Given:
The length of the rectangular garden, l=50 feet.
The breadth of the rectangular garden, b=35 feet.
The width of the path around the garden, w=3 feet.
The figure can be drawn as,
So, the length of the fence, L=l+2w.
The breadth of the fence, B=b+2w
The perimeter of the fence can be calculated as,
[tex]\begin{gathered} P=2(L+B) \\ =2(l+2w+b+2w) \\ =2(l+b+4w) \\ =2(50+35+4\times3) \\ =2(50+35+12) \\ =2\times97 \\ =194\text{ ft} \end{gathered}[/tex]Therefore, the perimeter of the fence is 194 ft.
Option B is correct.
In a class of 10 boys and 12 girls, a committee of 4 members is to be formed. What is the probability to form a committee consisting of 2 boys and 2 girls?A. 0.3040B. 0.4060C. 0.5060D. 0.2060
Given:
Number of boys=10
Number of girls=12
Out of 22 members, 4 members is need to be selected.
To find probability to form a committee consisting of 2 boys and 2 girls:
So, we get
[tex]\begin{gathered} \frac{^{10}C_2\times^{12}C_2}{^{22}C_4}=\frac{\frac{10\times9}{2\times1}\times\frac{12\times11}{2\times1}}{\frac{22\times21\times20\times19}{4\times3\times2\times1}} \\ =\frac{5\times9\times6\times11}{11\times7\times5\times19} \\ =\frac{9\times6}{7\times19} \\ =\frac{54}{133} \\ =0.4060 \end{gathered}[/tex]Hence, the correct option is B.
Match each piece of the function with its domain.(6, oo)(-00, 1)(1,00)(-oo, -2)(-00, 6)(-2, 6)(3,00)(1, 4)
Explanation
The question wants us to select all the domains in the set of functions graphed.
The domain of a function is the set of all possible inputs for the function.
To do so, we have to be aware that there are 3 pieces of functions
These are shown below
These are
[tex]\begin{gathered} (-\infty,-2) \\ \\ (-2,6) \\ \\ (6,\infty) \end{gathered}[/tex]
A cone has a base radius of length r, and an perpendicular height length h. If the height remains the same, and the radius is multiplied by 3, then the volume is multiplied by:A. 27B. 2C. 9D. 4/3
ANSWER
C. 9
EXPLANATION
The volume of a cone is:
[tex]undefined[/tex]What is the solution to the following system of equations. Enter your answer as an ordered pair.3x+2y=17and4x+6y=26As an ordered pairHelp me pls
The system of equation are:
[tex]\begin{gathered} 3x+2y=17 \\ 4x+6y=26 \end{gathered}[/tex]to solve this problem we can solve the second equation for x so:
[tex]\begin{gathered} 4x=26-6y \\ x=6.5-1.5y \end{gathered}[/tex]Now we can replace x in the firt equation so:
[tex]3(6.5-1.5y)+2y=17[/tex]and we can solve for y so:
[tex]\begin{gathered} 19.5-4.5y+2y=17 \\ 19.5-17=2.5y \\ 2.5=2.5y \\ \frac{2.5}{2.5}=1=y \end{gathered}[/tex]Now we replace the value of y in the secon equation so:
[tex]\begin{gathered} x=6.5-1.5(1) \\ x=5 \end{gathered}[/tex]So the solution as a ordered pair is:
[tex](x,y)\to(5,1)[/tex]If the coordinates of a are (3,4) and the coordinates of b are (-3,3) then the length of an is
The length of the line segment from a to b is 6.08 units or [tex]\sqrt{37}[/tex] units.
What is the length of a line segment and what is the role of coordinates?The length is described as the distance between the two points in a line. The coordinate usually refers to the dimensions of the point with respect to the two dimension graph.
Relation between the coordinates and length: [tex]\sqrt{(x_{1} -x_{2}) ^{2} +(y_{1} -y_{2} )^{2} }[/tex]
Now let point a be ([tex]x_{1},y_{1}[/tex]) and point b be ([tex]x_{2},y_{2}[/tex])
Thus putting values,
length = [tex]\sqrt{(3-(-3))^{2}+(4-3)^{2} }[/tex]
length = [tex]\sqrt{36+1}[/tex]
length = [tex]\sqrt{37}[/tex]
Hence the length of ab is [tex]\sqrt{37}[/tex] or 6.08 units.
To know more about coordinates, visit:
https://brainly.com/question/27749090
#SPJ13
Add or subtract the fractions. Write the answer in simplified form.-2/13+(-1/13)
1) To add or subtract fractions, let's firstly check the denominators
In this case, the denominator is the same.
