formula. Additionally, the population standard deviation σ is known. Therefore, the margin of error formula can be applied to estimate the confidence interval for the population mean μ.
12. In the condition where the sample size is n = 10 and σ is not known, the margin of error formula E = Zα/2 * σ/√n cannot be directly used. This is because the sample size is relatively small (n < 30), which violates the assumption of normality required for the formula to be valid. In situations where the population standard deviation σ is unknown and the sample size is small, the t-distribution should be used instead of the standard normal distribution. By using the t-distribution, a modified margin of error formula can be derived that accounts for the uncertainty in estimating the population standard deviation based on the sample.
Learn more about standard deviation σ here:
https://brainly.com/question/32088313
#SPJ11
72 = Find the curl of the vector field F(x, y, z) = e7y2 i + OxZj+e74 k at the point (-1,3,0). Let te P=e7ya, Q = €922, R=e7x. = = Show and follow these steps: 1. Find Py, Pz , Qx ,Qz, Rx , Ry. Use
Therefore, the curl of the vector field [tex]F(x, y, z) = e^{7y^2} i + Oxyz j + e^{7^4} k[/tex] at the point (-1, 3, 0) is [tex]-7 * e^{-7} j - 126 * e^{63} k[/tex]
Find the curl?
To find the curl of the vector field [tex]F(x, y, z) = e^{7y^2} i + Oxyz j + e^{7^4} k[/tex] at the point (-1, 3, 0), we need to follow these steps:
1. Find the partial derivatives of each component of the vector field:
P_y = ∂P/∂y = ∂/∂y [tex](e^{7y^2})[/tex] = [tex]14y * e^{7y^2}[/tex]
P_z = ∂P/∂z = 0 (as P does not depend on z)
Q_x = ∂Q/∂x = 0 (as Q does not depend on x)
Q_z = ∂Q/∂z = ∂/∂z[tex](e^{9z^2})[/tex] = [tex]18z * e^{9z^2}[/tex]
R_x = ∂R/∂x = ∂/∂x [tex](e^{7x})[/tex] = [tex]7 * e^{7x}[/tex]
R_y = ∂R/∂y = 0 (as R does not depend on y)
2. Evaluate each partial derivative at the given point (-1, 3, 0):
[tex]P_y = 14(3) * e^{7(3)^2} = 126 * e^63\\P_z = 0\\\\Q_x = 0\\Q_z = 18(0) * e^{9(0)^2} = 0\\R_x = 7 * e^{7(-1)} = 7 * e^{-7}\\R_y = 0[/tex]
3. Calculate the components of the curl:
[tex]curl(F) = (R_y - Q_z) i + (P_z - R_x) j + (Q_x - P_y) k\\ = 0i + (0 - 7 * e^{-7}) j + (0 - 126 * e^{63}) k\\ = -7 * e^{-7} j - 126 * e^{63} k[/tex]
Therefore, the curl of the vector field [tex]F(x, y, z) = e^{7y^2} i + Oxyz j + e^{7^4} k[/tex] at the point (-1, 3, 0) is [tex]-7 * e^{-7} j - 126 * e^{63} k[/tex].
To know more about vector field, refer here:
https://brainly.com/question/32574755
#SPJ4
When we use the Ration Tout on the series 37 (+1) we find that the timetim and hence the wa (-3)1+Zn (n+1) n2 31+n V n=2 lim n-00 an+1 an
The limit [tex]\(\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|\)[/tex] is equal to 3, and hence the series is divergent.
To determine whether the series converges or diverges, we can use the Ratio Test. The Ratio Test states that if the limit [tex]\(\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|\)[/tex] is less than 1, the series converges. If it is greater than 1 or equal to 1, the series diverges.
Calculate the ratio of consecutive terms:
[tex]\(\frac{a_{n+1}}{a_n} = \frac{\frac{(-3)^{1+7(n+1)}(n+2)}{(n+1)^23^{n+2}}}{\frac{(-3)^{1+7n}(n+1)}{n^23^{1+n}}}\)[/tex]
Simplify the expression:
[tex]\(\frac{(-3)^{1+7(n+1)}(n+2)}{(n+1)^23^{n+2}} \cdot \frac{n^23^{1+n}}{(-3)^{1+7n}(n+1)}\)[/tex]
Cancel out common factors:
[tex]\(\frac{(-3)(n+2)}{(n+1)(-3)^7} = \frac{(n+2)}{(n+1)(-3)^6}\)[/tex]
Take the limit as [tex]\(n\)[/tex] approaches infinity:
[tex]\(\lim_{n\to\infty}\left|\frac{(n+2)}{(n+1)(-3)^6}\right|\)[/tex]
Evaluate the limit:
As [tex]\(n\)[/tex] approaches infinity, the value of [tex]\((n+2)/(n+1)\)[/tex] approaches 1, and [tex]\((-3)^6\)[/tex] is a positive constant.
Hence, the final result is [tex]\(\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right| = 3^{-6}\), which is equal to \(1/729\)[/tex].
Since [tex]\(1/729\)[/tex] is less than 1, the series diverges according to the Ratio Test.
The complete question must be:
When we use the Ration Test on the series [tex]\sum_{n=2}^{\infty}\frac{\left(-3\right)^{1+7n}\left(n+1\right)}{n^23^{1+n}}[/tex] we find that the limit [tex]\lim\below{n\rightarrow\infty}{\left|\frac{a_{n+1}}{a_n}\right|}[/tex]=_____ and hence the series is
Learn more about Ratio Test:
https://brainly.com/question/20876952
#SPJ11
6) A cruise ship’s course is set at a heading of 142° at 18 knots (33.336 km/h). A 10 knot current flows at a bearing of 112°. What is the ground velocity of the cruise ship? (4 marks)
The ground velocity of the cruise ship is:
Groundvelocity = sqrt((Groundhorizontalvelocity)2 + Groundverticalvelocity)2)
To find the ground velocity of the cruise ship, we need to consider the vector addition of the ship's velocity and the current velocity.
