4) Math Club members want to advertise their fundraiser each week in the school paper. They knowthat a front-page ad is more effective than an ad inside the paper. They have a $30 advertisingbudget. It cost $2 for each front-page ad and $1 for each inside page ad. The club wants to advertiseat least 20 times. a) Write and graph a system of inequalities to model the number of advertisements the club canpurchase to stay under budget. Be sure to label all parts of your graph.b) State one solution that would work. How much money will remain in the club's budget?

Answers

Answer 1

Problem:

Math Club members want to advertise their fundraiser each week in the school paper. They know that a front-page ad is more effective than an ad inside the paper. They have a $30 advertising budget. It cost $2 for each front-page ad and $1 for each inside page ad. The club wants to advertise at least 20 times.

a) Write and graph a system of inequalities to model the number of advertisements the club can purchase to stay under budget. Be sure to label all parts of your graph.

Solution:

Let us denote the number of front-page ads by x, and the number of inside ads by y:

x = number front-page ads

y= number of inside ads

Now, because they have a $30 advertising budget and It cost $2 for each front-page ad and $1 for each inside page ad, the first inequality that we have is:

[tex]2x+\text{ y }\leq30[/tex]

If we represent the graph of the equality (line) 2x+y = 30, we have:

On the other hand, because the club wants to advertise at least 20 times, the second inequality that we have is:

[tex]x+y\ge20[/tex]

If we represent the graph of the equality (line) x+y = 20, we have:

Now, the intersection point of the above lines, that is 2x+y = 30 and x+y = 20 is found as follows:

we have

y = 30 - 2x

and

y = 20-x

then

30-2x = 20-x

and

30-20 = 2x-x

that is

10 = x

when x = 10 then y = 20-x = 20-10 = 10

4) Math Club Members Want To Advertise Their Fundraiser Each Week In The School Paper. They Knowthat
4) Math Club Members Want To Advertise Their Fundraiser Each Week In The School Paper. They Knowthat

Related Questions

helpppppppppp!!!!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

A. y = -250x + 3750

B. $2125

Step-by-step explanation:

A.

(5, 2500), (7, 2000)

(x₁, y₁)          (x₂, y₂)

          y₂ - y₁            2000 - 2500        -500

m = ----------------- = ---------------------- = ---------- = -250

          x₂ - x₁                  7 - 5                    2

y - y₁ = m(x - x₁)

y - 2500 = -250(x - 5)

y - 2500 = -250x + 1250

   +2500               +2500

-------------------------------------

y = -250x + 3750

B.

y = -250x + 3750

y = -250(6.50) + 3750

y = -1625 + 3750

y = 2125

(6.50, 2125)

I hope this helps!

A projectile is fired vertically upwards and can be modeled by the function h(t)= -16t to the second power+600t +225 during what time interval will the project I’ll be more than 4000 feet above the ground round your answer to the nearest hundredth

Answers

Given:

[tex]h(t)=-16t^2+600t+225[/tex]

To find the time interval when the height is about more than 4000 feet:

Let us substitute,

[tex]\begin{gathered} h(t)\ge4000 \\ -16t^2+600t+225\ge4000 \\ -16t^2+600t+225-4000\ge0 \\ -16t^2+600t-3775\ge0 \end{gathered}[/tex]

Using the quadratic formula,

Here, a= -16, b=600, and c= -3775

[tex]\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ =\frac{-600\pm\sqrt[]{600^2-4(-16)(-3775)}}{2(-16)} \\ =\frac{-600\pm\sqrt[]{360000^{}-241600}}{-32} \\ =\frac{-600\pm\sqrt[]{118400}}{-32} \\ =\frac{-600\pm40\sqrt[]{74}}{-32} \\ =\frac{-75\pm5\sqrt[]{74}}{-4} \\ t=\frac{-75+5\sqrt[]{74}}{-4},x=\frac{-75-5\sqrt[]{74}}{-4} \\ t=7.99709,t=29.5029 \end{gathered}[/tex]

So, the interval is,

[tex]8.00\le\: t\le\: 29.50[/tex]