The plus before the bracket does not change the sign.
[tex]\begin{gathered} -\frac{2}{13}+(-\frac{1}{13}) \\ \frac{-2-1}{13} \\ \\ \frac{-3}{13} \end{gathered}[/tex]That is why we get to -3/13 as a result.
Fill in the blank with a number to make the expression of perfect square.x^2-18x t
Answer:
[tex]81[/tex]Explanation:
Here, we want to write a figure that would make the given expression a perfect square
As a perfect square, we mean that:
[tex]ax^2+bx+c=(x+d)(x+d)=(x+d)^2[/tex]In this case, what we have to do is to divide the coefficient of x by 2, square it and write it
The coefficient of x is the number before x (we must consider its sign however)
Thus, we have the coefficient in this case as -18
Dividing this by 2 and squaring, we have:
[tex]\frac{-18}{2}=(-9)^2\text{ = 81}[/tex]Thus, we have:
[tex]x^2-18x+81=(x-9)(x-9)=(x-9)^2[/tex]
may ou solve the system of linear equations by substitution
y= 11 + 4x
3x +2y = 0
Put the first equation into the second one. (replace the value of y)
3x +2 (11 + 4x) = 0
Solve for x:
3x + 22 + 8x = 0
3x+8x = -22
11x = -22
x = -22/11
x = -2
Replace x=-2 in the first equation and solve for y
y= 11 + 4 (-2)
y= 11-8
y= 3
Solution:
x= -2 , y=3
RATIONAL FUNCTIONSSynthetic divisiontable buand write your answer in the following form: Quotient *
The given polynomial is:
[tex]\frac{2x^4+4x^3-6x^2+3x+8}{x\text{ + 3}}[/tex]Using the long division method:
The equattion can be written in the form:
Quotient + Remainder / Divisor
[tex](2x^3-2x^2\text{ + 3) +}\frac{-1}{x+3}[/tex]What is The volume of a cylinder 7 in height and 3 radius and a cone of 7 height and 3 radius together? So what is The volume of both together?
In this case r =3, h= 7
[tex]\Rightarrow V_{cy}=\pi\times3^2\times7=63\pi=197.92unit^3[/tex][tex]\begin{gathered} \text{The Volume V}_{co\text{ }}of\text{ a cone with base radius r and height h is given by:} \\ V_{co}=\frac{1}{3}\times\pi\times r^2\times h \end{gathered}[/tex]In this case,
r=3, h=7
[tex]V_{co}=\frac{1}{3}\times\pi\times(3)^2\times7=21\pi=65.97unit^3[/tex][tex]\begin{gathered} \text{Therefore} \\ V_{cy}+V_{co}=63\pi+21\pi=84\pi=263.89unit^3 \end{gathered}[/tex]Hence
volume of cone + volume of cylinder = 263.89 cube units
Maggie has $30 in an account. The interest rate is 10% compounded annually.To the nearest cent, how much will she have in 1 year?Use the formula B=p(1+r)t, where B is the balance (final amount), p is the principal (starting amount), r is the interest rate expressed as a decimal, and t is the time in years.
Solution:
Using the formula;
[tex]\begin{gathered} B=p(1+r)^t \\ \\ \text{ Where }B=balance,p=principal,r=rate,t=time \end{gathered}[/tex][tex]p=30,r=10\text{ \%}=0.1,t=1[/tex]Thus;
[tex]\begin{gathered} B=30(1+0.1)^1 \\ \\ B=33 \end{gathered}[/tex]ANSWER: $33
In ACDE, m/C= (5x+18), m/D= (3x+2), and m/B= (2+16)°.
