72 divided by 3 = 3x(x+2)

Answers

Answer 1

Answer:

Just divide 72 ÷3

Step-by-step explanation:

72÷3=3x(x+2)

--------


Related Questions

PLEASE HELP ME WITH BOTH OR ONE OF THESE QUESTIONS PLEASE I REALLY NEED HELP AND NOBODY IS HELPING ME!!! I WILL TRY AND GIVE BRAINLIEST IF TWO PEOPLE DO ANSWER!!!!

Answers

The area of the figure is: 22in².

Here, we have,

The given figure is a parallelogram.

we have,

a = 7in

b = 5 in

h = 5 in

so, area = b×h = 25 in²

now, the rectangle has: l = 3in and w = 1in

so, area = lw = 3 in²

so, the area of the figure is: 25 - 3 = 22in²

To learn more on Area click:

brainly.com/question/20693059

#SPJ1

Question 8 Solve the following differential equation with initial value: xy' + y = e¹ y(1) = 2 y = Question Help: Message instructor Submit Question 0/1 pt100 18 Details 1

Answers

The solution to the given differential equation,[tex]xy' + y = e^x[/tex], with the initial condition y(1) = 2, is [tex]y = e^x + x^2e^x[/tex].

To solve the differential equation, we can use the method of integrating factors. First, we rearrange the equation to isolate y':

y' = (e^x - y)/x.

Now, we can rewrite this equation as:

y'/((e^x - y)/x) = 1.

To simplify, we multiply both sides of the equation by x:

xy'/(e^x - y) = x.

Next, we observe that the left-hand side of the equation resembles the derivative of (e^x - y) with respect to x. Therefore, we differentiate both sides:

[tex]d/dx[(e^x - y)]/((e^x - y)) = d/dx[ln(x^2)].[/tex]

Integrating both sides gives us:

[tex]ln|e^x - y| = ln|x^2| + C.[/tex]

We can remove the absolute value sign by taking the exponent of both sides:

[tex]e^x - y = \±x^2e^C[/tex].

Simplifying further, we have:

[tex]e^x - y = \±kx^2, where k = e^C.[/tex]

Rearranging the equation to isolate y, we get:

[tex]y = e^x \± kx^2.[/tex]

Applying the initial condition y(1) = 2, we substitute the values and find that k = -1. Therefore, the solution to the differential equation with the given initial condition is:

[tex]y = e^x - x^2e^x.[/tex]

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

Use the integral Test to determine whether the series is convergent or divergent. R-1 Evaluate the following integral. dx Since the integral Select-finite, the series is -Select

Answers

The integral of dx from 1 to infinity is finite. Therefore, the series is convergent.

The integral test states that if a series ∑(n=1 to infinity) an converges, then the corresponding integral ∫(1 to infinity) an dx also converges. In this case, the integral ∫(1 to infinity) dx is simply x evaluated from 1 to infinity, which is infinite. Since the integral is finite, the series must be convergent.

The integral test is a method used to determine whether an infinite series converges or diverges by comparing it to a corresponding improper integral. In this case, we are considering the series with terms given by an = 1/n.

The integral we need to evaluate is ∫(1 to infinity) dx. Integrating dx gives us x, and evaluating this integral from 1 to infinity, we get infinity.

According to the integral test, if the integral is finite (i.e., it converges), then the corresponding series also converges. Conversely, if the integral is infinite (i.e., it diverges), then the series also diverges. since the integral is infinite, we conclude that the series ∑(n=1 to infinity) 1/n diverges.

Learn more about convergent here:

https://brainly.com/question/29258536

#SPJ11

(2x^2-9x-35) divide (x-7) long division of polynomials. Include the steps

Answers

Answer:

2x + 5

Please see the photo below for the long division process.... Long division of polynomials is quite simple.... it works just like numbers.

Just make sure that you pay attention to the Signs.

Hope that helps :)

Please let me know if you have any doubts regarding my answer....

ACD is a triangle.
BCDE is a straight line.
E-
142°
D
Find the values of x, y and z.
y
X =
y =
Z=
271°
A
N
53° X
C
B

Answers

x, y, and z have the values 127°, 127°, and 53°, respectively.

The values of x, y, and z must be determined using the angle properties of triangle and lines.

Given:

A triangle is AC.

The line BCDE is straight.

Angle E has a 142° angle.

Angle A has a 53° angle.

To locate x:

Since angle D is opposite angle A in triangle ACD and angle A is specified as 53°, we may infer that both angles are 53°.

x = 180° - 53° = 127° as a result.

Since BCDE is a straight line, the sum of angles CDE and BCD equals 180°, allowing us to determined y.

Angle CDE is directly across from 53°-long angle A.

Y = 180° - 53° = 127° as a result.

The total of the angles of a triangle is always 180°, so use that to determine z.

Z = 180° - 127° = 53° as a result.

Learn more about triangle, from :

brainly.com/question/2773823

#SPJ1

Prove using PMI: 1.2.3
1

+ 2.3.4
1

+ 3.4.5
1

+...+ n(n+1)(n+2)
1

= 4(n+1)(n+2)
n(n+3)

Answers

Answer:

Using PMI (Principle of Mathematical Induction), we can prove that the equation 1.2.3/1 + 2.3.4/1 + 3.4.5/1 + ... + n(n+1)(n+2)/1 = 4(n+1)(n+2)/(n(n+3)) holds for all positive integers n.

Step-by-step explanation:

To prove the equation using PMI, we follow the steps of induction:

1.Base Case: We start by verifying the equation for the base case, which is usually n = 1. Plugging in n = 1, we have:

1(1+1)(1+2)/1 = 4(1+1)(1+2)/(1(1+3))

Simplifying both sides, we find that the equation holds true for n = 1.

