The rate at which the current must be changed to produce a 60 v emf in the inductor should be -5.45A/s.
The rate at which the current needs to be changed in order to produce a 60V emf in the 11H inductor can be calculated using Faraday's law of electromagnetic induction.
According to this law, the induced emf is proportional to the rate of change of current in the inductor. Therefore, we can use the formula
E = -L (dI/dt),
where E is the induced emf, L is the inductance, and dI/dt is the rate of change of current.
In this case, we know that the inductor has an inductance of 11H and is carrying a steady current of 2.0A.
We need to find the rate at which the current must be changed to produce a 60V emf.
Rearranging the formula, we get
dI/dt = -E/L = -60V/11H = -5.45A/s.
Therefore, the current must be changed at a rate of -5.45A/s to produce a 60V emf in the 11H inductor.
For more such answers on Faraday's Law
https://brainly.com/question/17012638
#SPJ11
at the sea level the plane can takeoff at the speed of 150 mi/hr. what is the required takeoff speed at albuquerque
The indicated airspeed (IAS) of the aircraft should be raised by roughly 2% for every 1,000 feet above sea level, according to a pilot's rule of thumb.
In order to generate enough lift during takeoff from a sea level airport, an aeroplane must attain a specific speed. Less dense air can be found at higher altitudes, such at Albuquerque, where the airport is situated at an altitude of 5,355 feet above sea level.
This necessitates a faster takeoff speed. Generally speaking, the plane's takeoff speed must rise by around 2% for every 1,000 feet of height. Under normal conditions and with conventional aeroplane characteristics, the estimated necessary takeoff speed at Albuquerque would be roughly 166 miles per hour.
The indicated airspeed (IAS) of the aircraft should be raised by roughly 2% for every 1,000 feet above sea level, according to a pilot's rule of thumb.
Learn more about indicated airspeed:
https://brainly.com/question/28206041
#SPJ4
higher takeoff speed to generate enough lift to take of
The required takeoff speed at Albuquerque would depend on several factors such as altitude, temperature, and runway length. If Albuquerque is at a higher altitude than sea level, the air is less dense and the plane would require a higher takeoff speed to generate enough lift to take off.
Additionally, if the temperature is higher, the air is less dense and the plane would also require a higher takeoff speed. The length of the runway at Albuquerque would also play a role in determining the required takeoff speed. Without more specific information, it is difficult to provide an exact answer to your question.
To learn more about take off speed, click on this -
brainly.com/question/31102197
#SPJ11
how far from the nut of the guitar must a fret (and your finger) be placed on this string to play g (392 hz )?
To play G note (392 Hz) on a guitar string, place the fret and your finger at a distance of approximately 40.4 cm (or 16 inches) from the nut of the guitar.
The distance that the fret and your finger must be placed from the nut of the guitar is determined by the length of the string that is allowed to vibrate when the string is plucked. The length of the vibrating string determines the frequency of the sound produced by the guitar string.
The distance from the nut of the guitar to the fret that must be placed to play a G note with a frequency of 392 Hz can be calculated using the formula:
[tex]L = (v / 2f) * (n^2 - 1)[/tex]
where L is the length of the string from the nut to the fret, v is the velocity of the wave (which is dependent on the tension and mass per unit length of the string), f is the frequency of the note, and n is the fret number (with n=1 corresponding to the distance from the nut to the first fret).
For a standard guitar tuning and using typical values for the velocity of the wave and string tension, the distance from the nut to the third fret would be approximately 40.4 cm to play a G note with a frequency of 392 Hz.
Learn more about The distance
https://brainly.com/question/15172156
#SPJ4
a wire of length 4.35 m and mass 137 g is under a tension of 125 n. a standing wave has formed which has seven nodes including the endpoints. a. draw the wave pattern b. what is the frequency of this wave? c. which harmonic is it? d. what is the fundamental frequency
The standing wave's fundamental frequency is the frequency of the first harmonic, which has one node and two antinodes, whereas the number of nodes determines the standing wave's harmonic number.
A 4.35 metre long, 137 gramme wire is being pulled at 125 newtons of force. With seven nodes total, including the endpoints, a standing wave has developed.
