9. given the following reagents in an electrochemical reaction: cd (s), cd(no3)2 (aq), kno3, agno3 (aq), and ag (s), write out (1) the two half-cell reactions and (2) the net reaction.\

Answers

Answer 1

(1) The two half-cell reactions are:

Cd(s) -> Cd2+(aq) + 2e-

2Ag+(aq) + 2e- -> 2Ag(s)

(2) The net reaction is:

Cd(s) + 2Ag+(aq) -> Cd2+(aq) + 2Ag(s)

In the first half-cell reaction, solid cadmium (Cd) is oxidized to form cadmium ions (Cd2+) and two electrons (2e-). In the second half-cell reaction, silver ions (Ag+) are reduced to form solid silver (Ag) and two electrons (2e-).

To combine the two half-cell reactions and determine the net reaction, the electrons on both sides must be balanced. Since two electrons are produced in the first reaction and two are consumed in the second reaction, they cancel out. Thus, the net reaction involves the solid cadmium reacting with silver ions to form cadmium ions and solid silver.

For more similar questions on electrochemistry,

brainly.com/question/17599723

#SPJ11


Related Questions

a sample of n2o effuses from a container in 49 s . part a how long would it take the same amount of gaseous i2 to effuse from the same container under identical conditions?

Answers

Under identical conditions, it would take the same amount of gaseous I2 to effuse from the same container as it did for N2O, but it would take longer.

This is because I2 is a larger molecule than N2O, so it has greater difficulty passing through the small spaces in the container. The larger the molecule, the slower the effusion rate.

In general, effusion rates are inversely proportional to the square root of the molecular weight of a gas. This means that the molecular weight of I2 is four times larger than that of N2O, so it would take approximately twice as long for I2 to effuse from the container. In this case, it would take approximately 98 seconds for the same amount of gaseous I2 to effuse from the container under identical conditions.

Know more about effusion rate here

https://brainly.com/question/8804761#

#SPJ11

while calculating the mass for chloride a student comes up with a negative number. .what is most likely the reason for this error, assuming they did the math correctly

Answers

While calculating the mass for chloride, a student comes up with a negative number. The most likely the reason for this error, assuming they did the math correctly is that the student has used the wrong sign for the charge of the chloride ion.

Chloride is an anion, and its charge is negative, but the student may have used a positive sign while calculating it. For instance, the student may have assumed that the chloride ion has a charge of +1 instead of -1, which would have led to the negative mass value.

Besides that, there is no other reason for a negative mass value. The mass of a compound, such as chloride, is always positive and should not be negative at any time. Thus, it can be assumed that the student has made a mistake while assigning the sign for the charge of the chloride ion. However, it is essential to double-check the calculations to ensure that there are no other errors or mistakes in the calculations. Additionally, it is recommended to consult a teacher or a tutor for guidance in case of any confusion while calculating the mass of an ion or a compound.

Learn more about anion at:

https://brainly.com/question/14929591

#SPJ11

angela has an unknown quantity of gas held at a temperature of 2300 K in a container with a volume of 19 L and a pressure of 6.00 atm. How many moles of gas does angela have? a. what equation will you use? b. show all your work.

Answers

The equation you should use is the ideal gas law: PV=nRT

Where P= pressure in atm (atmospheres)
V= Volume in liters
n= Moles of particles
R= Gas constant=0.08206
T= Temperature in Kelvin (degrees Celsius+273)

We are given everything except the amount of moles of the gas, but we want to find it. We can do this by plugging in everything we know into the equation and solving for n. Which would look like this:

(6)(19)=n(0.08206)(2300)

114=n(188.738)

Now divide both sides by 188.738 to get n by itself

0.7629=n

This means that there are 0.7629 moles of the gas!

If you have any additional questions feel free to ask!
Hope this helps!! :))

if 626 ml of a 0.110m lead ii nitrate soloution is reacted with 429 ml of a 3.4 m potassium iodide soloution how many grams of percipitate can be produced

Answers

20,908.6 g of precipitate were generated.

Lead (II) nitrate and Potassium iodide react to form Lead (II) iodide and Potassium nitrate.For this reaction, the chemical equation is balanced as follows:

[tex]2 Pb(NO_3)_2 + 2 KI \rightarrow 2 PbI_2 + 2 KNO_3[/tex]

To calculate the amount of precipitate produced, we first need to calculate the amount of moles of Lead (II) nitrate and Potassium iodide.

Amount of Lead (II) nitrate = 626 mL x (0.110 mol/L) = 68.86 mol

Amount of Potassium iodide = 429 mL x (3.4 mol/L) = 1458.6 mol

Since the reaction has a 2:2 mole ratio, the amount of moles of Lead (II) iodide produced is 68.86 mol.

Now, we can calculate the mass of the precipitate produced.

Mass of precipitate = 68.86 mol x (303.4 g/mol) = 20,908.6 g

Therefore, the amount of precipitate produced is 20,908.6 g.

learn more about precipitate Refer:brainly.com/question/30904755

#SPJ1

describe or determine the effect of temperature of temperature on reaction rate and activation energy for a reaction using the arrhenius equation

Answers

The Arrhenius equation shows that the activation energy is directly proportional to the logarithm of the rate constant and inversely proportional to the temperature.