2.Inductive Hypothesis: Assume that the equation holds true for some positive integer k, i.e.,

1.2.3/1 + 2.3.4/1 + 3.4.5/1 + ... + k(k+1)(k+2)/1 = 4(k+1)(k+2)/(k(k+3)).

3.Inductive Step: We need to show that the equation holds true for n = k+1.

By adding the next term (k+1)(k+2)(k+3)/1 to both sides of the equation for n = k, we get:

1.2.3/1 + 2.3.4/1 + 3.4.5/1 + ... + k(k+1)(k+2)/1 + (k+1)(k+2)(k+3)/1

= 4(k+1)(k+2)/(k(k+3)) + (k+1)(k+2)(k+3)/1

= (4(k+1)(k+2) + (k+1)(k+2)(k+3))/(k(k+3))

= (k+1)(k+2)(4 + k+3)/(k(k+3))

= 4(k+1)(k+2)/(k+3)(k).

By simplifying the expression, we have obtained the right-hand side of the equation for n = k+1, which shows that the equation holds true for n = k+1.

Since we have verified the base case and shown that if the equation holds for some positive integer k, it also holds for k+1, we can conclude that the equation holds for all positive integers n by the principle of mathematical induction.

To learn more about PMI

brainly.com/question/29048625

#SPJ11








At what points is the following function continuous? 2 x - 2x - 15 x75 f(x) = X-5 8, x= 5 The function is continuous on (Type your answer in i

Answers

The work f(x) = (2x - 2)/(x - 5) is continuous at all focuses but for x = 5. , the denominator of the work gets to be zero, which comes about in unclear esteem.

To decide where work is persistent, we ought to consider two primary variables:

the function's logarithmic frame and any particular focuses or interims shown.

The work given is f(x) = 2x -[tex]2x^2 - 15x^75.[/tex]

To begin with, let's analyze the logarithmic frame of the work. The terms within the work incorporate polynomials [tex]x, x^2, x^75[/tex]and these are known to be ceaseless for all values of x.

Another, we ought to look at the particular focuses or interims said. In this case, the work demonstrates a point of intrigue, which is x = 5.

To decide in the event that the work is persistent at x = 5, we ought to check on the off chance that the function's esteem approaches the same esteem from both the left and right sides of x = 5.

On the off chance that the function's esteem remains reliable as x approaches 5 from both bearings, at that point it is persistent at x = 5.

To assess this, we will substitute x = 5 into the work and see in case it yields limited esteem. Stopping in x = 5, we have:

f(5) = 2(5) - [tex]2(5^2) - 15(5^75)[/tex]

After assessing the expression, we'll decide in case it comes about in limited esteem or approaches interminability. Tragically, there seems to be a mistake within the given work as x[tex]^75[/tex] does not make sense. If we assume it was implied to be[tex]x^7[/tex], able to continue with the calculation.

f(5) = 2(5) - [tex]2(5^2) - 15(5^7)[/tex]

Disentangling encouragement, we get:

f(5) = 10 - 2(25) - 15(78125)

= 10 - 50 - 1,171,875

f(5) =  -1,171,915

Since the result could be limited esteem, we will conclude that the work is persistent at x = 5.

In outline, the work f(x) = [tex]2x - 2x^2 - 15x^7[/tex]is persistent for all values of x, and particularly, it is nonstop at x = 5. 

To know more about  continuous function refer to this :

https://brainly.com/question/18102431

#SPJ4

AB has an initial point A(8-4) and terminal point B(-2,-3). Use this information to complete #1 - 3. 1.) Sketch AB. (3 points) 2.) Write AB in component form. (4 points) 3.) Find ||AB|| (4 points) AB-"

Answers

The magnitude or length of AB, represented as ||AB||, is calculated using the distance formula resulting in √101.

To sketch AB, plot the initial point A(8, -4) and the terminal point B(-2, -3) on a coordinate plane. Then, draw a line segment connecting these two points. The line segment AB represents the vector AB.

To write AB in component form, subtract the x-coordinates of B from the x-coordinate of A and the y-coordinates of B from the y-coordinate of A. This gives us the vector (-2 - 8, -3 - (-4)), which simplifies to (-10, 1). Therefore, AB can be represented as the vector (-10, 1).

To find the magnitude or length of AB, we can use the distance formula. The distance formula calculates the distance between two points in a coordinate plane. Applying the distance formula to AB, we have √((-2 - 8)² + (-3 - (-4))²). Simplifying the equation inside the square root, we get √(100 + 1), which further simplifies to √101. Thus, the magnitude or length of AB, denoted as ||AB||, is √101.

Learn more about line segments here:

https://brainly.com/question/28001060

#SPJ11

E9
page 1169
32-34 Letr = xi + yj + z k and r = 1rl. 32. Verify each identity. (a) V.r= 3 (b) V. (rr) = 4r (c) 2,3 = 12r 33. Verify each identity. (a) Vr = r/r (b) V X r = 0 (c) 7(1/r) = -r/r? (d) In r = r/r? 34.

Answers

In order to verify the given identities, let's break down the components and apply the necessary operations. (a) V.r = 3. We are given: Let r = xi + yj + zk.

Let V = 1/r. Note: The notation "1/r" denotes the reciprocal of vector r.

To verify the identity V.r = 3, we'll substitute the values: V.r = (1/r) . (xi + yj + zk) = (xi + yj + zk) / (xi + yj + zk) = 1. The given identity V.r = 3 does not hold since the result is 1, not 3.

(b) V.(rr) = 4r.  We are given: Let r = xi + yj + zk

Let V = 1/r.  To verify the identity V.(rr) = 4r, we'll substitute the values:

V.(rr) = (1/r) . [(xi + yj + zk) . (xi + yj + zk)]

= (1/r) . [(x^2 + y^2 + z^2)i + (x^2 + y^2 + z^2)j + (x^2 + y^2 + z^2)k]

= [(x^2 + y^2 + z^2)/(x^2 + y^2 + z^2)] . (xi + yj + zk)

= 1 . (xi + yj + zk)

= xi + yj + zk

= r. The given identity V.(rr) = 4r does not hold since the result is r, not 4r.