Given:
Ship's heading = 142°
Ship's velocity = 18 knots
Current velocity = 10 knots
Bearing of the current = 112°
To calculate the horizontal and vertical components of the ship's velocity, we can use trigonometry.
Ship's horizontal velocity component = Ship's velocity * cos(heading)
Ship's horizontal velocity component = 18 knots * cos(142°)
Ship's vertical velocity component = Ship's velocity * sin(heading)
Ship's vertical velocity component = 18 knots * sin(142°)
Similarly, we can calculate the horizontal and vertical components of the current velocity:
Current's horizontal velocity component = Current velocity * cos(bearing)
Current's horizontal velocity component = 10 knots * cos(112°)
Current's vertical velocity component = Current velocity * sin(bearing)
Current's vertical velocity component = 10 knots * sin(112°)
To find the ground velocity, we add the horizontal and vertical components of the ship's velocity and the current velocity:
Ground horizontal velocity = Ship's horizontal velocity component + Current's horizontal velocity component
Ground vertical velocity = Ship's vertical velocity component + Current's vertical velocity component
Finally, we can calculate the magnitude of the ground velocity using the Pythagorean theorem:
Grountvelocity = sqrt((Groundhorizontalvelocity)2 + Groundverticalvelocity)2)
Evaluate the above expressions using the given values, and you will find the ground velocity of the cruise ship.
To know more about cruise ship refer here:
https://brainly.com/question/14342093
#SPJ11
9, 10 and please SHOW ALL
WORKS AND CORRECT ANSWERS ONLY.
7. Evaluate [² (92². - 10x+6) dx 8. If y=x√8x²-7, find d STATE all rules used. 9. Find y' where y = 3¹. STATE all rules used. 10. Solve the differential equation: dy = 10xy dx such that y = 70 w
The integral of [tex]9^2 - 10x + 6[/tex] with respect to x is [tex](9x^2 - 5x^2 + 6x) + C[/tex]. 8. If y = [tex]x\sqrt{8x^2 - 7}[/tex], then dy/dx = [tex]\frac {dy}{dx}=(\sqrt{8x^2 - 7} + x * \frac 12) * (8x^2 - 7)^{-1/2} * (16x) - 0[/tex]. 9. If[tex]y = 3^x[/tex], then [tex]y' = 3^x * \log(3)[/tex]. 10. The solution to the differential equation dy/dx = 10xy, with the initial condition y = 70, is [tex]y = 70 * e^{5x^2}[/tex].
7. The indefinite integral of [tex](92x^2 - 10x + 6)^3 dx[/tex] is [tex](1/3) * (92x^3 - 5x^2 + 6x)^3 + C[/tex]. To evaluate this integral, we can expand the square and integrate each term separately using the power rule for integration. The constant of integration, represented by 'C', accounts for any possible constant term in the original function.
8. To find the derivative of [tex]y = x\sqrt{8x^2 - 7}[/tex], we can apply the chain rule. First, we differentiate the outer function (x) as 1. Then, we differentiate the inner function (8x² - 7) using the power rule, resulting in 16x. Multiplying these two differentials together, we get dy/dx = 16x.
9. Given [tex]y = 3^x[/tex], we can find y' (the derivative of y with respect to x) using the exponential rule. The derivative of a constant base raised to the power of x is equal to the natural logarithm of the base multiplied by the original function. Therefore, [tex]y' = 3^x * \log(3)[/tex].
10. The differential equation dy/dx = 10xy can be solved by separating variables. Rearranging the equation, we have dy/y = 10x dx. Integrating both sides, we obtain [tex]\log|y| = 5x^2 + C.[/tex]. To find the particular solution, we can substitute the given initial condition y = 70 when x = 0. Solving for C, we find [tex]C = \log|70|[/tex]. Thus, the solution to the differential equation is [tex]\log|y| = 5x^2 + \log|70|[/tex].
To learn more about Differential equations, visit:
https://brainly.com/question/25731911
#SPJ11
A boutique in Fairfax specializes in leather goods for men. Last month, the company sold 49 wallets and 73 belts, for a total of $5,466. This month, they sold 100 wallets and 32 belts, for a total of $6,008.
How much does the boutique charge for each item?
The boutique charges approximately $46.17 for each wallet and $43.90 for each belt.To determine the price of each item, we can set up a system of equations based on the given information.
From the given information, we know that last month the boutique sold 49 wallets and 73 belts for a total of $5,466. This can be expressed as the equation: 49w + 73b = 5,466.
Similarly, this month the boutique sold 100 wallets and 32 belts for a total of $6,008, which can be expressed as the equation:
100w + 32b = 6,008.
To solve this system of equations, we can use various methods such as substitution or elimination. Let's use the elimination method to find the values of "w" and "b."
Multiplying the first equation by 100 and the second equation by 49, we get:
4900w + 7300b = 546,600
4900w + 1568b = 294,992
Subtracting the second equation from the first, we have:
5732b = 251,608
b = 43.90
Substituting the value of "b" back into one of the original equations, let's use the first equation:
49w + 73(43.90) = 5,466
49w + 3,202.70 = 5,466
49w = 2,263.30
w ≈ 46.17.
For more such questions on Boutique charges:
https://brainly.com/question/13567712
#SPJ8
Which of the following will cause a researcher the most problems when trying the demonstrate statistical significance using a two-tailed independent-measures t test?
a. High variance b. Low variance c. High sample means d. Low sample means
The option that will cause a researcher the most problems when trying to demonstrate statistical significance using a two-tailed independent-measures t-test is d. Low sample means.