A collection of dots and dashes can be used to represent the wave pattern. The relationship between wave speed and wavelength is used to compute the standing wave's frequency. The tension in the wire and its linear mass density are used to calculate the wave speed.
The standing wave's fundamental frequency is the frequency of the first harmonic, which has one node and two antinodes, whereas the number of nodes determines the standing wave's harmonic number.
Learn more about standing wave:
https://brainly.com/question/30114344
#SPJ4
How can we tell if a collision is elastic or inelastic?
Answer:
The type of collision, whether elastic or inelastic, can be determined by observing the behavior of the colliding objects before and after the collision. Here are some key characteristics that can help identify whether a collision is elastic or inelastic:
Conservation of Kinetic Energy: In an elastic collision, kinetic energy is conserved, while in an inelastic collision, some of the kinetic energy may be converted into other forms of energy.
Objects' Motion After Collision: In an elastic collision, objects bounce off each other and move independently, while in an inelastic collision, objects may stick together, deform, or move as a single mass.
Restitution Coefficient: In an elastic collision, the restitution coefficient is close to 1, indicating high bounce-back, while in an inelastic collision, the restitution coefficient is less than 1, indicating less bounce-back.
Conservation of Momentum: In both elastic and inelastic collisions, momentum is conserved, but the change in velocity of the objects after the collision can indicate whether the collision is elastic or inelastic.
a flat, square coil of 16 turns that has sides of length 16.0 cm is rotating in a magnetic field of strength 0.060 t. if the maximum emf produced in the coil is 28.0 mv, what is the angular velocity of the coil (in rad/s)? (enter the magnitude.)
The angular velocity of the coil is approximately 7.27 rad/s.
The formula for the maximum emf induced in a rotating coil is given by: emf = NABw, where N is the number of turns in the coil, A is the area of the coil, B is the strength of the magnetic field, and w is the angular velocity of the coil.
Solving for w, we get: w = emf/(NAB)
Substituting the given values, we get: w = (28.0 x 10^-3)/(16 x 16 x 16 x 0.060 x 2π) ≈ 7.27 rad/s.
Therefore, the angular velocity of the coil is approximately 7.27 rad/s.
To know more about rotating coil, here
brainly.com/question/29820416
#SPJ4
although protons repel each other because each one has a positive charge, protons are stable in a nucleus because of group of answer choices the neutrons, which have a counterbalancing negative charge. the strong force. the weak force. the gravitational force. the electrons, which have a counterbalancing negative charge. neutrons getting between protons, separating the protons from each other.
The stability of the nucleus is maintained through the combined effects of the strong force and neutrons.
Although protons repel each other due to their positive charge, they are stable in a nucleus because of the strong force, which is a fundamental force that binds the particles together.
The strong force is the strongest force in nature and overcomes the electromagnetic force that causes the protons to repel each other. Neutrons, which have no charge, also play a significant role in stabilizing the nucleus.
The neutrons act as a buffer between the positively charged protons, separating them from each other and reducing the electrostatic repulsion. Electrons, which have a negative charge, are not involved in stabilizing the nucleus as they are located outside the nucleus in orbitals around the nucleus.
To learn more about : neutrons
https://brainly.com/question/12706684
#SPJ11
5. Explain the law of conservation of energy using a relevant example from every day life.
The law of conservation of energy states that energy is neither created nor destroyed but is transformed from one form to another.
What is law of conservation of energy?The law of conservation of energy is the law that states that energy is neither created nor destroyed but is transformed from one form to another.
Examples of activities of everyday life that shows the conservation of energy include the following:
For loudspeaker, electrical energy is converted into sound energy.For a microphone, sound energy is converted into electrical energy.For a generator, mechanical energy is converted into electrical energy.When fuels are burnt, chemical energy is converted into heat and light energyLearn more about energy here:
https://brainly.com/question/25959744
#SPJ1
An example of the law of conservation of energy is a roller coaster.
What is the law of conservation of energy?The law of conservation of energy states that energy cannot be created or destroyed, only transferred or transformed from one form to another. This means that the total amount of energy in a closed system remains constant over time.
A roller coaster car gains kinetic energy as it moves down the track, but it also loses potential energy. At the bottom of the track, the car has the most kinetic energy and the least potential energy, while at the top of the track, it has the most potential energy and the least kinetic energy. However, the total amount of energy in the system remains constant.