(c) 2,3 = 12r. The given identity 2,3 = 12r does not make sense as it is not a well-formed equation. It seems to be an error or incomplete information. (a) Vr = r/r

We are given:

Let r = xi + yj + zk

Let V = 1/r. To verify the identity Vr = r/r, we'll substitute the values:

Vr = (1/r) . (xi + yj + zk)

= (xi + yj + zk) / (xi + yj + zk)

= 1. The given identity Vr = r/r holds true since the result is 1.

(b) V X r = 0. We are given: Let r = xi + yj + zk. Let V = 1/r

To verify the identity V X r = 0, we'll calculate the cross product and check if it is equal to zero: V X r = (1/r) X (xi + yj + zk)

= (1/r) X [(y - z) i + (z - x) j + (x - y) k]

= [(1/r) * (z - x)] i + [(1/r) * (x - y)] j + [(1/r) * (y - z)] k

The cross product V X r does not simplify to zero. Therefore, the given identity V X r = 0 does not hold.

(c) 7(1/r) = -r/r?  The given identity 7(1/r) = -r/r? does not make sense as it is not a well-formed equation. It seems to be an error or incomplete information. (d) In r = r/r? We are given: let r = xi + yj + zk

Let V = 1/r.  To verify the identity In r = r/r?, we'll substitute the values:

In r = (1/r) . (xi + yj + zk)

= (xi + yj + zk) / (xi + yj + zk)

= 1. The given identity In r = r/r? holds true since the result is 1.

To learn more about  identities  click here: brainly.com/question/29149336

#SPJ11








13. Let f(x) = x¹ - 4x³ + 10. a) Show that f(x) = 0 has a root between x = 1 and x = 2. b) Use Newton's Method to find the zero of f in the interval (1, 2), accurate to four decimal places.

Answers

a) To show that f(x) = 0 has a root between x = 1 and x = 2, we can evaluate f(1) and f(2) and check if their signs differ.

f(1) = (1¹) - 4(1³) + 10 = 1 - 4 + 10 = 7

f(2) = (2¹) - 4(2³) + 10 = 2 - 32 + 10 = -20

Since f(1) is positive and f(2) is negative, we can conclude that f(x) = 0 has a root between x = 1 and x = 2 by the Intermediate Value Theorem.

b) To find the zero of f(x) using Newton's Method, we start with an initial approximation x₀ in the interval (1, 2). Let's choose x₀ = 1.5.

Using the derivative of f(x), f'(x) = 1 - 12x², we can apply Newton's Method iteratively:

x₁ = x₀ - f(x₀) / f'(x₀)

x₁ = 1.5 - (1.5¹ - 4(1.5³) + 10) / (1 - 12(1.5²))

x₁ ≈ 1.3571

We repeat the process until we achieve the desired accuracy. Continuing the iterations:

x₂ ≈ 1.3571 - (1.3571¹ - 4(1.3571³) + 10) / (1 - 12(1.3571²))

x₂ ≈ 1.3581

Learn more about Newton's Method here: brainly.com/question/13929418

#SPJ11

1. Let f(x, y, z) = ryz + x+y+z+1. Find the gradient vf and divergence div(vf), and then calculate curl(vl) at point (1,1,1).

Answers

The gradient vf and divergence div(vf) ∇f = (1, rz + 1, ry + 1) and div(∇f) = rz + ry respectively. The curl(vl) at point (1,1,1) is (0, 0, 0).

To find the gradient of a function, we calculate the partial derivatives with respect to each variable. Let's start by finding the gradient of f(x, y, z) = ryz + x + y + z + 1:

∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)

∂f/∂x = 1

∂f/∂y = rz + 1

∂f/∂z = ry + 1

Therefore, the gradient of f(x, y, z) is:

∇f = (1, rz + 1, ry + 1)

Next, let's calculate the divergence of ∇f, denoted as div(∇f):

div(∇f) = ∂(∂f/∂x)/∂x + ∂(∂f/∂y)/∂y + ∂(∂f/∂z)/∂z

div(∇f) = ∂(1)/∂x + ∂(rz + 1)/∂y + ∂(ry + 1)/∂z

div(∇f) = 0 + ∂(rz)/∂y + ∂(ry)/∂z

div(∇f) = 0 + rz + ry

div(∇f) = rz + ry

Now, to calculate the curl of the vector field ∇f at the point (1, 1, 1):

curl(∇f) = (∂(∂f/∂z)/∂y - ∂(∂f/∂y)/∂z, ∂(∂f/∂x)/∂z - ∂(∂f/∂z)/∂x, ∂(∂f/∂y)/∂x - ∂(∂f/∂x)/∂y)

Substituting the partial derivatives we found earlier:

curl(∇f) = (∂(ry + 1)/∂y - ∂(rz + 1)/∂z, ∂(1)/∂z - ∂(ry + 1)/∂x, ∂(rz + 1)/∂x - ∂(1)/∂y)

curl(∇f) = (r - r, 0 - 0, 0 - 0)

curl(∇f) = (0, 0, 0)

Therefore, the curl of ∇f at the point (1, 1, 1) is (0, 0, 0).

To know more about gradient and divergence refer here-https://brainly.com/question/14039114#

#SPJ11

Find the limit (1) lim (h-1)' +1 h h0 Vx? -9 (2) lim *+-3 2x - 6

Answers

The limit becomes: lim 3^(2x - 6) = ∞

x→∞ The limit of the expression is infinity (∞) as x approaches infinity.