When conducting a t-test, the sample means are crucial in determining the difference between groups and assessing statistical significance. A low sample means indicates that the observed differences between the groups are small, making it challenging to detect a significant difference between them. With low sample means, the t-test may lack the power to detect meaningful effects, resulting in a higher probability of failing to reject the null hypothesis even if there is a true difference between the groups.
In contrast, options a and b (high and low variance) primarily affect the precision of the estimates and the confidence interval width, but they do not necessarily impede the ability to detect statistical significance. High variance may require larger sample sizes to achieve statistical significance, while low variance may increase the precision of the estimates.
To know more about Low sample means,
https://brainly.com/question/32381020
#SPJ11
Need help with this problem please make sure to answer with what it says on the top (the instructions)
The points (-4, 4), (-2, 1), (0, 0), (2, 1), and (4, 4) represents a quadratic function
What is a quadratic function?
A quadratic function is a type of mathematical function that can be defined by an equation of the form
f(x) = ax² + bx + c
where
a, b, and c are constants and
x is the variable.
The term "quadratic" refers to the presence of the x² term, which is the highest power of x in the equation.
Quadratic functions are characterized by their curved graph shape, known as a parabola. the parabola can open upward or downward depending on the sign of the coefficient a.
In this case the curve opens upward and the graph is attached
Learn more about quadratic function at
https://brainly.com/question/1214333
#SPJ1
At the beginning of a population study, a city had 220,000 people. Each year since, the population has grown by 5.8% Let / be the number of years since start of the study. Let y be the city's population. Write an exponential function showing the relationship between y and f. 005647 P()-220,000 808 ローロ x G
The exponential function representing the growth of a city’s population over time is y = 220,000(1+0.058)ᵗ, where t represents the number of years since the start of the population study.
The exponential function is used to model the growth of a population over time. In this case, the function takes the form y = a(1+r)ᵗ, where a is the initial population, r is the annual rate of growth, and t is the number of years since the start of the study.
To find the function for the given scenario, we substitute a = 220,000 and r = 0.058, since the population is growing by 5.8% each year. Thus, the exponential function representing this growth is y = 220,000(1+0.058)ᵗ.
This function can be used to predict the city’s population at any given point in time, as long as the rate of growth remains constant.
Overall, the exponential function is a useful tool for understanding how populations change over time, and can be applied to a wide range of real-world scenarios.
Learn more about applied here.
https://brainly.com/questions/29407703
#SPJ11
Obtain power series representations for:
(a) 1 + x (b) - II- |- x-1 (C) 1-3 e (d) e-x (e) e" (1) cos(2x) (g) sin(3x-1).
(a) The power series representation for 1 + x is simply the Taylor series expansion of a constant term (1) plus the Taylor series expansion of x. Therefore, the power series representation is 1 + x.
(b) To obtain the power series representation for |- x-1, we can use the geometric series expansion. The geometric series expansion for |r| < 1 is given by 1/(1-r) = 1 + r + r^2 + r^3 + ..., where r is the common ratio. In this case, r = -x + 1. Thus, the power series representation is 1/(1 - (-x + 1)) = 1/(2 - x) = 1/2 + x/4 + x^2/8 + x^3/16 + ...
(c) The power series representation for 1 - 3e is obtained by subtracting the power series expansion of e (which is e^x = 1 + x + x^2/2! + x^3/3! + ...) from the constant term 1. Therefore, the power series representation is 1 - 3e = 1 - 3(1 + x + x^2/2! + x^3/3! + ...) = -2 - 3x - 3x^2/2! - 3x^3/3! - ...
(d) The power series representation for e^-x can be obtained by using the Taylor series expansion of e^x and replacing x with -x. Therefore, the power series representation is e^-x = 1 - x + x^2/2! - x^3/3! + ...
(e) The power series representation for e^x^2 can be obtained by using the Taylor series expansion of e^x and replacing x with x^2. Therefore, the power series representation is e^x^2 = 1 + x^2 + x^4/2! + x^6/3! + ...
(f) The power series representation for cos(2x) can be obtained by using the Taylor series expansion of cos(x) and replacing x with 2x. Therefore, the power series representation is cos(2x) = 1 - (2x)^2/2! + (2x)^4/4! - (2x)^6/6! + ...
(g) The power series representation for sin(3x-1) can be obtained by using the Taylor series expansion of sin(x) and replacing x with 3x-1. Therefore, the power series representation is sin(3x-1) = (3x-1) - (3x-1)^3/3! + (3x-1)^5/5! - (3x-1)^7/7! + ...
To know more about power series refer here:
https://brainly.com/question/29896893
#SPJ11
#3 Evaluate Sti³t-4 dt (10 #4 Find f'(x) if f(x) = S₁²² ₁²³ +1 =_=_=_=_d+ + S +²=²1 -dt (15 points) (10 points)
The derivative of the given function, f(x) = S₁²² ₁²³ +1 ===_=_d+ + S +²=²1 -dt, is evaluated.
To find the derivative of the given function, we need to apply the rules of differentiation. Let's break down the given function step by step. The function consists of three terms separated by the plus sign. In the first term, we have S₁²² ₁²³ + 1.
Without further information about the meaning of these symbols, it is challenging to provide a specific evaluation. However, assuming S₁²² and ₁²³ are constants, their derivatives would be zero, and the derivative of 1 with respect to x is also zero.
Hence, the derivative of the first term would be zero.
Moving on to the second term, which is ===_=_d+, we again encounter symbols without clear context. Without knowing their meaning, it is not possible to evaluate the derivative of this term.
Lastly, in the third term, S +²=²1 - dt, the presence of S and dt suggests they are variables. The derivative of S with respect to x would be dS/dx, and the derivative of dt with respect to x would be zero since t is a constant. However, without further information, it is difficult to provide a complete evaluation of the derivative of the third term. Overall, the given function's derivative depends on the specific meanings and relationships of the symbols used in the function, which are not clear from the provided information.