Please help i need the answers for a test and how to work em out for the future

Answers

Given: The angles as shown in the image

[tex]\begin{gathered} m\angle DEY=105^0 \\ m\angle DEF=27x+3 \\ m\angle YEF=6x+3 \end{gathered}[/tex]

To Determine: The measure of angle DEF

Solution

It can be observed that

[tex]\begin{gathered} m\angle DEY+m\angle YEF=m\angle DEF \\ Therefore \end{gathered}[/tex][tex]\begin{gathered} 105^0+6x+3=27x+3 \\ 105=27x-6x+3-3 \\ 105=21x \\ x=\frac{105}{21} \\ x=5 \end{gathered}[/tex][tex]\begin{gathered} m\angle DEF=21x+3 \\ =21(5)+3 \\ =105+3 \\ =108 \end{gathered}[/tex]

Question 12

Given:

[tex]\begin{gathered} m\angle UIJ=x+43 \\ m\angle HIJ=66 \\ m\angle HIU=x+37 \end{gathered}[/tex]

To Determine: The measure of angle HIU

Solution:

It can be observed that

[tex]m\angle UIJ+m\angle HIU=m\angle HIJ[/tex][tex]\begin{gathered} x+43+x+37=66^0 \\ Collect-like-terms \\ x+x+43^0+37^0=66^0 \\ 2x+80^0=66^0 \\ 2x=66^0-80^0 \\ 2x=-14^0 \\ x=-\frac{14^0}{2} \\ x=-7^0 \end{gathered}[/tex]

Therefore, the measure of angle HIU would be

[tex]\begin{gathered} m\angle HIU=x+37^0 \\ m\angle HIU=-7+37^0 \\ m\angle HIU=30^0 \end{gathered}[/tex]

Hence, the measure of angle HIU is 30⁰

Rewrite the polynomial in standard form: 2x + 7x^2 - 3+ x^3

Answers

The given polynomial is

[tex]2x+7x^2-3+x^3[/tex]

The standard form refers to organizing the terms where the exponents are placed in decreasing order.

[tex]x^3+7x^2+2x-3[/tex]

Graph the reflection of the polygon in the given line

Answers

Let:

[tex]\begin{gathered} A=(-3,2) \\ B=(1,-1) \\ C=(-2,-2) \\ D=(-4,-1) \end{gathered}[/tex]

After the reflection over y = -x:

[tex]\begin{gathered} A->(-y,-x)->A^{\prime}=(-2,3) \\ B->(-y,-x)->B^{\prime}=(1,-1) \\ C->(-y,-x)->C^{\prime}=(2,2) \\ D->(-y,-x)->D^{\prime}=(1,4) \end{gathered}[/tex]

1. The equations y = x2 + 6x + 8 and y = (x + 2)(x+4) both define thesame quadratic function.Without graphing, identify the x-intercepts and y-intercept of the graph.Explain how you know

Answers

Given the quadratic equation

[tex]y=x^2\text{ +6x + 8}[/tex]

(1) x-intercepts are -2 and -4 is the points that pass through the x-axis

when y = 0

[tex]\begin{gathered} y\text{ = 0 } \\ x^2\text{ + 6x + 8 = 0} \\ x^2+2x\text{ +4x +8 = 0} \\ (x\text{ + 2)(x +4)=0} \\ x\text{ +2 = 0 or x +4 =0} \\ x\text{ = -2 or x = -4} \end{gathered}[/tex]

(11) y-intercepts = 8 is the points that pass through the y axis when x = 0

[tex]\begin{gathered} y=x^2\text{ +6x +8} \\ \text{when x = 0} \\ y=0^2\text{ +6(0) +8} \\ \text{y = 8} \end{gathered}[/tex]

0.27x4.42erterttwerutiyrteyruiti

Answers

Answer:

if need to solve

Step-by-step explanation:

1.1934

if it help let me know this

Yoonie is a personnel manager in a large corporation. Each month she must review 16 of the employees. From past experience, she has found that the reviews take her approximately four hours each to do with a population standard deviation of 1.2 hours. Let X be the random variable representing the time it takes her to complete one review. Assume X is normally distributed. Let X be the random variable representing the mean time to complete the 16 reviews. Assume that the 16 reviews represent a random set of reviews.
Find the probability that the mean of a month's reviews will take Yoonie from 3.5 to 4.25 hrs.

a. Give the probability statement and the probability. (Enter exact numbers as integers, fractions, or decimals for the probability statement. Round the probability to four decimal places.