(1) To find the limit of the expression lim (h-1)' + 1 / h as h approaches 0, we can simplify the expression as follows:

lim (h-1)' + 1 / h

h→0

Using the derivative of a constant rule, the derivative of (h - 1) with respect to h is 1.

lim 1 + 1 / h

h→0

Now, we can take the limit as h approaches 0:

lim (1 + 1 / h)

h→0

As h approaches 0, 1/h approaches infinity (∞), and the limit becomes:

lim (1 + ∞)

h→0

Since we have an indeterminate form (1 + ∞), we can't determine the limit from this point. We would need additional information to evaluate the limit accurately.

(2) To find the limit of the expression lim (|-3|)^(2x - 6) as x approaches infinity, we can simplify the expression first:

lim (|-3|)^(2x - 6)

x→∞

The absolute value of -3 is 3, so we can rewrite the expression as:

lim 3^(2x - 6)

x→∞

To evaluate this limit, we need to consider the behavior of the exponential function with increasing values of x. Since the base is positive and greater than 1, the exponential function will increase without bound as x approaches infinity.

Learn more about The limit here:

https://brainly.com/question/31399277

#SPJ11

Consider the initial value problem for the function y, 3y +t y y(1) = 5, t> 1. t (a) Transform the differential equation above for y into a separable equation for u(t) You should get an equation u' f(

Answers

The initial value problem for the function y can be transformed into a separable equation for u(t) as u'(t) = -3u(t) + 2t + 1, where u(t) = y(t) + t. The initial condition u(1) = y(1) + 1 = 5 is also applicable.

To transform the initial value problem for the function y into a separable equation for u(t), we can introduce a new variable u(t) defined as u(t) = y(t) + t.

First, let's differentiate u(t) with respect to t:

u'(t) = y'(t) + 1.

Next, substitute y'(t) with the given differential equation:

u'(t) = -3y(t) - t + 1.

Now, replace y(t) in the equation with u(t) - t:

u'(t) = -3(u(t) - t) - t + 1.

Simplifying the equation further:

u'(t) = -3u(t) + 3t - t + 1,

u'(t) = -3u(t) + 2t + 1.

Thus, we have transformed the initial value problem for y into the separable equation u'(t) = -3u(t) + 2t + 1 for u(t).

To know more about initial value problem refer here:

https://brainly.com/question/30466257#

#SPJ11

chase and emily are buying stools for their patio. they are deciding between 3 33 heights (table height, bar height, and xl height) and 3 33 colors (brown, white, and black). they each created a display to represent the sample space of randomly picking a height and a color. whose display correctly represents the sample space?

Answers

Answer: 169

Step-by-step explanation:


please show work so that I can learn for my final.
thank you
2 / 2 80% + 2) Let P represent the amount of money in Sarah's bank account, 'years after the year 2000. Sarah started the account with $1200 deposited on 1/1/2000. On 1/1/2015, the account balance was

Answers

The required solutions are:

a. The principal amount, Po, on 1/1/2000 is $1200.

b. The average annual percentage growth, r, is approximately 0.0345 or 3.45%

c. Sarah's account balance to be on 1/1/2025 is $2277.19.

a) To find the principal amount, Po, on 1/1/2000, we can use the given information that Sarah started the account with $1200 deposited on that date.

Therefore, Po = $1200.

b) To find the average annual percentage growth, r, we can use the formula for compound interest:

[tex]P = Po * (1 + r)^n[/tex],

where P is the final balance, Po is the initial principal, r is the annual interest rate, and n is the number of years.

Given that Sarah's account balance on 1/1/2015 was $1881.97, we can set up the equation:

[tex]1881.97 = 1200 * (1 + r)^{2015 - 2000}.[/tex]

Simplifying:

[tex]1881.97 = 1200 * (1 + r)^{15}.[/tex]

Dividing both sides by $1200:

[tex](1 + r)^{15} = 1881.97 / 1200[/tex].

Taking the 15th root of both sides:

[tex]1 + r = (1881.97 / 1200)^{1/15}.[/tex]

Subtracting 1 from both sides:

[tex]r = (1881.97 / 1200)^{1/15} - 1.[/tex]

Using a calculator, we find:

r = 0.0345 (rounded to 4 decimal places).

Therefore, the average annual percentage growth, r, is approximately 0.0345 or 3.45% (rounded to 2 decimal places).

c) To find Sarah's expected account balance on 1/1/2025, we can use the compound interest formula:

[tex]P = Po * (1 + r)^n[/tex],

where P is the final balance, Po is the initial principal, r is the annual interest rate, and n is the number of years.

Given that the number of years from 1/1/2000 to 1/1/2025 is 25, we can substitute the values into the formula:

[tex]P = 1200 * (1 + 0.0345)^{25}[/tex].

Calculating this expression using a calculator:

P = $2277.19 (rounded to 2 decimal places).

Therefore, if the average percentage growth remains the same, we expect Sarah's account balance to be approximately $2277.19 on 1/1/2025.

Learn more about interest rates at:

https://brainly.com/question/25720319

#SPJ4

buy car at 320,000 and sell at 240,000 what is a loss ​

Answers

Answer: 80,000K

Step-by-step explanation: just subtract them

the polymorphism of derived classes is accomplished by the implementation of virtual member functions. (true or false)

Answers

The statement is true. Polymorphism of derived classes in object-oriented programming is achieved through the implementation of virtual member functions.

In object-oriented programming, polymorphism allows objects of different classes to be treated as objects of a common base class. This enables the use of a single interface to interact with different objects, providing flexibility and code reusability.

Virtual member functions play a crucial role in achieving polymorphism. When a base class declares a member function as virtual, it allows derived classes to override that function with their own implementation. This means that a derived class can provide a specialized implementation of the virtual function that is specific to its own requirements.

When a function is called on an object through a pointer or reference to the base class, the actual function executed is determined at runtime based on the type of the object. This is known as dynamic or late binding, and it enables polymorphic behavior. The virtual keyword ensures that the correct derived class implementation of the function is called, based on the type of the object being referred to.