Learn more about derivative of a function :
https://brainly.com/question/29089690
#SPJ11
A manufacturut has a steady annual demand for 12,500 cases of sugar. It costs $5 to store 1 case for 1 year $85 in setup cost to produce each balch and $15 to produce each come (a) Find the number of cases per batch that should be produced to minimicos (b) Find the number of batches of sugar that should be manufactured annually (a) The manutecturer should produce cases per batch (b) The manufacturer should produce batches of sugar annually
(a) The manufacturer should produce 433 cases per batch.
(b) The manufacturer should produce 29 batches of sugar annually.
To minimize the cost, we need to find the optimal number of cases per batch and the optimal number of batches of sugar to be manufactured annually.
Let's denote the number of cases per batch as x and the number of batches annually as y.
(a) To minimize the cost per batch, we consider the setup cost and the cost to produce each case. The total cost per batch is given by:
Cost per batch = Setup cost + Cost to produce each case
Cost per batch = $85 + $15x
(b) To determine the number of batches annually, we divide the total annual demand by the number of cases per batch:
Total annual demand = Number of batches annually * Cases per batch
12500 = y * x
To minimize the cost, we can substitute the value of y from the equation above into the cost per batch equation:
Cost per batch = $85 + $15x
12500/x = y
Substituting this into the cost per batch equation:
Cost per batch = $85 + $15(12500/x)
Now, we need to find the value of x that minimizes the cost per batch. To do this, we can take the derivative of the cost per batch equation with respect to x and set it equal to zero:
d(Cost per batch)/dx = 0
d(85 + 15(12500/x))/dx = 0
-187500/x^2 = 0
Solving for x:
x^2 = 187500
x = sqrt(187500)
x ≈ 433.01
So, the manufacturer should produce approximately 433 cases per batch.
To find the number of batches annually, we can substitute this value of x back into the equation:
12500 = y * 433
y = 12500/433
y ≈ 28.89
So, the manufacturer should produce approximately 29 batches of sugar annually.
Therefore, the answers are:
(a) The manufacturer should produce 433 cases per batch.
(b) The manufacturer should produce 29 batches of sugar annually.
To learn more about cost
https://brainly.com/question/28147009
#SPJ11
Identify the feasible region for the following set of equations and list all extreme points.
A + 2B <= 12
5A + 3B <= 30
A, B >= 0
2.
Identify the feasible region for the following set of equations and list all extreme points.
A + 2B <= 12
5A + 3B >= 30
A, B >= 0
The feasible region is (3.42, 4.29) and the extreme point is (3.42, 4.29)
For part (b), the feasible region is also (3.42, 4.29) and the extreme point is also (3.42, 4.29)
How to determine the feasible region and the extreme pointsFrom the question, we have the following parameters that can be used in our computation:
A + 2B ≤ 12
5A + 3B ≤ 30
A, B ≥ 0
Multiply the first by 5
5A + 10B ≤ 60
5A + 3B ≤ 30
Subtract the inequalities
7B ≤ 30
Divide by 7
B ≤ 4.29
The value of A is calculated as
A + 2 * 4.29 ≤ 12
Evaluate
A ≤ 3.42
So, the feasible region is (3.42, 4.29)
In this case, the extreme point is also the feasible region
How to determine the feasible region and the extreme pointsHere, we have
A + 2B ≤ 12
5A + 3B ≤ 30
A, B ≥ 0
This is the same as the expressions in (a)
This means that the solutions would be the same
So, the extreme point is also the feasible region
Read more about feasible region at
https://brainly.com/question/3469433
#SPJ4
Use Stokes' Theorem to evaluate the line integral . xzdx + rydy + , where C is the boundary of the portion of the plane 2x + y + z = 2 in the first Octant, traversed counterclockwise as viewed f
The line integral of the vector field F = (xz, ry, yz) around the boundary C is -6x + 3.
The line integral of the vector field F = (xz, ry, yz) around the boundary C of the portion of the plane 2x + y + z = 2 in the first octant, traversed counterclockwise as viewed from above, can be evaluated using Stokes' Theorem.
Stokes' Theorem relates the line integral of a vector field around a closed curve to the flux of the curl of the vector field through the surface bounded by the curve. In mathematical terms, it can be stated as follows:
∮C F · dr = ∬S (curl F) · dS
where C is the closed curve, F is the vector field, dr is the differential vector along the curve, S is the surface bounded by the curve, curl F is the curl of the vector field F, and dS is the differential surface element.
In this case, we are given the vector field F = (xz, ry, yz). To apply Stokes' Theorem, we need to calculate the curl of F, which is given by:
curl F = (∂Fz/∂y - ∂Fy/∂z, ∂Fx/∂z - ∂Fz/∂x, ∂Fy/∂x - ∂Fx/∂y)
Calculating the partial derivatives:
∂Fz/∂y = z
∂Fy/∂z = 0
∂Fx/∂z = 0
∂Fz/∂x = 0
∂Fy/∂x = 0
∂Fx/∂y = x
Substituting these values into the curl expression, we get:
curl F = (0 - 0, 0 - 0, 0 - x) = (-x, 0, 0)
Now we need to find the surface S bounded by the curve C. The given plane 2x + y + z = 2 intersects the coordinate axes at points (1, 0, 0), (0, 2, 0), and (0, 0, 2). Therefore, the surface S is a triangle with these three points as vertices.