The Arrhenius equation is

[tex]k = A e^{-\frac{E_a}{RT}}[/tex]

where:

k is the rate constant is the pre-exponential factor

Ea is the activation energy

R is the gas constant

T is the temperature in Kelvin

According to the Arrhenius equation, as temperature increases, the rate constant, and thus the reaction rate increases exponentially. This is because as temperature increases, the average kinetic energy of the molecules in the reaction mixture increases, leading to a greater proportion of molecules with sufficient energy to react.

The activation energy of a reaction, Ea, is the minimum energy required for reactant molecules to react and form products. The Arrhenius equation shows that the activation energy is inversely proportional to the rate constant, and thus the reaction rate. As temperature increases, the proportion of reactant molecules with sufficient energy to overcome the activation energy barrier increases, reducing the activation energy and increasing the reaction rate.

Overall, the Arrhenius equation demonstrates that increasing temperature increases the reaction rate and decreases the activation energy.

To learn more about activation energy refer - brainly.com/question/14776335

#SPJ11

what is the ph of a solution if 10 ml of a 1 m hcl solution is added to 10 ml of a 1 m naoh solution?

Answers

The pH of a solution if 10 ml of a 1 M HCl solution is added to 10 ml of a 1 M NaOH solution can be calculated as follows:

First, let's find the number of moles of HCl and NaOH in the solution. Number of moles of HCl = Concentration of HCl x Volume of HClNumber of moles of HCl = 1 M x (10 ml/1000 ml)Number of moles of HCl = 0.01 molesNumber of moles of NaOH = Concentration of NaOH x Volume of NaOHNumber of moles of NaOH = 1 M x (10 ml/1000 ml)Number of moles of NaOH = 0.01 molesNext, let's find the net number of moles of H+ and OH- ions.Number of moles of H+ ions = Number of moles of NaOH - Number of moles of HCl.Number of moles of H+ ions = 0.01 - 0.01Number of moles of H+ ions = 0 molesNumber of moles of OH- ions = Number of moles of HCl - Number of moles of NaOHNumber of moles of OH- ions = 0.01 - 0.01Number of moles of OH- ions = 0 molesSince the net number of moles of H+ ions and OH- ions is zero, the solution is neutral. The pH of a neutral solution is 7. Therefore, the pH of the solution is 7.

To know more about pH  click on below link :

https://brainly.com/question/491373#

#SPJ11

the second electron affinity values for both oxygen and sulfur are unfavorable (endothermic). explain.

Answers

Explanation:

If we look at the definition of the second electron affinity:

The second electron affinity is the enthalpy change when one mole of gaseous 2⁻ ions is formed from one mole of gaseous 1⁻ ions

The equations of the second electron affinity for oxygen and sulfur:

O⁻ (g) + e⁻ → O²⁻ (g)

S⁻ (g) + e⁻ → S²⁻ (g)

This process is endothermic as we are trying to combine an electron with a negative ion, and so we must overcome the repulsion. Applying energy will overcome it.

The second electron affinity is the energy change that occurs when an atom in the gaseous state gains an additional electron.

For both oxygen and sulfur, the second electron affinity values are unfavorable, meaning that the energy change that occurs is endothermic. This means that energy is being absorbed by the atom, and the atom is becoming more stable.
To understand why the second electron affinity values for oxygen and sulfur are unfavorable, it is important to look at the electron configurations of these atoms. Oxygen's electron configuration is 2s22p4, meaning it has 8 electrons in its outermost shell. Sulfur has an electron configuration of 2s22p63s2, meaning it has 16 electrons in its outer shell. Since both of these atoms have a full outer shell of electrons, they are not in need of an additional electron, and therefore do not have a strong tendency to gain one. As a result, it takes a lot of energy for the atom to gain an additional electron, meaning the second electron affinity value is unfavorable (endothermic).

In conclusion, the second electron affinity values for oxygen and sulfur are unfavorable (endothermic) because they already have full outer shells of electrons and do not have a strong tendency to gain an additional electron.

To know more about endothermic reaction  click on below link :

https://brainly.com/question/23184814

#SPJ11

calculate the number of moles of sodium hydroxide present in a 26.80 ml sample of a 0.315 m solution.

Answers

The number of moles of sodium hydroxide present in the sample, is 0.00839 moles.

To calculate the number of moles of sodium hydroxide present in a 26.80 ml sample of a 0.315 m solution, use the following equation:

Moles = concentration (M) x volume (L)

Moles = 0.315 M x 0.02680 L

Moles = 0.00839 moles of sodium hydroxide present in a 26.80 ml sample of a 0.315 m solution.

To explain this in further detail, moles are a unit of measurement for an amount of substance and are typically expressed as mol. A mole is equal to 6.02 x 10^23 atoms or molecules, and is represented by the letter 'n' or 'N'.

The concentration of a solution is a measure of the amount of solute dissolved in a given volume of solvent and is expressed in molarity (M). Volume is expressed in litres (L).


By multiplying the concentration of a solution (0.315 M) by the volume of the sample (0.02680 L).


Sodium hydroxide, also known as lye, is a highly reactive and caustic inorganic compound. It is commonly used in soap and detergent production, as well as in the paper and textile industries.

It is also used in the production of a variety of other chemicals, including pharmaceuticals and food additives.

To know more about  Sodium hydroxide refer here:

https://brainly.com/question/29327783#

#SPJ11

why did pbcl2 dissolve upon addition of water. what did adding water do to the concentration of ions?