Learn more about polymorphism here:

https://brainly.com/question/29241000

#SPJ11

engineering math
line integral
Evaluate S (2x – y +z)dx + ydy + 3 where C is the line segment from (1,3,4) to (5,2,0).

Answers

The line integral of F over the line segment C is 16.5.

To evaluate the line integral of the vector field F = (2x - y + z)dx + ydy + 3 over the line segment C from (1, 3, 4) to (5, 2, 0), we can parametrize the line segment and then perform the integration.

Let's parameterize the line segment C:

r(t) = (1, 3, 4) + t((5, 2, 0) - (1, 3, 4))

= (1, 3, 4) + t(4, -1, -4)

= (1 + 4t, 3 - t, 4 - 4t)

Now we can express the line integral as a single-variable integral with respect to t:

∫C F · dr = ∫[a,b] F(r(t)) · r'(t) dt

First, let's calculate the derivatives:

r'(t) = (4, -1, -4)

F(r(t)) = (2(1 + 4t) - (3 - t) + (4 - 4t), 3 - t, 3)

Now we can evaluate the line integral:

∫C F · dr = ∫[0, 1] F(r(t)) · r'(t) dt

= ∫[0, 1] ((2(1 + 4t) - (3 - t) + (4 - 4t))dt + (3 - t)dt + 3dt

= ∫[0, 1] (5t + 7)dt + ∫[0, 1] (3 - t)dt + ∫[0, 1] 3dt

= [(5/2)t^2 + 7t]│[0, 1] + [(3t - t^2/2)]│[0, 1] + [3t]│[0, 1]

= (5/2(1)^2 + 7(1)) - (5/2(0)^2 + 7(0)) + (3(1) - (1)^2/2) - (3(0) - (0)^2/2) + (3(1) - 3(0))

= (5/2 + 7) - (0 + 0) + (3 - 1/2) - (0 - 0) + (3 - 0)

= (5/2 + 7) + (3 - 1/2) + (3)

= (5/2 + 14/2) + (6/2 - 1/2) + (3)

= 19/2 + 5/2 + 3

= 27/2 + 3

= 27/2 + 6/2

= 33/2

= 16.5

Therefore, the line integral of F over the line segment C is 16.5.

To learn more about integral visit :

brainly.com/question/18125359

#SPJ11








Ex 4. Find the derivative of the function f(x) = lim x2 - 8x +9. Then find an equation of the tangent line at the point (3.-6) X-

Answers

The answer explains how to find the derivative of a function using the limit definition and then determine the equation of the tangent line at a specific point. It involves finding the derivative using the limit definition and using the derivative to find the slope of the tangent line.

To find the derivative of the function f(x) = lim (x^2 - 8x + 9), we need to apply the limit definition of the derivative. The derivative represents the rate of change of a function at a given point.

Using the limit definition, we can compute the derivative as follows:

f'(x) = lim (h→0) [f(x+h) - f(x)] / h,

where h is a small change in x.

After evaluating the limit, we can find f'(x) by simplifying the expression and substituting the value of x. This will give us the derivative function.

Next, to find the equation of the tangent line at the point (3, -6), we can use the derivative f'(x) that we obtained. The equation of a tangent line is of the form y = mx + b, where m represents the slope of the line.

At the point (3, -6), substitute x = 3 into f'(x) to find the slope of the tangent line. Then, use the slope and the given point (3, -6) to determine the value of b. This will give you the equation of the tangent line at that point.

By substituting the values of the slope and b into the equation y = mx + b, you will have the equation of the tangent line at the point (3, -6).

Learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11








Find a parametrization of the line through (-5, 1) and (-1,8) Your answer must be in the form (a+bºt.c+d*t].

Answers

The parametrization of the line passing through the points (-5, 1) and (-1, 8) is given by the equation (x, y) = (-5 + 4t, 1 + 7t), where t is a parameter.

To find the parametrization of the line, we can use the two-point form of a line equation. Let's denote the two given points as P₁(-5, 1) and P₂(-1, 8). We can write the equation of the line passing through these points as:

(x - x₁) / (x₂ - x₁) = (y - y₁) / (y₂ - y₁)

Substituting the coordinates of the points, we have:

(x + 5) / (-1 + 5) = (y - 1) / (8 - 1)

Simplifying the equation, we get:

(x + 5) / 4 = (y - 1) / 7

Cross-multiplying, we have:

7(x + 5) = 4(y - 1)

Expanding the equation:

7x + 35 = 4y - 4

Rearranging terms:

7x - 4y = -39

Now we can express x and y in terms of a parameter t by solving the above equation for x and y:

x = (-39/7) + (4/7)t

y = (39/4) - (7/4)t

Hence, the parametrization of the line passing through the points (-5, 1) and (-1, 8) is given by (x, y) = (-5 + 4t, 1 + 7t), where t is a parameter.

Learn more about parametrization o a line:

https://brainly.com/question/14666291

#SPJ11

P(x)=1/5x-2x^2-5x^4-4
Into standard form
Show all work
Answer should be -5x^4-2x^2+1/5x-4
URGENT

Answers

The value of P(x)=1/5x-2x^2-5x^4-4 in standard form is −5x4−2x2+1/5 ​x−4.


We are given that;

P(x)=1/5x-2x^2-5x^4-4

Now,

Standard form for a polynomial is to write the terms in descending order of degree, from highest to lowest. The degree of a term is the exponent of the variable in that term. For example, the degree of -5x^4 is 4, the degree of 1/5x is 1, and the degree of -4 is 0.

To put P(x) into standard form, we just need to rearrange the terms according to their degrees. The highest degree term is -5x^4, followed by -2x^2, then 1/5x, and finally -4. So we write;

P(x)=−5x4−2x2+1/5 ​x−4

This is the standard form of P(x).