Angle (D) = m(D) = 50°, CDE provides the following: 3. angles
m=C=(5x+18), m=D=(3x+2), and m=E=(x+16)°.The total of the angles in a triangle is 180°What are angles?An angle is a figure in Euclidean geometry made up of two rays that share a common terminal and are referred to as the angle's sides and vertices, respectively. Angles created by two rays are in the plane where the rays are located. The meeting of two planes also creates angles. We refer to these as dihedral angles.CDE provides the following: 3. angles
m<C=(5x+18),m<D=(3x+2), andm<E=(x+16)degree.The total of the angles in a triangle is 180 degrees, so:
"mC + mD + mE = 180°"(5x+18)° + (3x+2)° + (x+16)° = 180°5x + 18 + 3x + 2 + x + 16 = 180°5x + 3x + x + 18 + 2 + 16 = 180°9x +36= 180°From both sides, deduct 36 as follows:
9x + 36 - 36 = 180° - 36°9x = 144°x = 144°/9x = 16From the aforementioned query, we are requested to determine:
angular D (m<D)Hence:
m∠D=(3x+2)°m∠D=( 3 × 16 + 2)°m∠D=(48 + 2)°m∠D= 50°Therefore, angle (D) = m(D) = 50°, CDE provides the following: 3. angles
m=C=(5x+18), m=D=(3x+2), and m=E=(x+16)°.The total of the angles in a triangle is 180°To learn more about angles, refer to:
brainly.com/question/25716982
#SPJ13
Linda's mean speed on her drive home from Cincinnati is 54 mph. If the total trip is 378 miles, how long should she expect the drive to take? Round your answer totwo decimal places, if necessary,
We have that Linda's mean speed is 54 miles per hour. Since the total trip is 378 miles, we have the following rule of three:
[tex]\begin{gathered} 54\text{miles}\rightarrow1h \\ 378\text{miles}\rightarrow x \end{gathered}[/tex]therefore, we have:
[tex]\begin{gathered} x=\frac{378\cdot1}{54}=7 \\ x=7 \end{gathered}[/tex]Finally, we have that Linda should expect to drive 7 hours.
Thompson and Thompson is a steel bolts manufacturing company. Their current steel bolts have a mean diameter of 149 millimeters, and a standard deviation of 8 millimeters.
If a random sample of 50 steel bolts is selected, what is the probability that the sample mean would differ from the population mean by more than 3.3 millimeters? Round your answer to four decimal places.
The probability that the sample mean will differ from the population mean by more than 1.8 mm = 0.9949
Given,
In the question:
According to the given problem the mean diameter μ= 149 mm (population mean) and the standard deviation is σ = 8mm
random sample size, n= 50 steel bolts is selected
Let the random variable that represents the diameter of steel bolts be denoted by x and from the problem we have x = 3.3mm
Let z = (x-μ) / (σ/√n ) ....(1)
using formula (1) and when the sample mean differs from the population mean by more than 1.8mm
z = (3.3 - 149) /(8/√50 )
⇒z = -2.575
The probability that the sample mean will differ from the population mean by more than 1.8 mm
P( z > -2575) = 1 - P(z< -2.575) = 1 - 0.0051 = 0.9949
Hence, The probability that the sample mean will differ from the population mean by more than 1.8 mm = 0.9949.
Learn more about Probability at:
https://brainly.com/question/11234923
#SPJ1
Which inequality is represented by the graph?
Answer:
A. x > -1
Step-by-step explanation:
x > -1
-------------->
<----0------------->
-1
x < -1
<-------
<------0------------>
-1
x ≥ -1
---------->
<---------|---------->
-1
x ≤ -1
<----------
<---------|---------->
-1
< and > represent an open circle
≤ and ≥ represent a closed circle
I hope this helps!
The frequency distribution of blood groups of a sample of patients was found to be as follows:A 14B 6AB 3O 17The relative frequency of AB in this data is:Group of answer choices7.5%30.033%
we have that
the number of patients is (14+6+3+17)=40
patients AB=3
so
40 -----> 100%
applying proportion
100/40=x/3
x=3*100/40
x=7.5%The figure is not drawn to scale. Find the unknown angle.
ThereforeGiven the image, we can find the missing angle using the sum of angles at a point rule.
The sum of angles at a point is known to be 360 degrees.
Therfore,
[tex]\begin{gathered} a^0+315^0=360^0 \\ a^0=360^0-315^0 \\ a^0=45 \end{gathered}[/tex]Therefore, the measure of "a" is
Answer:
[tex]45^0^{}[/tex]Referring to the table in question 14, how would you graph the solution set representing students that do not receive a note sent home to parents?Draw points on the integers to the left of, and including, 0.Draw points on the integers to the right of, and including, 0.Draw points on the integers to the left of 0.Draw points on the integers to the right of 0.
According to the table, the statement "note sent to parents" is represented by the following inequality:
[tex]points\text{ < 0}[/tex]this can be represented as all integers less than zero. That is all integers to the left of 0.
We can conclude that the correct answer is:
Answer:Draw points on the integers to the left of 0.
3. What is the slope of a line that is parallel to the line that contains these
two points: (-2,5) and (-3,1).
Answer:
4
Step-by-step explanation:
The slope of the line through the points is
[tex]\frac{1-5}{-3-(-2)}=4[/tex]
Parallel lines have the same slope, so the answer is 4.
A body is moving in simple harmonic motion with position function
s(t) =2 + 2 cos t
where s is in meters and t is in seconds. Find the at time t.
The velocity of the body under simple harmonic motion (SHM) at time t is equal to -2sint. (Option D)
A type of self-sustaining periodic motion known as simple harmonic motion.