Learn about law of conservation of energy here https://brainly.com/question/166559
#SPJ1
what does the technique of interferometry allow?what does the technique of interferometry allow?it allows two or more telescopes to obtain a total light-collecting area much larger than the total light-collecting area of the individual telescopes.it allows us to determine the chemical composition of stars.it allows two or more telescopes to obtain the angular resolution of a single telescope much larger than any of the individual telescopes.it allows the same telescope to make images with both radio waves and visible light.it allows astronomers to make astronomical observations without interference from light pollution.
The technique of interferometry allows two or more telescopes to obtain the angular resolution of a single telescope much larger than any of the individual telescopes.
This is achieved by combining the signals received by the telescopes to create a single image with a higher resolution. Interferometry is especially useful for studying objects with small angular sizes, such as stars and planets.
Additionally, interferometry allows astronomers to make astronomical observations without interference from light pollution, as it can separate the signals from the object being observed from the background light.
However, interferometry does not directly determine the chemical composition of stars, although it can provide information about their temperature and other physical properties.
Learn more about interferometry:
https://brainly.com/question/30054443
#SPJ11
a pendulum is swinging upward and is halfway toward its highest position, as shown, when the string breaks. which of the paths shown best represents the one that the ball would take after the string breaks?
The option A is best representation of the path that the ball would take after the string breaks.
When the string of a pendulum breaks, the ball's path will follow the laws of motion, specifically the law of conservation of energy. As the ball was halfway to its highest position, it had a certain amount of potential energy.
When the string broke, this potential energy would convert to kinetic energy, causing the ball to move in a straight line tangent to the point where the string broke.
Therefore, the path that the ball would take after the string breaks would be a straight line away from the pivot point of the pendulum, as shown in option A. The other paths shown do not follow the laws of motion and do not account for the conservation of energy. Option (A) is the correct answer.
To learn more about : string
https://brainly.com/question/24994188
#SPJ11
Note the full question is
A pendulum is swinging upward and is halfway toward its highest position, as shown, when the string breaks. which of the paths shown best represents the one that the ball would take after the string breaks?
A) A
B) B
C) C
D) D
E) E
019 (part 1 of 2) 10.0 points
A Carnot engine has a power output of
197 kW. The engine operates between two
reservoirs at 20◦C and 425◦C.
How much thermal energy is absorbed each
hour?
Answer in units of J.
020 (part 2 of 2) 10.0 points
How much thermal energy is lost per hour?
Answer in units of J.
Thermal energy is absorbed each hour is 13.53 x 10¹² J and thermal energy lost per hour is 7.092 x 10¹² J.
What is the Carnot engine's operating principle?a technique of isothermal gas expansion that is reversible. In this process, the ideal gas in the system receives amount heat from a heat source at a high temperature Thigh, expands and does work on surroundings. a technique of adiabatic gas expansion that is reversible. The system is thermally insulated throughout this process.
Temp_cold = 20°C + 273.15 = 293.15 K
Temp_hot = 425°C + 273.15 = 698.15 K
efficiency = 1 - (Temp_cold / Temp_hot)
= (698.15 K * 293.15 K) / (698.15 K)² - (293.15 K)²
efficiency = 0.524 or 52.4%
thermal energy absorbed/ hour = power output / efficiency
= 197 kW / 0.524
= 375.95 MJ/h x 3.6 x 10⁶ J/kWh = 13.53 x 10¹² J
thermal energy is lost per hour
W = power output x time = 197 kW x 1 h = 197 kWh
W = 197 kWh x 3.6 x 10⁶ J/kWh = 7.092 x 10¹²1J
Since the engine is running in a cycle, the system's internal energy is equal to zero, hence U = 0.
Q = ΔU + W
hence, thermal energy lost per hour = Q = W = 7.092 x 10^11 J
To know more about thermal energy visit:-
https://brainly.com/question/27359499
#SPJ1
catching a wave, a 73.2-kg surfer starts with a speed of 1.44 m/s, drops through a height of 1.84 m, and ends with a speed of 8.89 m/s. how much nonconservative work was done on the surfer?
The nonconservative work done on the surfer is 2845.5 J.