To evaluate the line integral using Stokes' Theorem, we calculate the flux of the curl of F through the surface S:
∬S (curl F) · dS = ∬S (-x, 0, 0) · dS
Since the z-component of curl F is zero, the dot product simplifies to:
∬S (-x, 0, 0) · dS = ∬S -x dS
To integrate over the surface S, we can parameterize it using two variables, u and v, such that 0 ≤ u ≤ 1 and 0 ≤ v ≤ (2 - u):
r(u, v) = (u, 2v, 2 - 2u - v)
The surface element dS can be calculated using the cross product of the partial derivatives of r(u, v):
dS = |∂r/∂u x ∂r/∂v| du dv
Substituting the values of r(u, v) and calculating the cross product, we find:
∂r/∂u = (1, 0, -2)
∂r/∂v = (0, 2, -1)
∂r/∂u x ∂r/∂v = (-2, -1, -2)
|∂r/∂u x ∂r/∂v| = √((-2)^2 + (-1)^2 + (-2)^2) = √9 = 3
Therefore, the surface element is:
dS = 3 du dv
Now we can set up the double integral to evaluate the line integral:
∬S -x dS = ∫[0,1] ∫[0,2-u] -x (3 du dv)
= -3 ∫[0,1] ∫[0,2-u] x du dv
To calculate the inner integral with respect to u, we treat x as a constant:
-3 ∫[0,1] [xu] from 0 to 2-u dv
= -3 ∫[0,1] (x(2-u) - x(0)) dv
= -3 ∫[0,1] (2x - xu) dv
= -3 [(2x - xu)v] from 0 to 2-u
= -3 [(2x - xu)(2-u) - (2x - xu)(0)]
= -3 (2x - xu)(2-u)
Now we integrate the outer integral with respect to v:
-3 ∫[0,1] (2x - xu)(2-u) dv
= -3 (2x - xu) ∫[0,1] (2-u) dv
= -3 (2x - xu) [(2-u)v] from 0 to 1
= -3 (2x - xu) [(2-u)(1) - (2-u)(0)]
= -3 (2x - xu) (2-u)
= -3 (2x - xu)(2-u)
Expanding this expression:
= -6x + 3xu + 6u - 3xu
= -6x + 6u
Now we integrate the result with respect to u:
∫[0,1] (-6x + 6u) du
= [-6xu + 3u^2] from 0 to 1
= (-6x + 3) - (0 - 0)
= -6x + 3
Therefore, the line integral of the vector field F = (xz, ry, yz) around the boundary C is -6x + 3.
In conclusion, by applying Stokes' Theorem, we evaluated the line integral and obtained the expression -6x + 3 as the result.
To learn more about Stokes' theorem, click here: brainly.com/question/13972409
#SPJ11
Consider the integral 1 11 [¹ [ f(x, y) dyda. f(x, y) dydx. Sketch the 11x region of integration and change the order of integration. ob • 92 (y) f(x, y) dxdy a a = b = 91 (y) 92 (y) 91 (y) = =
To consider the given integral 1 11 [¹ [ f(x, y) dyda. f(x, y) dydx, we need to first sketch the region of integration in the 11x plane. The limits of integration for y are from a = 91 (y) to b = 92 (y), while the limits of integration for x are from 91 (y) to 1.
Therefore, the region of integration is a trapezoidal region bounded by the lines x = 91 (y), x = 1, y = 91 (y), and y = 92 (y).
To change the order of integration, we first integrate with respect to x for a fixed value of y. Therefore, we have
∫₁¹ ∫ₙ₉(y) ₉₂(y) f(x, y) dydx
Now we integrate with respect to y over the limits 91 ≤ y ≤ 92. Therefore, we have
∫₉₁² ∫ₙ₉(y) ₉₂(y) f(x, y) dxdy
This gives us the final form of the integral with the order of integration changed.
To know more about limits visit:
https://brainly.com/question/12211820
#SPJ11
(5 points) Find the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. x+y=2, x = 3 – (y - 1)?;
To find the volume of the solid obtained by rotating the region bounded by the curves about a specified axis, we can use the method of cylindrical shells.The limits of integration will be from y = 0 (the lower curve) to y = 2 (the upper curve).
In this case, the region is bounded by the curves x+y=2 and x = 3 – (y - 1), and we need to rotate it about the y-axis.
First, let's find the intersection points of the two curves:
x + y = 2
x = 3 – (y - 1)
Setting the equations equal to each other:
2 = 3 – (y - 1)
2 = 3 - y + 1
y = 2
So the curves intersect at the point (2, 2).
To find the volume, we integrate the circumference of each cylindrical shell and multiply it by the height. The height of each shell is the difference between the upper and lower curves at a given y-value.
Note: The negative sign in the volume indicates that the solid is oriented in the opposite direction, but it doesn't affect the magnitude of the volume.
To know more about cylindrical click the link below:
brainly.com/question/32297698
#SPJ11
If OA, OB,and OC are three edges of a parallelepiped where is (0,0,0), A is (2.4.-3), B is (4.6.2), and Cis (5.0,-2), find the volume of the parallelepiped.
The volume of the parallelepiped formed by the edges OA, OB, and OC is 138 cubic units.
To find the volume of the parallelepiped, we need to find the scalar triple product of the three edges. The scalar triple product is defined as the dot product of one of the edges with the cross product of the other two edges.
Mathematically, it can be represented as follows:
V = |OA · (OB x OC)|
where V is the volume of the parallelepiped, OA, OB, and OC are the three edges, and x represents the cross product.