Answers

Using the normal distribution and the central limit theorem, the probability that the mean of a month's reviews will take Yoonie from 3.5 to 4.25 hrs is:

[tex]P(3.5 \leq \bar{X} \leq 4.25) = 0.7482[/tex]

Normal Probability Distribution

The z-score of a measure X of a variable that has mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by the rule presented as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The z-score measures how many standard deviations the measure X is above or below the mean of the distribution, depending if the z-score is positive or negative.From the z-score table, the p-value associated with the z-score is found, and it represents the percentile of the measure X in the distribution.By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

The mean and the standard deviation of each review are given as follows:

[tex]\mu = 4, \sigma = 1.2[/tex]

For the sampling distribution of sample means of size 16, the standard error is given as follows:

[tex]s = \frac{1.2}{\sqrt{16}} = 0.3[/tex]

The probability that the mean of a month's reviews will take Yoonie from 3.5 to 4.25 hrs is the p-value of Z when X = 4.25 subtracted by the p-value of Z when X = 3.5, hence:

X = 4.25:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

Z = (4.25 - 4)/0.3

Z = 0.83.

Z = 0.83 has a p-value of 0.7967.

X = 3.5:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

Z = (3.5 - 4)/0.3

Z = -1.67.

Z = -1.67 has a p-value of 0.0475.

Hence the probability is:

0.7967 - 0.0485 = 0.7482.

The statement is:

[tex]P(3.5 \leq \bar{X} \leq 4.25)[/tex]

Learn more about the normal distribution and the central limit theorem at https://brainly.com/question/25800303

#SPJ1

Which values are solutions to the inequality below? Check all that applySqrt x>=9Choices are:-2, 82, 32, 180, 99, 63

Answers

We notice the following:

[tex]\begin{gathered} \sqrt[]{x}\ge9\ge0 \\ \Rightarrow \\ x\ge81 \end{gathered}[/tex]

Then, possible solutions of the inequality are all real numbers greater or equal than 81. From the given set of solution, those numbers that fullfill that requirement are:

[tex]82,\text{ 180 and 99}[/tex]

rounded 425.652 to the hundredths place

Answers

Since the given number is 425.652

The hundredth digit is the 2nd number right at the decimal point

It is 5

To round to the nearest hundredth, we will look at the digit right to it

1. If it is 0, 1, 2, 3, or 4 we will ignore it and write the number without change except by canceling that digit

2. If it is 5, 6, 7, 8, or 9 we will cancel it and add the digit left to it 1

Since the right digit to the digit 5 is 2, then we will remove it and do not change the digit 5 (case 1), then

The number after rounding should be 425.65

The answer is 425.65

a. Draw any obtuse angle and label it angle AXB. Then draw ray XY so that it bisects < AXB.b. if m AXB = 140°, then what is m ZYXB?

Answers

The obtuse angle is shown in the diagram below:

The word, "bisect" means to divide an angle into 2 equal parts. Given that ray XY bisects angle AXB, it mean that it divides it into two equal halves. Theregfore, angle YXB is 140/2 = 70 degrees

Evaluate the expression shown: 30-3²-2+7

Answers

Answer:

=26

Step-by-step explanation:

30−32−2+7

=30−9−2+7

=21−2+7

=19+7

=26

Write equation for graph ?

Answers

The equation for parabolic graphed function is y = [tex]-3x^{2} -24x-45[/tex].

What is parabola graph?

Parabola graph depicts a U-shaped curve drawn for a quadratic function.  In Mathematics, a parabola is one of the conic sections, which is formed by the intersection of a right circular cone by a plane surface. It is a symmetrical plane U-shaped curve. A parabola graph whose equation is in the form of f(x) = ax2+bx+c is the standard form of a parabola.