Answers

When a salt such as PbCl2 is added to water, it dissolves because of the attraction between the positively charged Pb2+ ions and the negatively charged Cl− ions and the polar nature of water molecules.

Water molecules' oxygen atoms have a partially negative charge, while their hydrogen atoms have a partially positive charge.

When a solid salt like PbCl2 dissolves in water, water molecules surround each ion and dissolve it by breaking apart the ionic bond that holds the ions together.

When a solid dissolves in water, the concentration of ions in the solution increases. When PbCl2 dissolves in water, it creates one Pb2+ ion and two Cl- ions.

Adding water to PbCl2 increases the concentration of ions.The solubility of PbCl2 in water is directly proportional to the amount of chloride ions present.

In the presence of water, the equilibrium in the following reaction shifts to the right: PbCl2(s) → Pb2+(aq) + 2Cl−(aq)

This results in an increase in the number of ions in the solution and a corresponding decrease in the solubility of the salt, indicating that the chloride ion concentration increases as more water is added.

to know more about molecules refer here:

https://brainly.com/question/19922822#

#SPJ11

acetylsalicylic acid, c9h8o4, is the active ingredient in aspirin. how many valence electrons are present in the lewis structure for this molecule?

Answers

Acetylsalicylic acid, is the active ingredient in aspirin. 68 is the number of valence electrons are present in the lewis structure for this molecule.

A valence electron is an electron that is part of an atom's outer shell in chemistry and physics. If the outer shell is open, the valence electron can take part in the formation of a chemical bond. Each atom in the bond contributes one valence electron, forming a shared pair in a single covalent bond. The chemical properties of an element, such as its valence—whether it can connect with other elements and, if so, how quickly and with how many—may be affected by the existence of valence electrons.

C =4 valence electrons.

H = 1 valence electron.

O=6 valence electrons.

9 C x 4 valence electrons = 36 valence electrons

8 H x 1 valence electron = 8 valence electrons

4 O x 6 valence electrons = 24 valence electrons

Total valence electrons = 36 + 8 + 24 = 68

To know more about valence electron, here:

https://brainly.com/question/31264554

#SPJ12

Pressure (kg/cm²)
1.15
1.24
1.47
Volume (mL)
44.8
41.5
35.0
A student doing this experiment obtained the data
shown in the table above. The value of the
constant, k, for this data is
A. 0.04
B. 25.7
C. 50.0
D. 51.5

Answers

The value of the constant, k, for this data is 51.5.

option D.

What is the value of the constant K?

To determine the constant k, we can use the formula:

PV = k

where;

P is the pressure in kg/cm², V is the volume in mL, and k is the constant.

We can rearrange the formula to solve for k:

k = PV

Now, we can multiply the pressure and volume values for each data point to get the corresponding value of k:

For the first data point: k = 1.15 kg/cm² x 44.8 mL = 51.52

For the second data point: k = 1.24 kg/cm² x 41.5 mL = 51.40

For the third data point: k = 1.47 kg/cm² x 35.0 mL = 51.45

We can take the average of these values to get an overall value for k:

k = (51.52 + 51.40 + 51.45) / 3 = 51.46 ≈ 51.5

Learn more about constant here: https://brainly.com/question/27983400

#SPJ1

1) It takes 55.0 J to raise the temperature of an 11.0 g piece of unknown metal from 13.0∘C to 24.1 ∘C

What is the specific heat for the metal?
2) The molar heat capacity of silver is 25.35 J/mol⋅∘C
. How much energy would it take to raise the temperature of 11.0 g
of silver by 18.1 ∘C?
3) What is the specific heat of the silver?

Answers

The specific heat capacity of  the metal is 4.98 J/(kg⋅K).  It would take 46.7 J of energy to raise the temperature of 11.0 g of silver by 18.1 °C.

What is specific heat capacity?

Specific heat capacity is the amount of heat energy required to raise the temperature of a unit mass of a substance by one degree Celsius (or one Kelvin). It is a property of the substance and is usually denoted by the symbol c. The unit of specific heat capacity is J/(kg·K) or J/(kg·°C).

1. The specific heat of the metal can be calculated using the formula:

q = mcΔT

In this case, q = 55.0 J, m = 11.0 g = 0.0110 kg, ΔT = (24.1 - 13.0) = 11.1 °C = 11.1 K.

Substituting these values into the formula, we get:

55.0 J = (0.0110 kg) c (11.1 K)

Solving for c, we get:

c = 4.98 J/(kg⋅K)

Therefore, the specific heat of the metal is 4.98 J/(kg⋅K).

2. First, we need to convert the mass of silver from grams to moles:

n = m/M

where n is the number of moles, m is the mass in grams, and M is the molar mass of silver. The molar mass of silver is 107.87 g/mol, so we have:

n = (11.0 g)/(107.87 g/mol) = 0.102 mol

Substituting the values of m and ΔT, we get:

q = (0.102 mol)(25.35 J/mol⋅∘C)(18.1 ∘C) = 46.7 J

Therefore, it would take 46.7 J of energy to raise the temperature of 11.0 g of silver by 18.1 ∘C.

3. The specific heat of silver can be calculated using the formula:

c = C/M

where c is the specific heat, C is the molar heat capacity, and M is the molar mass.