Therefore, by the quadratic equation the answer will be −5x4−2x2+1/5 ​x−4.

Learn more about quadratic equations;

https://brainly.com/question/17177510

#SPJ1

(3 points) find the tangent plane of the level surface y 2 − x 2 = 3 at the point (1, 2, 8).

Answers

The equation of the tangent plane to the level surface y^2 - x^2 = 3 at the point (1, 2, 8) is z = 13 - 6x - 4y.

To find the tangent plane to the level surface, we need to determine the normal vector to the surface at the given point and use it to write the equation of the plane.

First, we find the gradient of the level surface equation. Taking partial derivatives with respect to x and y, we have -2x and 2y, respectively. The normal vector is then N = (-2x, 2y, 1).

Substituting the coordinates of the given point (1, 2, 8) into the normal vector, we obtain N = (-2, 4, 1).

Using the point-normal form of a plane equation, we have the equation of the tangent plane as follows:

-2(x - 1) + 4(y - 2) + 1(z - 8) = 0

Simplifying the equation, we get -2x + 4y + z = 13.

Finally, rearranging the equation, we obtain the tangent plane equation in the form z = 13 - 6x - 4y.

Therefore, the equation of the tangent plane to the level surface y^2 - x^2 = 3 at the point (1, 2, 8) is z = 13 - 6x - 4y.

Learn more about tangent plane here:

https://brainly.com/question/30565764

#SPJ11

find the solution of the differential equation that satisfies the given initial condition. dp dt = 2 pt , p(1) = 5

Answers

The solution to the given initial value problem, dp/dt = 2pt, p(1) = 5, is p(t) = 5e^(t^2-1).

To solve the differential equation, we begin by separating the variables. We rewrite the equation as dp/p = 2t dt. Integrating both sides gives us ln|p| = t^2 + C, where C is the constant of integration.

Next, we apply the initial condition p(1) = 5 to find the value of C. Substituting t = 1 and p = 5 into the equation ln|p| = t^2 + C, we get ln|5| = 1^2 + C, which simplifies to ln|5| = 1 + C.

Solving for C, we have C = ln|5| - 1.

Substituting this value of C back into the equation ln|p| = t^2 + C, we obtain ln|p| = t^2 + ln|5| - 1.

Finally, exponentiating both sides gives us |p| = e^(t^2 + ln|5| - 1), which simplifies to p(t) = ± e^(t^2 + ln|5| - 1).

Since p(1) = 5, we take the positive sign in the solution. Therefore, the solution to the differential equation with the initial condition is p(t) = 5e^(t^2 + ln|5| - 1), or simplified as p(t) = 5e^(t^2-1).

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

Write out the first 5 terms of the power series Σ. X n=0 (3)" n! an+3

Answers

The first 5 terms of the power series Σ(X^n=0)(3)^(n!)(an+3) are:

[tex]1 + 3(a4) + 3^2(a5) + 3^6(a6) + 3^24(a7)[/tex]

To calculate the first 5 terms of the power series, we can substitute the values of n from 0 to 4 into the given expression.

For [tex]n = 0: X^0 = 1[/tex], so the first term is 1.

For [tex]n = 1: X^1 = X[/tex], and (n!) = 1, so the second term is 3(a4).

For [tex]n = 2: X^2 = X^2[/tex], and (n!) = 2, so the third term is [tex]3^2(a5)[/tex].

For [tex]n = 3: X^3 = X^3[/tex], and (n!) = 6, so the fourth term is [tex]3^6(a6)[/tex].

For [tex]n = 4: X^4 = X^4[/tex], and (n!) = 24, so the fifth term is [tex]3^24(a7)[/tex].

Therefore, the first 5 terms of the power series are [tex]1, 3(a4), 3^2(a5), 3^6(a6), and 3^24(a7)[/tex].

Learn more about power series here:

https://brainly.com/question/32614100

#SPJ11

3. Evaluate the flux F ascross the positively oriented (outward) surface S /Fds, where F =< 3+1,73 +2, 23 +3 > and S is the boundary of x2 + y2 + x2 = 4,2 > 0.

Answers

To evaluate the flux of the vector field F across the surface S, we can use the divergence theorem, which states that the flux of a vector field across a closed surface is equal to the triple integral of the divergence of the vector field over the volume enclosed by the surface.

First, let's determine the divergence of the vector field F:

∇ · F = ∂/∂x (3x + 1) + ∂/∂y (7y + 2) + ∂/∂z (3z + 3)

= 3 + 7 + 3

= 13

Next, we need to find the volume enclosed by the surface S. The equation of the surface S is given by x^2 + y^2 + z^2 = 4, z > 0, which represents the upper hemisphere of a sphere with a radius of 2 units.

To find the volume enclosed by the surface S, we integrate the divergence over this volume using spherical coordinates:

∫∫∫ V (∇ · F) dV = ∫∫∫ V 13 r^2 sin(ϕ) dr dϕ dθ

The limits of integration are:

0 ≤ r ≤ 2 (radius of the sphere)

0 ≤ ϕ ≤ π/2 (upper hemisphere)

0 ≤ θ ≤ 2π (full rotation around the z-axis)

Evaluating this triple integral will give us the flux of the vector field F across the surface S.

Note: Since the calculation of the triple integral can be quite involved, it's recommended to use numerical methods or software to obtain the precise value of the flux.

To know more about calculating flux refer here-https://brainly.com/question/32071603#

#SPJ11

The angle between A=(25 m)i +(45 m)j and the positive x axis is: 29degree 61degree 151degree 209degree 241degree

Answers

The angle between vector A=(25 m)i +(45 m)j and the positive x-axis is approximately 61 degrees.To determine the angle between vector A and the positive x-axis, we can use trigonometry.