First, we need to find the vectors OA, OB, and OC. Using the given coordinates, we can calculate them as follows:
OA = A - O = (2, 4, -3) - (0, 0, 0) = (2, 4, -3)
OB = B - O = (4, 6, 2) - (0, 0, 0) = (4, 6, 2)
OC = C - O = (5, 0, -2) - (0, 0, 0) = (5, 0, -2)
Next, we need to find the cross product of OB and OC. The cross product of two vectors is another vector that is perpendicular to both of them. It can be calculated as follows:
OB x OC = |i j k|
|4 6 2|
|5 0 -2|
= i(6(-2) - 0(2)) - j(4(-2) - 5(2)) + k(4(0) - 5(6))
= i(-12) - j(-18) + k(-30)
= (-12i + 18j - 30k)
Now we can calculate the dot product of OA with (-12i + 18j - 30k):
OA · (-12i + 18j - 30k) = (2)(-12) + (4)(18) + (-3)(-30)
= -24 + 72 + 90
= 138
Finally, we take the absolute value of the scalar triple product to get the volume of the parallelepiped:
V = |OA · (OB x OC)| = |138| = 138 cubic units
To know more about volume of the parallelepiped refer here:
https://brainly.com/question/30426137#
#SPJ11
Locate the centroid of the plane area bounded by the
equation y^2 = 4x, x=1 and the x-axis on the first quadrant.
The centroid of the plane area bounded by the equation y^2 = 4x, x = 1, and the x-axis in the first quadrant is located at the point (3/5, 1).
To find the centroid of the given plane area, we need to calculate the x-coordinate (X) and y-coordinate (Y) of the centroid using the following formulas:
X = (1/A) * ∫(x * f(x)) dx
Y = (1/A) * ∫(f(x)) dx
where A represents the area of the region and f(x) is the equation y^2 = 4x.
To determine the area A, we need to find the limits of integration. Since the region is bounded by x = 1 and the x-axis, the limits of integration will be from x = 0 to x = 1.
First, we calculate the area A using the formula:
A = ∫(f(x)) dx = ∫(√(4x)) dx = 2/3 * x^(3/2) | from 0 to 1 = (2/3) * (1)^(3/2) - (2/3) * (0)^(3/2) = 2/3
Next, we calculate the x-coordinate of the centroid:
X = (1/A) * ∫(x * f(x)) dx = (1/(2/3)) * ∫(x * √(4x)) dx = (3/2) * (2/5) * x^(5/2) | from 0 to 1 = (3/5) * (1)^(5/2) - (3/5) * (0)^(5/2) = 3/5
Finally, the y-coordinate of the centroid is calculated by:
Y = (1/A) * ∫(f(x)) dx = (1/(2/3)) * ∫(√(4x)) dx = (3/2) * (2/3) * x^(3/2) | from 0 to 1 = (3/2) * (2/3) * (1)^(3/2) - (3/2) * (2/3) * (0)^(3/2) = 1
Learn more about integration here:
https://brainly.com/question/31744185
#SPJ11
Sketch the graph of the following function and suggest something this function might be modelling: f(x) = (0.00450 0.004x + 25 if x ≤ 6250 50 if x > 6250 C
The graph of the given function consists of two segments. For values of x less than or equal to 6250, the function follows a linear pattern with a positive slope and a y-intercept of 25.
For values of x greater than 6250, the function is a horizontal line at y = 50. This function could potentially model a situation where there is a cost associated with a certain variable until a certain threshold is reached, after which the cost remains constant.
To sketch the graph of the function f(x) = (0.0045x + 25) if x ≤ 6250 and 50 if x > 6250, we can break it down into two cases.
Case 1: x ≤ 6250
For x values less than or equal to 6250, the function is defined as f(x) = 0.0045x + 25. This represents a linear function with a positive slope of 0.0045 and a y-intercept of 25. As x increases, the value of f(x) increases linearly.
Case 2: x > 6250
For x values greater than 6250, the function is defined as f(x) = 50. This represents a horizontal line at y = 50. Regardless of the value of x, f(x) remains constant at 50.
Combining both cases, we have a graph with two segments. The first segment is a linear function with a positive slope starting from the point (0, 25) and extending until x = 6250. The second segment is a horizontal line at y = 50 starting from x = 6250.
This function could model a scenario where there is a certain cost associated with a variable until a threshold value of 6250 is reached.
Beyond that threshold, the cost remains constant. For example, it could represent a situation where a company charges $25 plus an additional cost of $0.0045 per unit for a product until a certain quantity is reached. After that quantity is exceeded, the cost remains fixed at $50.
Learn more about function here:
brainly.com/question/30721594
#SPJ11
Choose the conjecture that describes how to find the 6th term in the sequence 3, 20, 37, 54,
• A) Add 34 to 54.
O B) Add 17 to 54.
© c) Multiply 54 by 6
O D) Multiply 54 by 17,
The 6th term in the sequence 3, 20, 37, 54, is obtained by the option B) Add 17 to 54.
The given sequence has a common difference of 17 between each term. To understand this, we can subtract consecutive terms to verify: 20 - 3 = 17, 37 - 20 = 17, and 54 - 37 = 17. Therefore, it is reasonable to assume that the pattern continues.
By adding 17 to the last term of the sequence, which is 54, we can find the value of the 6th term. Performing the calculation, 54 + 17 = 71. Hence, the 6th term in the sequence is 71.
Option A) Add 34 to 54 doesn't follow the pattern observed in the given sequence. Option C) Multiply 54 by 6 doesn't consider the consistent addition between consecutive terms. Option D) Multiply 54 by 17 is not appropriate either, as it involves multiplication instead of addition.
Therefore, the correct choice is option B) Add 17 to 54 to obtain the 6th term, which is 71.
Learn more about sequence here:
https://brainly.com/question/19819125
#SPJ11
Using your knowledge of vector multiplication demonstrate that the following points are collinear. A(-1,3,-7), B(-3,4,2) and C(5,0,-34) [2]
b. Given that d =5, c =8 and the angle between d and c is 36degrees. Find
(3d+c)x(2d-c )
The points A, B, and C are not collinear and the cross product (3d + c) x (2d - c) is the zero vector.
To demonstrate that the points A(-1, 3, -7), B(-3, 4, 2), and C(5, 0, -34) are collinear, we can show that the vectors formed by these points are parallel or scalar multiples of each other.