The molar heat capacity of silver is given as 25.35 J/mol⋅∘C, and the molar mass of silver is 107.87 g/mol.

Converting the molar mass to kilograms per mole, we get:

M = 107.87 g/mol = 0.10787 kg/mol

Substituting the values of C and M, we get:

c = (25.35 J/mol⋅∘C)/(0.10787 kg/mol) = 234.9 J/(kg⋅K)

Therefore, the specific heat of silver is 234.9 J/(kg⋅K).

To find out more about specific heat capacity, visit:

https://brainly.com/question/29766819

#SPJ1

which separation technique would be the best method to separate a 1:1 mixture of aniline and ethylbenzene?

Answers

The best method to separate a 1:1 mixture of aniline and ethylbenzene is through

distillation

.

Distillation is a process that involves heating the mixture to its boiling point, which causes the components to vaporize. As the vapors cool and condense, the liquid components will separate into their pure forms.

Since the boiling points of aniline and

ethylbenzene

differ significantly Aniline boiling point: 184°C; Ethylbenzene boiling point: 135°C.

The process of distillation involves heating the mixture in a distillation apparatus.

As the temperature increases, the vaporized components of the mixture will travel up a condenser and then be collected separately in two separate flasks.

During this process,

aniline

will be the first component to vaporize and travel up the condenser, while ethylbenzene will follow suit.

The two components will condense in their respective flasks and can then be collected and isolated.

In conclusion,

Distillation is the best method to separate a 1:1 mixture of aniline and ethylbenzene due to the fact that it utilizes their differences in boiling points to allow for the collection of the two components in their pure forms.

This is achieved by heating the mixture in a distillation apparatus and condensing the vapors in two separate flasks.

to know more about

distillation

refer here:

https://brainly.com/question/29037176#

#SPJ11

if you mix 538 grams in water and bring it to a final volume of 647 ml, what will be the concentration of the resulting solution in g/l? answers cannot contain more than one decimal place.

Answers

Answer : When mixing 538 grams of a substance into 647 ml of water, the concentration of the resulting solution in g/L is 0.83.


The concentration of the resulting solution in g/L can be calculated by dividing the mass of the substance (538 g) by the total volume of the solution (647 ml). This gives us a result of 0.83 g/L.

To further explain this calculation, we must first understand the concepts of mass and volume. Mass is a measure of the amount of matter an object contains. Volume, on the other hand, is the amount of space occupied by a given object. When mixing 538 grams of a substance into 647 ml of water, we are creating a solution with a certain concentration of the substance.

To calculate the concentration of the resulting solution, we must divide the mass of the substance (538 g) by the total volume of the solution (647 ml). This gives us a result of 0.83 g/L.

Know more about mass here:

https://brainly.com/question/14014782

#SPJ11



why can we assume that the thiocyanate ion concentration equals the complex ion concentration in beakers 2-7?

Answers

The thiocyanate ion (SCN-) concentration equals the complex ion concentration in beakers 2-7 because the reaction that took place was a 1:1 stoichiometric reaction. This means that the moles of SCN- reactant is equal to the moles of complex product formed.


The thiocyanate ion concentration in beakers 2-7 can be assumed to equal the complex ion concentration because the reaction between the iron(III) ion and thiocyanate ion is practically irreversible. According to the given information below:

2 Fe³⁺(aq) + 3 SCN⁻(aq) → Fe(SCN)₂⁺(aq)

The red-brown Fe(SCN)₂⁺ complex is formed in beakers 2-7 due to the reaction of iron(III) ions and thiocyanate ions. Since the reaction is irreversible and occurs entirely to the right, the concentration of the Fe(SCN)₂⁺ complex equals the concentration of the SCN⁻ ion.

Therefore, the thiocyanate ion concentration equals the complex ion concentration in beakers 2-7.Let's use this information to provide an HTML-formatted answer below:

In beakers 2-7, the thiocyanate ion concentration is assumed to equal the complex ion concentration because the reaction between iron(III) ions and thiocyanate ions is practically irreversible.

According to the given information below:

2 Fe³⁺(aq) + 3 SCN⁻(aq) → Fe(SCN)₂⁺(aq)

The red-brown Fe(SCN)₂⁺ complex is formed in beakers 2-7 due to the reaction of iron(III) ions and thiocyanate ions. Since the reaction is irreversible and occurs entirely to the right, the concentration of the Fe(SCN)₂⁺ complex equals the concentration of the SCN⁻ ion. Therefore, the thiocyanate ion concentration equals the complex ion concentration in beakers 2-7.

For more such questions on stoichiometric reaction , Visit:

https://brainly.com/question/29007372

#SPJ11

in a certain molecule, the central atom has one lone pair and five bonds. what will the electron pair geometry and molecular structure be?

Answers

In the certain molecule, the central atom has the one lone pair and five bonds. The electron pair geometry is the square pyramidal and molecular structure is square pyramidal.

The square pyramidal has  the 5 bonds and the 1 lone pair. The 1 lone pair will be sits on the bottom of the molecule and that will causes the repulsion of the rest of  bonds. This will result in that the bond angles are the all slightly lower than the 90°.

The molecule with the five bonding pairs and the one lone pair is designated as the AX5E and it has the total of the six electron pairs. The electron pair geometry is the square pyramidal and molecular geometry is square pyramidal.