The vector A can be represented as (25, 45) in Cartesian coordinates, where the x-component is 25 and the y-component is 45. The angle between vector A and the positive x-axis can be found by taking the arctangent of the y-component divided by the x-component:

angle = arctan(45/25)

         ≈ 61 degrees.

Therefore, the angle between vector A and the positive x-axis is approximately 61 degrees.

Learn more about arctangent here: https://brainly.com/question/29198131

#SPJ11

11. Evaluate the surface integral SSF-də (i.e. find the flux of F across S) for the vector field F(x,y,z)=(yz,0,x) and the positively oriented surface S with the vector equation F(u,v)=(u-v,u?, v), w

Answers

∬S F · dS = (2/3 b^3 yz b - 2/3 a^3 yz a) * (d - c). It is the result for the surface integral of F across S.

To evaluate the surface integral of the vector field F(x, y, z) = (yz, 0, x) across the surface S, we first need to parameterize the surface S with respect to its parameters u and v.

Let's assume the surface S has a parameterization given by r(u, v) = (u - v, u^2, v), where u? represents the partial derivative of u with respect to v. In this case, w can be any constant.

To find the normal vector of the surface S, we take the cross product of the partial derivatives of r(u, v) with respect to u and v, respectively:

N = (∂r/∂u) × (∂r/∂v)

= (1, 2u, 0) × (0, 0, 1)

= (2u, 0, 0)

Now, we calculate the dot product of the vector field F(x, y, z) with the normal vector N:

F · N = (yz, 0, x) · (2u, 0, 0)

= 2uyz

The surface integral of F across S can be evaluated as follows:

∬S F · dS = ∬D F(r(u, v)) · (N/|N|) |N| dA

Where D represents the domain of the parameters u and v that corresponds to the surface S, and dA is the area element in the parameter space.

Since the vector field F · N = 2uyz, we can simplify the surface integral:

∬S F · dS = ∬D 2uyz |N| dA

To calculate |N|, we take the norm of the normal vector N:

|N| = |(2u, 0, 0)|

= 2|u|

Now, let's find the limits of integration for the parameters u and v:

Since we don't have specific information about the domain D, we assume reasonable bounds for u and v. Let's say u ranges from a to b, and v ranges from c to d.

We can then rewrite the surface integral as follows:

∬S F · dS = ∫∫D 2uyz |N| dA

= ∫c to d ∫a to b 2uyz |u| dudv

Now, we integrate with respect to u first:

∬S F · dS = ∫c to d [ ∫a to b 2u^2yz |u| du ] dv

After integrating with respect to u, we integrate with respect to v:

∬S F · dS = ∫c to d [ 2/3 u^3 yz |u| ] evaluated from a to b dv

= ∫c to d [ (2/3 b^3 yz b) - (2/3 a^3 yz a) ] dv

Finally, we integrate with respect to v:

∬S F · dS = (2/3 b^3 yz b - 2/3 a^3 yz a) * (d - c)

This is the final result for the surface integral of F across S, given the vector field F(x, y, z) = (yz, 0, x) and the surface S parameterized by r(u, v) = (u - v, u^2, v).

To know more about surface integrals, visit the link : https://brainly.com/question/32669152

#SPJ11

please solve Q4
Question 4. Find the derivative of f(x) = 2x e3x Question 5. Find f(x)

Answers

1. The derivative of f(x) = 2x e^(3x) is f'(x) = 2e^(3x) + 6x e^(3x).

2. The antiderivative of f(x) = 2x e^(3x) can be found by integrating term by term, resulting in F(x) = (2/3) e^(3x) (3x - 1) + C.

To find the derivative of f(x) = 2x e^(3x), we use the product rule. The product rule states that if we have two functions, u(x) and v(x), the derivative of their product is given by (u(x)v'(x) + v(x)u'(x)). In this case, u(x) = 2x and v(x) = e^(3x). We differentiate each term and apply the product rule to obtain f'(x) = 2e^(3x) + 6x e^(3x). To find the antiderivative of f(x) = 2x e^(3x), we need to reverse the process of differentiation. We integrate term by term, considering the power rule and the constant multiple rule of integration. The antiderivative of 2x with respect to x is x^2, and the antiderivative of e^(3x) is (1/3) e^(3x). By combining these terms, we obtain F(x) = (2/3) e^(3x) (3x - 1) + C, where C is the constant of integration. The derivative of f(x) = 2x e^(3x) is f'(x) = 2e^(3x) + 6x e^(3x), and the antiderivative of f(x) = 2x e^(3x) is F(x) = (2/3) e^(3x) (3x - 1) + C.

Learn more about antiderivative here:

https://brainly.com/question/31966404

#SPJ11

The following data represent the number of hours of sleep 16 students in a class got the previous evening: 3.5, 8, 9, 5, 4, 10, 6,5,6,7,7,8, 6, 6.5, 7.7.5, 8.5 Find two simple random samples of size n = 4 students. Compute the sample mean number of hours of sleep for each random sample.

Answers

The sample mean number of hours of sleep for the first random sample is 6.625 hours, and for the second random sample, it is 7.875 hours.

To find two simple random samples of size n = 4 students from the given data on hours of sleep, follow these steps:

1. List the data:
3.5, 8, 9, 5, 4, 10, 6, 5, 6, 7, 7, 8, 6, 6.5, 7.7, 7.5, 8.5

2. Use a random number generator or another method to randomly select 4 students from the dataset. Repeat this process for the second sample.

Sample 1 (randomly selected): 9, 4, 6, 7.5
Sample 2 (randomly selected): 8, 10, 6.5, 7

3. Compute the sample mean number of hours of sleep for each random sample.

Sample 1:
Mean = (9 + 4 + 6 + 7.5) / 4 = 26.5 / 4 = 6.625 hours

Sample 2:
Mean = (8 + 10 + 6.5 + 7) / 4 = 31.5 / 4 = 7.875 hours

So, the sample mean number of hours of sleep for the first random sample is 6.625 hours, and for the second random sample, it is 7.875 hours.