The given graph has 2 intercept at x axis x = -3, x = -5

y = a (x+3) (x+5)

using the intercept (-4, 3)

3 = a (-4 +3)(-4+5)

3 = a (-1)(1)

a =-3

y = -3(x+3)(x+5)

y = -3 [x(x+5) +3(x+5)]

y = [tex]-3x^{2}-24x-45[/tex]

To know more about parabola graph, visit:

https://brainly.com/question/27145006

#SPJ13

The number of bacteria in a culture increased from 27,000 to 105,000 in five hours. When is the number of bacteria one million if:a) Does the number increase linearly with time?b) The number increases exponentially with time?

Answers

We have the following situation regarding the growth of bacteria in a culture:

• The given initial population of bacteria is 27,000

,

• After 5 hours, the population increases to 105,000.

Now, we need to find the moment when that population is one million if:

• The population increases linearly with time

,

• The population increases exponentially with time

To find the time in both situations, we can proceed as follows:

Finding the moment when the population is one million if it increases linearly with time

1. We need to find the equation of the line that passes the following two points:

• t = 0, population = 27,000

,

• t = 5, population = 105,000

2. Then the points are:

[tex]\begin{gathered} (0,27000)\rightarrow x_1=0,y_1=27000 \\ (5,105000)\rightarrow x_2=5,y_2=105000 \\ \end{gathered}[/tex]

3. Now, we can use the two-point form of the line equation:

[tex]\begin{gathered} y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1) \\ \\ y-27000=\frac{105000-27000}{5-0}(x-0) \\ \\ y-27000=\frac{78000}{5}x=15600x \\ \\ y=15600x+27000\rightarrow\text{ This is the line equation we were finding.} \end{gathered}[/tex]

4. We can see that the population is given by y. Then if y = 1,000,000, then we need to solve the equation for x as follows:

[tex]\begin{gathered} 1000000=15600x+27000 \\ \\ 1000000-27000=15600x \\ \\ \frac{(1000000-27000)}{15600}=x \\ \\ x=62.3717948718\text{ hours} \\ \\ x\approx62.3718\text{ hours} \end{gathered}[/tex]

Therefore, if the population increases linearly with time, the number of bacteria will be one million around 62.3718 hours.

Finding the moment when the population is one million if it increases exponentially with time

1. In this case, we also need to find the equation that will give us the time when the number of bacteria is one million. However, since the equation will be exponential, we have:

[tex]\begin{gathered} y=a(1+r)^x \\ \\ a\rightarrow\text{ initial value} \\ \\ x\rightarrow\text{ number of time intervals that have passed.} \\ \\ (1+r)=b\text{ }\rightarrow\text{the growth ratio, and }r\rightarrow\text{ the growth rate.} \end{gathered}[/tex]

2. Now, we can write it as follows:

[tex]\begin{gathered} a=27000 \\ \\ x=5\rightarrow y=105000 \\ \\ \text{ Then we have:} \\ \\ 105000=27000(b)^5 \\ \end{gathered}[/tex]

3. We can find b as follows (the growth factor):

[tex]\begin{gathered} \frac{105000}{27000}=b^5 \\ \\ \text{ We can use the 5th root to obtain the growth factor. Then we have:} \\ \\ \sqrt[5]{\frac{105000}{27000}}=\sqrt[5]{b^5} \\ \\ b=1.31209447568 \end{gathered}[/tex]

4. Then the exponential equation will be of the form:

[tex]\begin{gathered} y=27000(1.31209447568)^x \\ \\ \text{ To check the equation, we have that when x = 5, then we have:} \\ \\ y=27000(1.31209447568)^5=105000 \end{gathered}[/tex]

5. Now, to find the time when the number of bacteria is one million, we can proceed as follows:

[tex]\begin{gathered} 1000000=27000(1.31209447568)^x \\ \\ \frac{1000000}{27000}=1.31209447568^x \end{gathered}[/tex]

6. Finally, we need to apply the logarithm to both sides of the equation as follows:

[tex]\begin{gathered} ln(\frac{1000000}{27000})=ln(1.31209447568)^x=xln(1.31209447568) \\ \\ \frac{ln(\frac{1000000}{27000})}{ln(1.31209447568)}=x \\ \\ x=13.2974595282\text{ hours} \end{gathered}[/tex]

Therefore, if the population increases exponentially with time, the number of bacteria will be one million around 13.2975 hours.