To learn more about geometry here

https://brainly.com/question/28189901

#SPJ4

An ester is mixed with LiNHCH3 in order to perform a SNAc mechanism. What is the LUMO in this reaction?
A. N p orbital
B. C-N σ bond
C. C-O σ* bond
D. C-O π* bond

Answers

The LUMO for the reaction when an ester is mixed with [tex]LiNHCH_{3}[/tex] is D. C-O π* bond.

What will be the LUMO in an SNAc mechanism?

In the SNAc (nucleophilic acyl substitution) mechanism, the nucleophile (LiNHCH_{3}) attacks the carbonyl carbon of the ester, and the LUMO in this reaction is the lowest unoccupied molecular orbital, which is the C-O π* bond.

To know more about SNAc Mechanism :

https://brainly.com/question/28383861

#SPJ11

calculate the molarity of a solution made by dissolving 1.25moles of na2cro4 in enough water to form exactly 0.550 l of solution.

Answers

2.27 M is the molarity of a solution made by dissolving 1.25moles of Na[tex]_2[/tex]CrO[tex]_4[/tex] in enough water to form exactly 0.550 l of solution.

A chemical solution's concentration is measured in molarity (M). It refers to the solute's moles per litre of solution. Keep in mind that this is not the same as solvent in litres (a common error). Although molarity is a useful unit, it does have one significant drawback. Temperature impacts a solution's volume, therefore when the temperature varies, it does not stay constant. Typically, you convert grammes of solute to moles and then divide this quantity by litres of solution because you cannot measure solute in moles physically.

Molarity = moles of solute/volume of solution in liters

Molarity = 1.25 moles/0.550 L = 2.27 M

To know more about molarity, here:

https://brainly.com/question/31545539

#SPJ12

write down a reaction scheme for polymerization of styrene initiated by thermolysis of azobisisobutyronitrile, including both combination and disproportionation as possible modes of termination.

Answers

The reaction scheme is as follows:

Styrene (monomer) + Azobisisobutyronitrile (initiator) →  Radical polymers + Nitrile groups

Radical polymers then undergo combination or disproportionation as the possible modes of termination:

Combination:

Radical polymers + Radical polymers → Polystyrene (end product)

Disproportionation:

Radical polymers → Polystyrene + Styrene (monomer)

Polymerization of styrene is a chain-growth process initiated by thermolysis of azobisisobutyronitrile, which is a free radical initiator.

During the reaction, styrene molecules act as the monomers, while azobisisobutyronitrile molecules provide the initiating radicals, which combine to form a growing polymer chain.

These polymer chains can either terminate through combination, where two growing chains react with each other and form a new polymer chain, or through disproportionation,

where a growing polymer chain reacts with a styrene molecule to form a new polymer chain and a styrene molecule.

Thermolysis, which is the decomposition of molecules due to high temperature, is the mechanism of initiation of the polymerization of styrene.

This process breaks down the azobisisobutyronitrile molecules into the two radicals, which act as the initiators for the polymerization.

The two possible modes of termination, combination and disproportionation, then occur, resulting in the formation of polystyrene as the end product.

to know more about styrene refer here:

https://brainly.com/question/14546335#

#SPJ11

how does 0.5 m sucrose 9mlecular mass 342) solution compare to 90.5 m glucose (molecular mass 180) solution

Answers

To compare the 0.5 M sucrose solution and the 90.5 M glucose solution, we need to consider their concentrations, which are measured in moles per liter (M).

For the 0.5 M sucrose solution, we know that it contains 0.5 moles of sucrose per liter of solution. The molecular mass of sucrose is 342 g/mol, so we can calculate the mass of sucrose in one liter of solution as follows:

0.5 moles/L × 342 g/mol = 171 g/L

Therefore, the 0.5 M sucrose solution contains 171 g of sucrose per liter of solution.

For the 90.5 M glucose solution, we know that it contains 90.5 moles of glucose per liter of solution. The molecular mass of glucose is 180 g/mol, so we can calculate the mass of glucose in one liter of solution as follows:

90.5 moles/L × 180 g/mol = 16,290 g/L

Therefore, the 90.5 M glucose solution contains 16,290 g of glucose per liter of solution.

From these calculations, we can see that the 90.5 M glucose solution is much more concentrated than the 0.5 M sucrose solution. However, the two solutions cannot be directly compared in terms of their effects on biological systems or their properties, as the properties of a solution depend on many factors such as solubility, osmotic pressure, and chemical interactions with other molecules.

To know more about molecular mass here

https://brainly.com/question/3182776

#SPJ4

Calculate the mass of Cu(OH)2 produced from 3.5 mol NaOH

Answers

The mass of Cu(OH)2 produced from 3.5 mol NaOH is 170.4 g.

What is mass?

The balanced chemical equation for the reaction between NaOH and CuSO4 is:

NaOH + CuSO4 -> Cu(OH)2 + Na2SO4

From the equation, we can see that 2 moles of NaOH react with 1 mole of CuSO4 to produce 1 mole of Cu(OH)2.

Therefore, to calculate the moles of Cu(OH)2 produced from 3.5 moles of NaOH, we need to use stoichiometry:

3.5 mol NaOH x (1 mol Cu(OH)2 / 2 mol NaOH) = 1.75 mol Cu(OH)2

Now, we can calculate the mass of Cu(OH)2 produced using its molar mass:

1.75 mol Cu(OH)2 x 97.56 g/mol = 170.4 g Cu(OH)2

Therefore, the mass of Cu(OH)2 produced from 3.5 mol NaOH is 170.4 g.