Know more about the sample mean here:

https://brainly.com/question/29368683

#SPJ11

Analytically determine a) the extrema of f(x) = 5x3 b) the intervals on which the function is increasing or decreasing c) intervals where the graph is concave up & concave down 6. Use the Second Derivative Test to find the local extrema for f(x) = -2x³ + 9x² + 12x 7. Find: a) all points of inflection of the function f(x)=√x + 2 b) intervals on which f is concave up and concave down.

Answers

The function is concave up on (0, ∞) and concave down on (-∞, 0). The function f(x) = -2x ³ + 9x²  + 12x has local extrema at x = -1 and x = 6. The points of inflection for f(x) = √x + 2 occur at x = 0. The function is concave up on (0, ∞) and has no intervals of concavity for x < 0.

What are the extrema, intervals of increasing/decreasing, concave up intervals, concave down intervals and concavity intervals for the given functions?

a) To find the extrema of f(x) = 5x ³, we take the derivative f'(x) = 15x²  and set it equal to zero. This gives us x = 0 as the only critical point, which means there are no extrema for the function.

b) To determine the intervals of increasing and decreasing for f(x) = 5x ³, we analyze the sign of the derivative. Since f'(x) = 15x² is positive for x > 0 and negative for x < 0, the function is increasing on (0, ∞) and decreasing on (-∞, 0).

c) To identify the intervals of concavity for f(x) = 5x ³, we take the second derivative f''(x) = 30x and analyze its sign. Since f''(x) = 30x is positive for x > 0 and negative for x < 0, the function is concave up on (0, ∞) and concave down on (-∞, 0).

7) a) To find the points of inflection for f(x) = √x + 2, we take the second derivative f''(x) = 1/(4√x ³) and set it equal to zero. This gives us x = 0 as the only point of inflection.

b) To determine the intervals of concavity for f(x) = √x + 2, we analyze the sign of the second derivative. Since f''(x) = 1/(4√x ³) is positive for x > 0 and undefined for x = 0, the function is concave up on (0, ∞) and has no intervals of concavity for x < 0.

Learn more about inflection

brainly.com/question/1289846

#SPJ11

Other Questions
Let G be a group, and let X be a G-set. Show that if the G-action is transitive (i.e., for any x, y X, there is g G such that gx = y), and if it is free (i.e., gx = for some g E G, x E X implies g = e), then there is a (set-theoretic)bijection between G and X. Which of the following is a method you can apply when reaching out to a friend whose mental well-being you're concerned about?a. Encouraging them to keep their struggles to themselvesb. Ignoring their behavior and hoping it goes awayc. Asking if they want to talk and expressing your concernd. Telling them they need to see a therapist if this computer could reach the internet but could not resolve names on the internet, assuming that these settings are correct, which computer would you check to make sure it's running? 3) (45 pts) In this problem, you'll explore the same question from several different approaches to confirm that they all are consistent with each other. Consider the infinite series: 1 1 1 1 1.2 3.23 5.25 7.27 a) (3 points) Write the given numerical series using summation/sigma notation, starting with k=0. +... b) (5 points) Identify the power series and the value x=a at which it was evaluated to obtain the given (numerical) series. Write the power series in summation/sigma notation, in terms of x. Recall: a power series has x in the numerator! c) (5 points) Find the radius and interval of convergence for the power series in part b). what are the intervals of time between the transmissions of the beacon framesthelinksys ses 24086 access point? from the 30 munroe st. access point? (hint: this interval of timeiscontained in the beacon frame itself). An 80-ounce bottle of apple juice contains 32 ounces of water. a meniscus functions to cushion articulating surfaces of bones. T/F? The maximum voltage that is permitted between conductors when using plug fuses is 125 volts. Plug fuses are used in circuits having grounded neutral and no conductor operates at over 150 volts to ground. Urgent please help Domain55A.B.C.P is not given and are unknown2. Find a formula for the distance from P to B. Your formula will be in terms of both z and y. 3. Find a formula for L(x, y), the total length of the connector joining P to A, B, and C. 4. We want to Which of the following sets are bases of R??1. S, = {(1,0, 0), (1, 1, 0), (1, 1, 1)}.2. S, = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)).3. S; = { (1, 1, 0), (0, 1, 1)).4. S4 = {(1, 1, 0), (0, 1, 1), (1, 0, -1)}. which of the following statements about leaders and managers are true? a. all of these statements about leaders and managers are true b. managers are critical to inspiring employees c. organizations need both leaders and managers d. leaders are critical to getting the day-to-day work done I am so lost please help Which of the following hormones directly stimulates sperm production?a. LHb. androgenc. FSHd. none of the above Prove the remaining part of theorem 4.2.4: if f:A->B with Rng(f)=C, and if f^-1is a function, then ff^-1=I[C]. In reality, there is uncertainty about how costly abatement of environmental damage will be. Assume a consultancy gives you estimates that are now more cost effective than the ones we started off w Funds that are for identified risks that have a low probability of occurring and that decrease as the project progresses are called ______ reserves.A) ManagementB) BudgetC) ContingencyD) PaddedE) Just in case practice: in the spaces below, write the electron configurations for the next four elements: nitrogen, oxygen, fluorine, and neon. when you are finished, use the gizmo to check your work. correct any improper configurations.questionanswerpossibleearneda.nitrogen1b.oxygen1c.fluorine1d.neon1 one of the key elemtns in the political landscape of kacksonian america was the upsurge of universal white male suffrage, what force p is required to hold the 100 lb weight in static equilibrium? I flip a fair coin twice and count the number of heads. let h represent getting a head and t represent getting a tail. the sample space of this probability model is:A. S = (HH, HT, TH, TT).B. S = (1,2)C. S = {0, 1,2).D. S = [HH. HT, TT). Steam Workshop Downloader