Therefore, in summary, we have:

When is the number of bacteria one million if:

a) Does the number increase linearly with time?

It will be 62.3718 hours

b) The number increases exponentially with time?

It will be around 13.2975 hours

Match the number with the correct description.
PLEASE HELP

Answers

Answer:

Answers on attached image

Step-by-step explanation:

8. (03.07 MO)Solve x2 - 10x = -21. O x = 7 and x = 3O x = -7 and x = 3O x = -7 andx = -3O x = 7 and x = -3

Answers

Given:

Quadratic equation

[tex]x^2-10x+21=0[/tex]

To find:

Values of x satisfying given equation.

Explanation:

Roots of equation of type

[tex]ax^2-bx+c=0[/tex]

roots will be (x-a)(x-b) and x = a,b.

Solution:

We will factorize equation as:

[tex]\begin{gathered} x^2-10x+21=0 \\ x^2-7x-3x+21=0 \\ (x-3)(x-7)=0 \\ x=3,\text{ 7} \end{gathered}[/tex]

Hence, 3 and 7 are values of x.

I need help with a math problem. I linked it below

Answers

According to the distributive property of multiplication:

[tex]a\cdot(b+c)=a\cdot b+a\cdot c[/tex]

Then,

[tex]\begin{gathered} -6(x+5)=12 \\ -6x-6\cdot5=12 \\ -6x-30=12 \end{gathered}[/tex]

To find x, add 30 to both sides:

[tex]\begin{gathered} -6x-30+30=12+30 \\ -6x=42 \end{gathered}[/tex]

And divide both sides by -6:

[tex]\begin{gathered} \frac{-6}{-6}x=\frac{42}{-6} \\ x=-7 \end{gathered}[/tex]

Answer:

- 6x - 30 = 12

x = -7

George filled up his car with gas before embarking on a road trip across the country. The capacity of George's gas tank is 12 gallons and her car uses 2 gallons of gas for every hour driven. Make a table of values and then write an equation for G, in terms of t, representing the number of gallons of gas remaining in George's gas tank after t hours of driving.

Answers

Given that the capacity of George's gas tank is 12 gallons and her car uses 2 gallons of gas for every hour driven.

[tex]\begin{gathered} G_{\circ}=12 \\ m=-2 \end{gathered}[/tex]

slope m is negative since the gas is reducing every hour.

Writing the equation for G, in terms of t, representing the number of gallons of gas remaining in George's gas tank after t hours of driving.​

[tex]\begin{gathered} G=G_{\circ}+mt \\ G=12+(-2)t \\ G=12-2t \end{gathered}[/tex]

The equation for G is;

[tex]G=12-2t[/tex]

Calculating the number of gallons remaining in the tank after 0,1,2 and 3 hours, we have;

[tex]\begin{gathered} G=12-2t \\ at\text{ t=0}; \\ G_0=12-2(0)=12 \\ at\text{ t=1}; \\ G_1=12-2(1)=10 \\ at\text{ t=2}; \\ G_{2_{}}=12-2(2)=12-4=8 \\ at\text{ t=3;} \\ G_3=12-2(3)=12-6=6 \end{gathered}[/tex]

Completing the table, we have;

while eating your yummy pizza, you observe that the number of customers arriving to the pizza station follows a poisson distribution with a rate of 18 customers per hour. on average, how many customers arrive in each 10 minutes interval?

Answers

In every 10 minutes an average of 3 customers will arrive to the pizza station

Given,

The number of customers arriving to the pizza station follows a poisson distribution with a rate of 18 customers per hour.

We have to find the average number of customers arrives in each 10 minutes.

Here,

The chance that X represents the number of successes of a random variable in a Poisson distribution is provided by the following formula:

P (X = x) = (e^-μ × μ^x) / x!

Where,

The number of successes is x.

The Euler number is e = 2.71828.

μ is the average over the specified range.

Now,

Rate of 18 customers per hour;

μ = 18 n

n is the number of hours.

Number of customers arrive in each 10 minutes

10 minutes = 10/60 = 1/6

Then,

μ = 18 x 1/6 = 3

That is,

In every 10 minutes an average of 3 customers will arrive to the pizza station.