To know more about mass, visit:

https://brainly.com/question/28180102

#SPJ1

Complete question is: The mass of Cu(OH)2 produced from 3.5 mol NaOH is 170.4 g.

How many moles are in 8.52 x 10^33 molecules of Carbonic Acid (23)?

Answers

Answer: There are approximately 141.7 moles

Explanation:

To convert the number of molecules of a substance to the number of moles, we need to divide the number of molecules by Avogadro's Number, which is approximately 6.022 x 10^23 molecules per mole.

Therefore, to calculate the number of moles in 8.52 x 10^33 molecules of carbonic acid (H2CO3), we can use the following formula:

Number of moles = Number of molecules / Avogadro's Number

Number of moles = 8.52 x 10^33 / 6.022 x 10^23

Number of moles = 141.7 mol

Therefore, there are approximately 141.7 moles of carbonic acid in 8.52 x 10^33 molecules of carbonic acid.

Read more about Moles and Molecules:

https://brainly.com/question/24191825

1.
2.
Grams of solute
3.
4.
0600
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
NH37
Solubility Curve
KCIÓ3
FONX
NHẠC
O
0 10 20 30 40 50
KCI
Naci
Ce2(SO4)3
60 70 80 90 100
Temperature (°C)
How many grams of ammonium chloride (NH4Cl) is dissolved at 50°C?
Which compound is least soluble in water at 10°C?
How many grams of KNO3 can be dissolved at 50°C?
Are the following solutions unsaturated, saturated, or supersaturated?
a.
45g of NaNO3 in 100 g of water at 30°C.
b. 60g of KClO3 in 100 g of water at 60°C.
5. How many grams of NaNO3 are required to saturate 100 grams of water at
75°C?
6. At what temperature would 25g of potassium chlorate (KClO3) dissolve?
7. 89 g NaNO3 is prepared at 30°C.

Answers

From the solubility curve:

37 grams of NH₄Cl can be dissolved at 50°C.Sodium chloride (NaCl) is the least soluble compound40 grams of KNO₃ a. unsaturated, b. supersaturated.100 grams 45°C

How to determine saturation and temperature?

According to the solubility curve for KNO₃, approximately 40 grams of KNO₃ can be dissolved at 50°C.

a. Since 45g of NaNO₃ in 100 g of water at 30°C is below the saturation point, the solution is unsaturated.

b. Since 60g of KClO3 in 100 g of water at 60°C is above the saturation point, the solution is supersaturated.

To determine how many grams of NaNO₃ are required to saturate 100 grams of water at 75°C, we need to look at the solubility curve for NaNO₃. At 75°C, approximately 75 grams of NaNO₃ can be dissolved in 100 grams of water. Therefore, to saturate 100 grams of water, we would need to add 75 grams of NaNO₃.

To find the temperature at which 25g of KClO₃ dissolves, we need to look at the solubility curve for KClO₃. At 25g, the curve intersects the solubility line at approximately 45°C, so 25g of KClO₃ would dissolve at 45°C.

Learn more on saturation point here: https://brainly.com/question/23866986

#SPJ1

What happens to molecules once they are eaten by animals

Answers

When animals consume food containing large polymeric molecules, such as proteins, carbohydrates, and nucleic acids, their digestive system breaks down these molecules into smaller components that can be absorbed and utilized by the body.

Mechanical digestion occurs in the mouth and stomach, where food is broken down into smaller pieces through chewing and mixing with digestive enzymes and acids. Chemical digestion occurs primarily in the small intestine, where enzymes and other compounds break down complex molecules into smaller components.

Proteins, for example, are broken down into their constituent amino acids by proteases, while carbohydrates are broken down into simple sugars like glucose and fructose by amylases. Nucleic acids are broken down into nucleotides by nucleases.

Once these molecules are broken down, they are absorbed into the bloodstream through the walls of the small intestine and transported to the liver, where they are further metabolized and distributed to other parts of the body as needed. The body then uses these molecules to build new proteins, carbohydrates, and nucleic acids or to generate energy through cellular respiration. Any excess molecules are typically stored for later use or eliminated from the body as waste.

To know more about molecules, here

brainly.com/question/4745152

#SPJ4

--The complete question is, What happens to large polymeric molecules in food once they are eaten by animals?--

what is the ph of a 0.20 m acetic acid solution? hint: the ka of acetic acid, ch3cooh, is 1.8 x 10-5.

Answers

The pH of a 0.20 M acetic acid solution is 2.72.

The pH of a 0.20 M acetic acid solution can be calculated using the Ka of acetic acid, CH3COOH, which is 1.8 x 10-5.

We will use the equation for the dissociation of acetic acid to calculate the pH of the solution.

CH3COOH(aq) + H2O(l) ⇌ H3O+(aq) + CH3COO-(aq)

The equilibrium constant expression for the dissociation of acetic acid is given by

Ka = [H3O+][CH3COO-] / [CH3COOH].