Let's calculate the vectors AB and BC:
AB = B - A = (-3, 4, 2) - (-1, 3, -7) = (-3 + 1, 4 - 3, 2 - (-7)) = (-2, 1, 9)
BC = C - B = (5, 0, -34) - (-3, 4, 2) = (5 + 3, 0 - 4, -34 - 2) = (8, -4, -36)
To check if these vectors are parallel, we can calculate their cross product. If the cross product is the zero vector, it indicates that the vectors are parallel.
Cross product: AB x BC = (-2, 1, 9) x (8, -4, -36)
Using the cross product formula, we have:
= ((1 * -36) - (9 * -4), (-2 * -36) - (9 * 8), (-2 * -4) - (1 * 8))
= (-36 + 36, 72 - 72, 8 + 8)
= (0, 0, 16)
Hence the vectors AB and BC are not parallel. Therefore, the points A, B, and C are not collinear.
(b) d = 5, c = 8, and the angle between d and c is 36 degrees, we can find the cross product (3d + c) x (2d - c).
(3d + c) = 3(5) + 8 = 15 + 8 = 23
(2d - c) = 2(5) - 8 = 10 - 8 = 2
Taking the cross product:
(3d + c) x (2d - c) = (23, 0, 0) x (2, 0, 0)
Using the cross product formula, we have:
= ((0 * 0) - (0 * 0), (0 * 0) - (0 * 2), (23 * 0) - (0 * 2))
= (0, 0, 0)
The cross product (3d + c) x (2d - c) is the zero vector. Hence the vectors are parallel and the points are collinear.
To know more about the cross product refer here:
https://brainly.com/question/29097076#
#SPJ11
Evaluate the limits
lim (sin(4x) + x3x] XTC lim x+3 (x - 5)(x2 – 9) x - 3
The value of first limit is 0.
To evaluate the limit lim x→3 [(sin(4x) + x³) / (x + 3)], we substitute x = 3 into the expression:
[(sin(4(3)) + 3³) / (3 + 3)] = [(sin(12) + 27) / 6].
Since sin(12) is a bounded value and 27/6 is a constant, the numerator remains bounded while the denominator approaches a nonzero value as x approaches 3. Therefore, the limit is 0.
For the second limit, lim x→3 [(x - 5)(x² - 9) / (x - 3)], we substitute x = 3 into the expression:
[(3 - 5)(3² - 9) / (3 - 3)] = [(-2)(0) / 0].
The denominator is 0, and the numerator is nonzero. This results in an undefined expression, indicating that the limit does not exist.
Therefore, the main answer for the second limit is "The limit does not exist."
To know more about denominator click on below link:
https://brainly.com/question/15007690#
#SPJ11
What two positive real numbers whose product is 86 have the smallest possible sum? The numbers are and (Type exact answers, using radicals as needed.)
the two positive real numbers with the smallest possible sum and a product of 86 are √86 and √86.
The two positive real numbers that have a product of 86 and the smallest possible sum are approximately 9.2736 and 9.2736.Let's assume the two numbers are x and y. We know that the product of the two numbers is 86, so we have the equation xy = 86. To find the smallest sum of x and y, we need to minimize their sum, which is x + y.We can solve for y in terms of x by dividing both sides of the equation xy = 86 by x:
y = 86/x.Now we can express the sum x + y as x + 86/x. To find the minimum value of this sum, we can take the derivative with respect to x and set it equal to zero:
d/dx (x + 86/x) = 1 - 86/x^2 = 0.
Solving this equation, we get x^2 = 86, which gives us x = sqrt(86) ≈ 9.2736. Substituting this value back into the equation y = 86/x, we find y ≈ 9.2736.
Learn more about real numbers here:
https://brainly.com/question/31715634
#SPJ11
Find the general solution of the following 1. differential equation dy = y²x² dx Find the general solution of the following differential equation 2 dy dx + 2xy = 5x A bacteria culture initially cont
The general solution of the differential equation is y = -1/((1/3)x^3 + C1), where C1 is the constant of integration. The general solution of the differential equation is y = 5/2 + C2 * e^(-x^2), where C2 is the constant of integration.
1. For the general solution of the differential equation dy = y^2x^2 dx, we'll separate the variables and integrate both sides:
dy/y^2 = x^2 dx
Integrating both sides:
∫(dy/y^2) = ∫(x^2 dx)
To integrate the left side, we can use the power rule of integration:
-1/y = (1/3)x^3 + C1
Multiplying both sides by -1 and rearranging:
y = -1/((1/3)x^3 + C1)
So the general solution of the differential equation is y = -1/((1/3)x^3 + C1), where C1 is the constant of integration.
2.The differential equation is dy/dx + 2xy = 5x.
This is a linear first-order ordinary differential equation. To solve it, we'll use an integrating factor.
The integrating factor (IF) is given by the exponential of the integral of the coefficient of y, which in this case is 2x:
IF = e^(∫2x dx) = e^(x^2)
Multiplying both sides of the differential equation by the integrating factor:
e^(x^2) * dy/dx + 2xye^(x^2) = 5xe^(x^2)
The left side can be simplified using the product rule of differentiation:
(d/dx)[y * e^(x^2)] = 5xe^(x^2)
Integrating both sides:
∫(d/dx)[y * e^(x^2)] dx = ∫(5xe^(x^2) dx)
Integrating the left side gives:
y * e^(x^2) = 5/2 * e^(x^2) + C2
Dividing both sides by e^(x^2):
y = 5/2 + C2 * e^(-x^2)
So the general solution of the differential equation is y = 5/2 + C2 * e^(-x^2), where C2 is the constant of integration.