Learn more about average number of customers here;

https://brainly.com/question/24110095

#SPJ1

Find the maximum value:13, 18, 27, 12, 38, 41, 32, 15, 32

Answers

We can find the maximum value by creating a list of the provided numbers from the smallest to the largest.

[tex]12,13,15,18,27,32,32,38,41[/tex]

As we see on the list, the last number and the largest is 41. Some tools are used to solve this kind of problem like the diagram of leaves and stems, a table os fre

When you purchase a T.V., the size refers to the diagonal measurement of the screen. If
the 46 inch TV has a square screen, what is the approximate length and width? Round
your answer to the nearest tenth.

Answers

TV Dimensions (Diagonal) Screen Width

46 inch TV 40.1 inches + Bezel

A TV's screen size is determined by measuring the panel diagonally from one corner to the other. The TV's bezels and other exterior surfaces are not included in this. There are numerous models in a certain size group.

What does diagonal screen size mean?

A screen's size is often determined by the diagonal, or the distance between its opposite corners, which is typically measured in inches. To distinguish it from the "logical image size," which characterizes a screen's display resolution and is measured in pixels, it is also often referred to as the physical image size.

Start at the top-left corner and measure diagonally down to the bottom-right corner using a measuring tape. Do not include the bezel (the plastic, metal, or glass edge), if any, when measuring the screen alone.

because the units are too large to be offered by furlongs and fathoms. Since the United States does not use the metric system, while television was being invented, American engineers used the units they were most accustomed to.

To learn more about  diagonal screen refer to:

https://brainly.com/question/26764239

#SPJ1

Solve the equation for w.

4w + 2 + 0.6w = −3.4w − 6

No solution

w = 0

w = 1

w = −1

Answers

Answer:

w = -1

Step-by-step explanation:

Given equation:

[tex]4w + 2 + 0.6w=-3.4w-6[/tex]

Add 3.4w to both sides:

[tex]\implies 4w + 2 + 0.6w+3.4w=-3.4w-6+3.4w[/tex]

[tex]\implies 4w + 2 + 0.6w+3.4w=-6[/tex]

Subtract 2 from both sides:

[tex]\implies 4w + 2 + 0.6w+3.4w-2=-6-2[/tex]

[tex]\implies 4w +0.6w+3.4w=-6-2[/tex]

Combine the terms in w on the left side of the equation and subtract the numbers on the right side of the equation:

[tex]\implies 8w=-8[/tex]

Divide both sides by 8:

[tex]\implies \dfrac{8w}{8}=\dfrac{-8}{8}[/tex]

[tex]\implies w=-1[/tex]

Therefore, the solution to the given equation is:

[tex]\boxed{w=-1}[/tex]

Given that,

→ 4w + 2 + 0.6w = -3.4w - 6

Now the value of w will be,

→ 4w + 2 + 0.6w = -3.4w - 6

→ 4.6w + 2 = -3.4w - 6

→ 4.6w + 3.4w = -6 - 2

→ 8w = -8

→ w = -8/8

→ [ w = -1 ]

Hence, the value of w is -1.

Dante is arranging 11 cans of food in a row on a shelf. He has 7 cans of beans, 3 cans of peas, and 1 can of carrots. In how many distinct orders can the cans be arranged if two cans of the same food are considered identical (not distinct)?

Answers

Given:

The number of cans of food =11

The number of cans of beans=7

the number of cans of peas=3

the number of cans of carrots=1

Condition : two cans of the same food are considered identical.

To arrange the n objects in order,

[tex]\begin{gathered} \text{Number of ways= }\frac{n!}{r_1!r_2!r_3!} \\ =\frac{11!}{7!3!1!} \\ =\frac{39916800}{30240} \\ =1320 \end{gathered}[/tex]

Answer: the number of ways are 1320.

Drew has a video game with five differentchallenges. He sets the timer to play his gamefor 10.75 minutes. He spends the same amountof time playing each challenge. How long doesDrew nlay the fifth challenge?