Since we know the value of Ka and the initial concentration of acetic acid, we can solve for

the concentration of H3O+.Ka = [H3O+][CH3COO-] / [CH3COOH]

1.8 x 10-5 = [H3O+]2 / 0.20[H3O+]2 = 3.6 x 10-6[H3O+] = 1.9 x 10-3 M

The pH of the solution can then be calculated as:

pH = -log[H3O+]pH = -log(1.9 x 10-3)

pH = 2.72

Therefore, the pH of a 0.20 M acetic acid solution is 2.72.

To know more about pH, refer here:

https://brainly.com/question/30255888#

#SPJ11

the electrolyte in automobile lead storage batteries is a 3.75 m sulfuric acid solution that has a density of 1.230 g/ml. calculate the mass percent, molality, and normality of the sulfuric acid.

Answers

In summary, the mass percent of the sulfuric acid solution is 29.89%, the molality is 4.35 mol/kg, and the normality is 7.5 N.

To calculate the mass percent, molality, and normality of the 3.75 M sulfuric acid solution, follow these steps:
First let's calculate the mass of 1 liter of the solution:
We know, Density = mass/volume. So, mass = density × volume = 1.230 g/mL × 1000 mL = 1230 g
Now, calculating the mass of sulfuric acid (H2SO4) in 1 liter of the solution:
Molarity = moles of solute/volume of solution. So moles of solute = molarity × volume = 3.75 mol/L × 1 L = 3.75 mol
The molar mass of H2SO4 = (2 × 1.01) + (32.07) + (4 × 16) = 98.08 g/mol
Mass of H2SO4 = moles × molar mass = 3.75 mol × 98.08 g/mol = 367.8 g
To Calculate the mass percent of H2SO4:
Mass percent = (mass of solute / mass of solution) × 100
= (367.8 g / 1230 g) × 100 = 29.89%
To Calculate the molality of H2SO4:
Molality = moles of solute / mass of solvent (in kg)
Mass of solvent = mass of solution - mass of solute = 1230 g - 367.8 g = 862.2 g = 0.8622 kg
Molality = 3.75 mol / 0.8622 kg = 4.35 mol/kg
To Calculate the normality of H2SO4:
Normality = molarity × number of equivalents per mole
For H2SO4, there are 2 acidic hydrogens (protons) that can be released, so the number of equivalents per mole = 2.
Normality = 3.75 M × 2 = 7.5 N
In summary, the mass percent of the sulfuric acid solution is 29.89%, the molality is 4.35 mol/kg, and the normality is 7.5 N.

Learn more about mass percent, molarity and normality here, https://brainly.com/question/20349446

#SPJ11

a chemist mixes of water with of methanol and of 2-methylpyrazine. calculate the percent by mass of each component of this solution. be sure each of your answer entries has the correct number of significant digits.

Answers

The percent by mass of each component of the solution is water: 35.5%, 2-methylpyrazine: 32.73%, and methanol: 31.82%, rounded to 2 significant digits.


The percentage by mass of each component of a solution containing 39. g of water, 36. g of 2-methylpyrazine, and 35. g of methanol can be calculated as follows:

Mass of water = 39. g

Mass of 2-methylpyrazine = 36. g

Mass of methanol = 35. g

Total mass of solution = (39. g + 36. g + 35. g) = 110. g

Percentage by mass of water = (Mass of water/Total mass of solution) × 100= (39. g/110. g) × 100= 35.45% (rounded to 2 significant digits)

Percentage by mass of 2-methylpyrazine = (Mass of 2-methylpyrazine/Total mass of solution) × 100= (36. g/110. g) × 100= 32.73% (rounded to 2 significant digits)

Percentage by mass of methanol = (Mass of methanol/Total mass of solution) × 100= (35. g/110. g) × 100 = 31.82% (rounded to 2 significant digits)

Therefore, the percentage by mass of water is 35.45%, the percentage by mass of 2-methylpyrazine is 32.73%, and the percentage by mass of methanol is 31.82%.

The question you wrote is incomplete, maybe the complete question is:

chemist mixes 39. g of water with 36. g of 2-methylpyrazine and 35. g of methanol. Calculate the percent by mass of each component of this solution. Round each of your answers to 2 significant digits component mass percent.

Learn more about percentage by mass at https://brainly.com/question/26150306

#SPJ11

in all of the reactions you investigated today, did it make any difference in which order you broke bonds or formed bonds?

Answers

Bond breaking is endothermic process as it require energy and Bond forming is an exothermic process as it releases energy.

A reaction is said to be bond breaking where energy is taken in from the surroundings so the temperature of the surroundings decreases. An endothermic process is defined as any thermodynamic process with an increase in the enthalpy H of the system. In this process, a closed system usually absorbs thermal energy from its surroundings which is heat transfer into the system.

An exothermic process is defined as a thermodynamic process or reaction that releases energy from the system to its surroundings usually in the form of heat but also in a form of light, electricity, or sound. In this process energy is transferred into the surroundings rather than taking energy from the surroundings as in an endothermic reaction.

To learn more about endothermic process

https://brainly.com/question/1160007

#SPJ4

The complete question is,

What is the difference in bond breaking and bond forming.

which type of bond is responsible for holding two water molecules together, creating the properties of water? multiple choice covalent hydrogen double covalent ionic polar

Answers

The type of bond responsible for holding two water molecules together, creating the properties of water, is a polar covalent bond.