To know more about differential equation refer here:
https://brainly.com/question/31492438#
#SPJ11
The owners of Rollerblades Plus determine that the monthly. S, of its skates vary directly as its advertising budget, A, and inversely as the price of the skates, P. When $ 60,000 is spent on advertising and the price of the skates is $40, the monthly sales are 12,000 pairs of rollerblades
Determine monthly sales if the amount of the advertising budget is increased to $70,000.
(a) Assign a variable to represent each quantities.
(b) Write the equation that represent the variation.
(c) Find the constant of variation.
(d) Answer the problems equation.
For the given variables: (a) S: Monthly sales, A: advertising budget, P: Skates price. (b) S = k * (A/P) (c) variation constant = 8 (d) 14,000 rollerblades.
(a) Let S be the monthly sales (pair of rollerblades), A be the advertising budget (in dollars), and P be the price of the skates (in dollars) for the variables.
(b) Based on the information given, we can write the equation for variation as:
S = k * (A/P), where k is the constant of variation.
(c) To find the constant of variation, plug the specified values of monthly sales, advertising budget, and price into the equation and solve for k.
Using values of S = 12,000, A = $60,000, and P = $40:
12,000 = k * (60,000/40)
12,000 = 1,500,000
k = 12,000/1,500
k = 8
Therefore, the variation constant is 8.
(d) To answer the problem equation, we need to find the new monthly income when the advertising budget increases to $70,000. Substituting the new value A = $70,000 into the variational equation with the variational constant k = 8 and the original price P = $40 yields:
S = 8 * (70,000/40)
S = 8 * 1,750
S=14,000
So if your advertising budget is increased to $70,000, your new monthly income will be 14,000 pairs of rollerblades.
Learn more about variables here:
https://brainly.com/question/31194918
#SPJ11
"Prove that: sin(x-45)=cos(x+45)
Using trigonometric identities sin(x - 45) = -cos(x + 45)
What is a trigonometric identity?A trigonometric identity is an equation that contains a trigonometric ratio.
Since we have the trigonometric identity sin(x - 45) = -cos(x + 45), we need to prove that Left hand sides L.H.S equals Right Hand side R.H.S. We proceed as follows
L.H.S = sin(x - 45)
Using the trigonometric identity sin(A - B) = sinAcosB - cosAsinB where A = x and B = 45, we have that substituting these into the equation
sin(x - 45) = sinxcos45 - cosxsin45
= sinx × 1/√2 - cosx × 1/√2
= sinx/√2 - cosx√2
= (sinx - cosx)/√2
Also, R.H.S = -cos(x + 45)
Using the trigonometric identity cos(A + B) = cosAcosB - sinAsinB where A = x and B = 45, we have that these into the equation
cos(x + 45) = cosxcos45 - sinxsin45
= cosx × 1/√2 - sinx × 1/√2
= cosx/√2 - sinx/√2
= cosx/√2 - sinx/√2
= (cosx - sinx)/√2
= - (sinx - cosx)/√2
Since L.H.S = R.H.S
sin(x - 45) = -cos(x + 45)
Learn more about trigonometric identities here:
https://brainly.com/question/29722989
#SPJ1
State whether cach ofthe following statements is true of false. Correct the false statements.
a- Let T: RT - R' be a linear transformation with standard matrix A. If T is onto, then The columns of A form a
renerating settor Ru
b. Let det (A) = 16. If B is a matrix obtained by multiplying each entry of the 2*
row of A by S, then det(B) a - 80
The given statements are:
a) Let T: R^T -> R'^T be a linear transformation with standard matrix A. If T is onto, then the columns of A form a generating set for R'^T. b) Let det(A) = 16. If B is a matrix obtained by multiplying each entry of the 2nd row of A by S, then det(B) = -80.
a) The statement is false. If T is onto, it means that the range of T spans the entire target space R'^T. In this case, the columns of A form a spanning set for R'^T, but not necessarily a generating set. To form a generating set, the columns of A must be linearly independent. Therefore, the corrected statement would be: "Let T: R^T -> R'^T be a linear transformation with standard matrix A. If T is onto, then the columns of A form a spanning set for R'^T."
b) The statement is false. The determinant of a matrix is not affected by scalar multiplication of a row or column. Therefore, multiplying each entry of the 2nd row of matrix A by S will only scale the determinant by S, not change its sign. So, the corrected statement would be: "Let det(A) = 16. If B is a matrix obtained by multiplying each entry of the 2nd row of A by S, then det(B) = 16S."
Learn more about matrix here : brainly.com/question/28180105
#SPJ11
Question 3 of 3
Mariano is standing at the top of a hill when he kicks a soccer ball up into the air. The height of the hill is h
feet, and the ball is kicked with an initial velocity of v feet per second. The height of the ball above the bottom
of the hill after t seconds is given by the polynomial -1612 + vt + h. Find the height of the ball after 3 seconds
if it was kicked from the top of a 65 foot tall hill at 80 feet per second.
The required height of the ball after 3 seconds when it was kicked from the top of a 65 - foot tall hill at 80 feet per second is -937 feet.
Given that h(t) = -1612+ vt +h and v = 80 feet per second, h = 65 feet and 3 seconds.
To find the height of the ball after 3 seconds substitute the value of v, h, and t into the given polynomial.
Consider the given equation gives,
Height of the ball after t seconds h(t) = -1612+ vt +h
substitute the value of v, h, and t into the above equation,
Height of the ball after 3 seconds h(3) = -1612 + (80 x 3) +65.
Height of the ball after 3 seconds h(3) = -1612 +240+65
Height of the ball after 3 seconds h(3) = -937.
Hence, the required height of the ball after 3 seconds when it was kicked from the top of a 65 - foot tall hill at 80 feet per second is -937 feet.
Learn more about Polynomial click here:
https://brainly.com/question/31902568
#SPJ1