Answers

For each game, Drew spends 10.75 minutes, this means in total Drew spends

[tex]5\cdot10.75\text{ minutes}[/tex]

this product gives

[tex]5\cdot10.75=53.75\text{ minutes}[/tex]

then, in the fifth challenge Drew spends 53.75 minutes

How do I solve it and what would be the answer

Answers

The quotient is x² + 4x + 3

Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6

Explanation:[tex](x^3+2x^2\text{ - 5x - 6) }\div\text{ (x - 2)}[/tex][tex]\begin{gathered} x\text{ - 2 = 0} \\ x\text{ = 2} \\ \\ \text{coefficient of }x^3+2x^2\text{ - 5x - 6:} \\ 1\text{ 2 -5 -6} \\ \\ We\text{ will divide the coefficients by 2} \end{gathered}[/tex]

Using synthetic division:

[tex]\begin{gathered} (x^3+2x^2\text{ - 5x - 6) }\div\text{ (x - 2) = }\frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}} \\ \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}\text{ = quotient + }\frac{remai\text{ nder}}{\text{divisor}} \\ \\ The\text{ coefficient of the quotient = 1 4 3} \\ \text{The last number is zero, so the remainder = 0} \end{gathered}[/tex][tex]\begin{gathered} \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}=1x^2\text{ + 4x + 3 + }\frac{0}{x\text{ - 2}} \\ \text{quotient }=\text{ }x^2\text{ + 4x + 3} \end{gathered}[/tex]

For a (x - 2) to be a factor of x³ + 2x² - 5x - 6, it will not have a remainder when it is divided.

Since remainder = 0

Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6

Cost of a pen is two and half times the cost of a pencil. Express this situation as a
linear equation in two variables.

Answers

The equation to illustrate the cost of a pen is two and half times the cost of a pencil is C = 2.5p.

What is an equation?

A mathematical equation is the statement that illustrates that the variables given. In this case, two or more components are taken into consideration to describe the scenario.

In this case, the cost of a pen is two and half times the cost of a pencil.

Let the pencil be represented as p.

Let the cost be represented as c.

The cost will be:

C = 2.5 × p

C = 2.5p

This illustrates the equation.

Learn more about equations on:

brainly.com/question/2972832

#SPJ1

$1750 is invested in an account earning 3.5% interest compounded annualy. How long will it need to be in an account to double?

Answers

Given :

[tex]\begin{gathered} P\text{ = \$ 1750} \\ R\text{ = 3.5 \%} \\ A\text{ = 2P} \\ A\text{ = 2}\times\text{ 1750 = \$ 3500} \end{gathered}[/tex]

Amount is given as,

[tex]\begin{gathered} A\text{ = P( 1 + }\frac{R}{100})^T \\ 3500\text{ = 1750( 1 + }\frac{3.5}{100})^T \\ \text{( 1 + }\frac{3.5}{100})^T\text{ = }\frac{3500}{1720} \end{gathered}[/tex]

Further,

[tex]\begin{gathered} \text{( 1 + }\frac{3.5}{100})^T\text{ = 2} \\ (\frac{103.5}{100})^T\text{ = }2 \\ (1.035)^T\text{ = 2} \end{gathered}[/tex]

Taking log on both the sides,

[tex]\begin{gathered} \log (1.035)^T\text{ = log 2} \\ T\log (1.035)\text{ = log 2} \\ T\text{ = }\frac{\log \text{ 2}}{\log \text{ 1.035}} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} T\text{ = }\frac{0.3010}{0.0149} \\ T\text{ = 20.20 years }\approx\text{ 20 years} \end{gathered}[/tex]

Thus the required time is 20 years.

Transformations that preserve shape and size are called rigid motions. Find a definition of just the word rigid using the internet and write it below.

Answers

Simply put,

Rigid means not moving.

In transformations, rigid motions are transformations that preserve distance.

What is the slope of a line parallel to the line whose equation is 12x – 15y = 315.Fully simplify your answer.

Answers

Answer:

4/5

Explanation:

Definition: Two lines are parallel if they have the same slope.