It is observed by the formula:
y = y' + Δy · cos ωt ....1.
Where,
y' = Initial position
Δy = Amplitude
ω = Angular frequency.
t = Time
To find the equation for the velocity of the body in simple harmonic motion differentiating equation w.r.t time (1),
then we get
v = - ω · Δy · sin ωt ....2.
If we know that ω = 1, t = t and Δt = 2, then the velocity of the body is:
v = - 1 · 2 · sin t
v = -2sint
The velocity is equal to -2sint
The velocity of the body under simple harmonic motion (SHM) at time t is equal to -2sint. (Option D)
To know more about Simple harmonic motion
https://brainly.com/question/28953748
#SPJ1
Applying the product rule to expression \left(3^3\div 3^4\right)^5gives us Answer raised to the power of Answerdivided by Answer raised to the power of AnswerSimplify that into a reduced fraction.The numerator is AnswerThe denominator is Answer
Given the expression
[tex](3^3\div3^4)^5[/tex]Using product rule
[tex]\begin{gathered} (3^3\div3^4)^5=(\frac{3^3}{3^4})^5 \\ =(3^{3-4})^5=(3^{-1})^5 \\ =3^{-1\times5}=3^{-5} \end{gathered}[/tex]Where
[tex]3^{-5}=\frac{1}{3^5}=\frac{1}{243}[/tex]Hence, answer is 1/243
[tex](3^3\div3^4)^5=\frac{1}{243}[/tex]The numerator is 1
The denominator is 243
A. Write an exponential function to model with population Y of bacteria X hours after 2 PM
B. How many bacteria were there at 7 PM that day
In this problem, we have an exponential growth function of the form
[tex]y=a(b)^x[/tex]where
a=10 bacteria (initial value at 2 pm)
b is the base of the exponential function
[tex]y=10(b)^x[/tex]Find out the value of b
we know that
For x=0 (2 pm), y=10 bacteria
At 5 pm
y=33,750 bacteria
x=(5 pm-2 pm)=3 hours
substitute in the exponential equation
[tex]33,750=10(b)^3[/tex]Solve for b
[tex]b^3=\frac{33,750}{10}[/tex][tex]\begin{gathered} b=\sqrt[3]{\frac{33,750}{10}} \\ b=15 \end{gathered}[/tex]the equation is
[tex]y=10(15)^x[/tex]Part B
At 7 pm
x=(7 pm-2 pm)=5 hours
substitute
[tex]\begin{gathered} y=10(15)^5 \\ y=7,593,750\text{ bacteria} \end{gathered}[/tex]Which number is not a solution to3(x+4)−2≥7?-2-12 1
The inequality is:
[tex]3(x+4)-2\ge7[/tex]now we solve the inequality for x
[tex]\begin{gathered} 3(x+4)\ge7+2 \\ 3(x+4)\ge9 \\ x+4\ge\frac{9}{3} \\ x+4\ge3 \\ x\ge3-4 \\ x\ge-1 \end{gathered}[/tex]This means that all the number, from -1 to infinit are solution of the inequality, and the only option that is not a solution is a) -2
Can I get help, the last tutor didn't help me that much.
We know that
• The volume of one ball is 221 cubic centimeters.
Since the ball is spherical, we can find its radius with the following formula.
[tex]\begin{gathered} V=\frac{4}{3}\pi r^3 \\ 221\cdot\frac{3}{4\pi}=r^3 \\ r^3=\frac{663}{4\pi} \\ r=\sqrt[3]{\frac{663}{4\pi}}\approx3.75 \end{gathered}[/tex]The diameter would be double than the radius, by definition.
[tex]d=2(3.75)=7.5[/tex]Since there are three balls in the cylinder, the height would be
[tex]h=3(7.5)=22.5[/tex]Now, we find the volume of the cylindrical package.
[tex]V=\pi r^2h=\pi(3.75)^2(22.5)\approx993.52[/tex]Therefore, the volume of the cylindrical package is 993.52, approximately.Translate |f(x)=|x| so the vertex is at (-3,2)
we have the parent function
f(x)=|x| ------> vertex is (0,0)
Translate at (-3,2)
The rule of the translation is given by
(x,y) ----> (x-3,y+2)
that means ----> 3 units at the left and 2 units up
so
Applying the translation
the new function is equal to
h(x)=|x+3|+2Find the equation of the linear function represented by the table below inslope-intercept form.xy1-3 -723-114-15
To find the linear equation, we use two points from the table (1, -3) and (3, -11). First, we have to find the slope with the following formula.
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]Where,
[tex]\begin{gathered} x_1=1 \\ x_2=3 \\ y_1=-3 \\ y_2=-11 \end{gathered}[/tex]Let's those coordinates to find the slope.