Explanation: The type of bond that is responsible for holding two water molecules together, creating the properties of water is hydrogen bond.What is a hydrogen bond?A hydrogen bond is a type of chemical bond that exists between two electrically polar molecules. Hydrogen bonds are much weaker than covalent or ionic bonds, but they do serve a significant purpose in both organic and inorganic chemistry. Example of a hydrogen bond, one example of a hydrogen bond is found in between two water molecules. Each water molecule is composed of two hydrogen atoms and one oxygen atom, and each hydrogen atom is bonded covalently to the oxygen. However, the shared electrons are not distributed evenly between the two atoms. Because oxygen is more electronegative than hydrogen, it pulls electrons away from the hydrogen atoms, resulting in a slight charge imbalance within the molecule. The oxygen atom in one water molecule is therefore attracted to the hydrogen atoms in another water molecule. This attraction produces a hydrogen bond between the two molecules, which helps to hold them together.

For more such questions on polar covalent bond

https://brainly.com/question/13560841

#SPJ11

li has two natural isotopes: li-6 (6.015 amu) and li-7 (7.016 amu). calculate the atomic mass of element li given the abundance of li-7 is 92.5%. group of answer choices 6.09 amu 6.50 amu 6.52 amu 6.94 amu 12.5 amu

Answers

The atomic mass of Li is 6.94 amu.

Li has two natural isotopes: Li-6 (6.015 amu) and Li-7 (7.016 amu). The atomic mass of element Li can be calculated given the abundance of Li-7 is 92.5%. The correct answer is 6.94 amu.Atomic mass is defined as the mass of an atom of an element. It is the sum of the masses of the protons and neutrons present in the atomic nucleus. The atomic mass is usually given in atomic mass units (amu) and is measured using mass spectrometry. Atomic mass is also known as atomic weight.The atomic mass of Li can be calculated as follows:atomic mass of Li = (abundance of Li-6 × atomic mass of Li-6) + (abundance of Li-7 × atomic mass of Li-7)Given,Abundance of Li-6 = 100% - 92.5% = 7.5%Abundance of Li-7 = 92.5%Atomic mass of Li-6 = 6.015 amuAtomic mass of Li-7 = 7.016 amuSubstitute the values in the formula to obtain the atomic mass of Li.atomic mass of Li = (0.075 × 6.015) + (0.925 × 7.016)= 0.45113 + 6.4914= 6.94253≈ 6.94 amu Therefore, the atomic mass of Li is 6.94 amu. An atom is composed of electrons, protons, and neutrons. An atom with a specific number of protons in its nucleus is referred to as an element. A variety of isotopes with different masses can be produced by different atoms of the same element. Naturally occurring isotopes are referred to as natural isotopes.

Learn more about Atomic mass

brainly.com/question/5661976

#SPJ11

Other Questions
a sample of a compound is decomposed in the laboratory and produces 330 g g carbon, 69.5 g g hydrogen, and 440.4 g g oxygen. calculate the empirical formula of the compound. although she was as qualified as her male colleagues, miriam was never considered for the post of an executive. miriam is a victim of Shown here is a plot of a pairwise potential between two interacting particles. The particles are initially at rest at ro 1.130 , and 1.2E energy is added as work. The two interacting particles define a closed system. Your plots should only extend into regions where particles separations are physically possible. a) Plot Etotal and KE as a function of r. Clearly mark rmin, Fmax if they apply. Explain how you determined your plots and their ranges. b) Are the particles described above bound or un-bound? Explain your reasoning. . sai watches his father use a key to unlock a door. sai imitates his father's behaviors and attempts to unlock doors throughout the house. sai's behaviors best illustrate: if the memory register for a particular computer is 32 bits wide, how much memory can this computer support? costs are also known as accounting costs, whereas costs are the opportunity costs of using owned resources. need help? review these concept resources. How can you encourage a young child to accept a variety of foods from the protein group? when the confederation congress called for a new convention in 1787, they did so with the stated purpose of PCI3 Draw the Lewis Dot Structure Follow the steps below to find the value of x that makes A||B. offende 8x + 30 B 10x A Set the alternate exterior angles equal to each other. [ ? ]x = X + Enter sanjay is working toward increasing the steps he takes each day. an app on his phone plays his favorite song every 2,000 steps. what type of reinforcement schedule is being used? consider the equilibrium reaction between mgo (s) and co2 (g) resulting in the formation of mgco3 (s). which one of the following factors will affect both the value of the equilibrium constant and the position of equilibrium? (you may need to write the balanced chemical equation) A company charges $7 for a t-shirt and ships any order for $22. a school principal ordered a number of t-shirts for the school store. the total cost of the order was $1,520. how many t-shirts did the principal order? Plot a point that best represents the value of square root 215 on the number line a bag contains tiles with the letters to spell the word colorado. what is the theoretical probability of drawing the letter o? the centripetal force in a collapsing cloud of gas and dust is strongest at the poles question 9 options: true false which is a clinical manifestation of glomerulonephritis? (select all that apply.) group of answer choices proteinuria hypotension colicky pain periorbital edema coffee-colored urine. a polling organization conducts a survey of voter intentions relying on a list of landline phone numbers. what might be the result of conducting the survey in this way? Can you help me. I have 10 minutes to do this. Thanks! the probability that the splices in a rope splicing shop are weak is 1/1000 and the probability that the splices are ugly is 1/20. the probability that the weak splices are ugly is 2/3. find the probability that an ugly splice is weak.