Given the line:

[tex]12x-15y=315[/tex]

Determine the slope of the given line by expressing it in the slope-intercept form (y=mx+b), where m is the slope:

[tex]\begin{gathered} 12x-15y=315 \\ \text{ Add 15y to both sides of the equation} \\ 12x-15y+15y=315+15y \\ 12x=315+15y \\ \text{ Subtract 315 from both sides:} \\ 12x-315=315-315+15y \\ 12x-315=15y \\ \text{ Divide all through by 15} \\ \frac{15y}{15}=\frac{12}{15}x-\frac{315}{15} \\ y=\frac{4}{5}x-21 \end{gathered}[/tex]

• The slope of the line, m = 4/5.

Since the lines are parallel, they have the same slope.

Hence, the slope of a line parallel to the line whose equation is 12x – 15y = 315 is 4/5.

Find the future value using the future value formula and a calculator in order to achieve $420,000 in 30 years at 6% interest compounded monthly

Answers

The present value of in order to achieve $420000 in 30 years at 6% interest compounded monthly is $69737.60

The future value = $420000

The time period = 30 years

The interest percentage = 6%

The interest is compounded monthly

A = [tex]P(1+\frac{i}{f})^{fn}[/tex]

Where A is the final value

P is principal amount

i is the interest rate

f frequency where compound interest is added

n is the time period

Substitute the values in the equation

420000 = P × [tex](1+\frac{0.06}{12} )^{(12)(30)[/tex]

420000 = P × 6.02

P = 420000 / 6.02

P = $69737.60

Hence, the present value of in order to achieve $420000 in 30 years at 6% interest compounded monthly is $69737.60

The complete question is:

Find the present value using the future value formula  in order to achieve $420,000 in 30 years at 6% interest compounded monthly

Learn more about compound interest here

brainly.com/question/14295570

#SPJ1

Other Questions
Find P on line segment CD that is 3/4 the distance from C(0, 0) to D (0, 12). 2) What is the sum of all the angles in the rectangle Why is *soil erosion* one of the many effects of deforestation? What is Y=2x+5 solved dan picked up his friend rodney to drive to their softball game. both dan and rodney have a personal auto policy (pap) with $5,000 of medical payments coverage. dan hit a parked car, and rodney was injured, incurring $9,000 of medical expenses. how will this claim be settled under the other insurance provision of the pap? 2.a statewide real estate sales agency, farm associates, specializes in selling farm property in the state of nebraska. its records indicate that the mean selling time of farm property is 90 days. because of recent drought conditions, the agency believes that the mean selling time is now greater than 90 days. a statewide survey of 100 farms sold recently revealed that the mean selling time was 94 days, with a standard deviation of 22 days. at the .10 significance level, has there been an increase in selling time? subtract 7 1/4 - 4 3/4 simplify the answer and write as a mixed number .122 1/21/43 1/2 Joe is painting his wooden fence post before putting them in his yard. They are each 8 feel tall and have a diameter of 1 foot. There are 12 fence post in all. How much Paint will Joe need to paint all the surfaces of the 12 fencepost? Use 3:14 for tt and round your final answer to the nearest number Total paint needed: _______ What is x in x/4=1.8/5 find the measures of GH and CH. I just need to know the answer quick because I have to go somewhere 6. Oliver is playing a game in which he has to choose one of two numbers (2 or 7) and then one of five vowels (a, e, i, o, or u). How many possible outcomes are there? 2 7 There are possible outcomes. I need with this. I am trying to answer the questions with direct complement and indirect complement pronouns together. thyroid hormones are principally concerned with the increase in metabolic rate of tissues that can result in certain effects. what are some of these effects? select all that apply. How many terms are included in the expression below?x 3x+7A. 2B. 7o oC. 1D. 3 in companies that provide defined benefit plans, if the funding is inadequate to pay the benefits promised, the employees must make up the shortfall. question 8 options: true false in the short run, a monopolist's economic profits multiple choice are always zero because consumers prefer to buy from competitive sellers. may be positive or negative depending on market demand and cost conditions. are always positive because the monopolist is a price-maker. are usually negative because of government price regulation. raynah is frustrated because the feedback she received from her manager didn't explain why she was being demoted. which criterion for effective performance management is missing from barb's feedback? What is the slope of this line? Enter your answer as a whole number or a fraction in simplest form in the box. Identify the vertex and axis of symmetry of the quadratic equation. Then, sketch the graph f(x) = (x + 2) - 1