[tex]\begin{gathered} m=\frac{-11-(-3)_{}}{3-1}=\frac{-11+3}{2}=\frac{-8}{2}=-4\to m=-4 \\ \end{gathered}[/tex]The slope is -4.
Now, we use the point-slope formula to find the equation.
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-3)=-4(x-1) \\ y+3=-4x+4 \end{gathered}[/tex]Now, we solve for y to express it in slope-intercept form.
[tex]\begin{gathered} y+3=-4x+4 \\ y=-4x+4-3 \\ y=-4x+1 \end{gathered}[/tex]Therefore, the equation in slope-intercept form is y = -4x+1.Enter a range of values for x.1416202x+109/15-5
26
Here, we want to write a range of values for x.
The shape we have is not a parallelogram but we have two equal sides
If it was a complete parallelogram, the two marked angles will be equal
But since what we have is not a complete parallelogram,
then;
[tex]\begin{gathered} 2x\text{ + 10 < 62 } \\ 2x\text{ < 62 - 10} \\ \\ 2x\text{ < 52} \\ \\ x\text{ < }\frac{52}{2} \\ \\ x\text{ < 26} \end{gathered}[/tex]This graph shows the amount of rain that falls in a given amount of time.
What is the slope of the line and what does it mean in this situation?
A line graph measuring time and amount of rain. The horizontal axis is labeled Time, hours, in intervals of 1 hour. The vertical axis is labeled Amount of rain, millimeters, in intervals of 1 millimeter. A line runs through coordinates 2 comma 5 and 4 comma 10.
It is to be noted that the slope of the line is 5/2. This means that 5 mm of rain falls every 2 hours. See the calculation below.
What is a slope in math?In general, the slope of a line indicates its gradient and direction. The slope of a straight line between two locations, say (x₁,y₁) and (x₂,y₂), may be simply calculated by subtracting the coordinates of the places. The slope is often denoted by the letter 'm.'
To find the slope of the line in the graph, we use the following equation:
m = [y₂ - y₁]/[x₂-x₁]
Where (x1,y1) = coordinates of the first point in the line; and
(x₂,y₂) = coordinates of the second point in the line
Given that the points (2, 5) from the graph is (x₁, y₁) and the point on graph (4, 10) are (x₂,y₂) Hence,
m = [10-5]/[4-2]
The slope (m) = 5/2
Learn more about slope:
https://brainly.com/question/16949303
#SPJ1
Full Question:
This is the complete question and the described graph is attached
This graph shows the amount of rain that falls in a given amount of time.
What is the slope of the line and what does it mean in this situation?
Select from the drop-down menus to correctly complete each statement
The slope of the line is ___
This means that ___ mm of rain falls every ___
Iq scores were gathered for group of college students at a local university. What is the level of measurement of dataNominal, ordinal, interval, ratio
Nominal data refers to non numerical data, for example categories, colors, etc...
Ordinal data refers to numerical data with a natural order, it comprehends real numbers.
Intervals comprehends data with equal distance between the values and no meaningful zero
Ratios comprehends data with equal distance between the values and a meaningul zero value.
With this in mind, the IQ scores of the college students represent numerical data, with a natural order, and the distance between the values is not equal, so you can classify the data as "ordinal"
11) a- 15 > 40-6 +3a) 12) 366b-1) > 18 - 3b a-151-46-67+1-useBay 9-15 124-12a atiza324+15 13a339 ay/9 13) 26 + m 2 5(-6 +3m) 14) 20-2p>-2lp
Answer
11) a > 3
12) b > (2/3)
Explanation
11) a - 15 > -4 (-6 + 3a)
a - 15 > 24 - 12a
a + 12a > 24 + 15
13a > 39
Divide both sides by 13
(13a/13) > (39/13)
a > 3
In graphing inequality equations, the first thing to note is that whenever the equation to be graphed has (< or >), the circle at the beginning of the arrow is usually unshaded.
But whenever the inequality has either (≤ or ≥), the circle at the beginning of the arrow will be shaded.
Then, the direction of the graph depends on the direction of the inequality sign, for example, the answer here says a is greater than 3. So, the graph will start with an unshaded circle and cover the numbers greater than 3.
12) 3 (6b - 2) > (8 - 3b)
18b - 6 > 8 - 3b
18b + 3b > 8 + 6
21b > 14
Divide both sides by 21
(21b/21) > (14/21)
b > (2/3)
This answer is similar to that of number 11. For the graph, it will start with an unshaded circle and move towards the numbers greater than (2/3)
Hope this Helps!!!