We can use the work-energy theorem to solve this problem. The work-energy theorem states that the net work done on an object is equal to its change in kinetic energy. In this case, we can calculate the initial and final kinetic energies of the surfer and find the difference, which will give us the net work done.
The initial kinetic energy of the surfer is:
[tex]K_i = (1/2) * m * v_i^2[/tex]
[tex]K_i = (1/2) * 73.2 kg * (1.44 m/s)^2[/tex]
K_i = 75.7 J
The final kinetic energy of the surfer is:
[tex]K_f = (1/2) * m * v_f^2[/tex]
[tex]K_f = (1/2) * 73.2 kg * (8.89 m/s)^2[/tex]
K_f = 2921.2 J
The change in kinetic energy is:
ΔK = K_f - K_i
ΔK = 2921.2 J - 75.7 J
ΔK = 2845.5 J
According to the work-energy theorem, this change in kinetic energy must be equal to the net work done on the surfer. Therefore, the nonconservative work done on the surfer is:
W_nc = ΔK
W_nc = 2845.5 J
So, the nonconservative work done on the surfer is 2845.5 J.
Learn more about nonconservative work
https://brainly.com/question/28588859
#SPJ4
A highway curve is banked (inclined) in such a way that a car travelling at a speed of 18.0m/s can round the curve without skidding, in the absence of friction. If the banking angle is 37°, what is the radius of the curve?
In order for a vehicle travelling at 18.0 m/s to negotiate highway bend without sliding, curve must be banked (inclined). The radius of curve approximately 33.1 metres.
What is the formula for the radius of a road curve?The coefficient of side friction is found to be 0.10, and the superelevation at one horizontal curve has been set at 6.0%.the formula for calculating a road curve's radiusFind the shortest curve radius necessary to ensure safe vehicle operation.
speed of the car v = 18.0 m/s
angle of banking of the curve θ = 37°
acceleration due to gravityg = 9.81 m/s²
radius of the curve = r
N = mg * cos(θ).........1
also
N = mv² / r...........2
from equation 1 and 2 we get
mg * cos(θ) = mv² / r
r = v² / (g * cos(θ))
r = (18.0 m/s)² / (9.81 m/s² * cos(37°)) ≈ 33.1 m
Therefore, radius of the curve is approximately 33.1 meters.
To know more about radius of the curve visit:-
https://brainly.com/question/12868546
#SPJ1
a circuit breaker is rated for a current of 15 a rms at a voltage of 240 v rms. (a) what is the largest value of imax that the breaker can carry?
The largest value of I_max that the breaker can carry is approximately 21.21 A.
Given a circuit breaker rated for 15 A RMS at 240 V RMS, we want to find the largest value of Imax (maximum current) that the breaker can carry. To do this, we'll use the following formula:
I_max = √2 * I_RMS
Where I_RMS is the rated current in RMS, which is 15 A in this case.
Substitute the value of I_RMS into the formula:
Imax = √2 * 15 A
Calculate the value of Imax:
Imax ≈ 21.21 A
Therefore approximately 21.21 A is the largest value of Imax that the breaker can carry.
More on circuit breaker: https://brainly.com/question/29480920
#SPJ11
Potable water is ____.
A. also known as industrial wastewater
B. also known as irrigation water
C. also known as sewage
D. also known as groundwater
E. fit for drinking
Potable water is fit for drinking. Option E
What is portable water?Potable water is water that is safe for human consumption and considered fit for drinking. It is free from harmful bacteria, viruses, chemicals, and other contaminants that can cause health problems.
Potable water can come from different sources such as groundwater, surface water, or treated wastewater, and it is typically treated and disinfected to ensure its safety before being distributed to consumers.
Portable water isn't known as industrial wastewater, irrigation water, groundwater and sewage.
Find more exercises on portable water;
https://brainly.com/question/2570757
#SPJ1
after a sci a patient may experience all of the following except: a. spasticity b. resting tremor c. autonomic dysreflexia d. orthostatic hypotension
The right response is resting tremor (option b). A patient may have spasticity, autonomic dysreflexia, and orthostatic hypotension following a spinal cord injury (SCI). SCI is not often linked to resting tremor.
SCI can interfere with the body's ability to communicate with the brain, leading to a variety of physical symptoms. Spasticity, which manifests as stiffness, muscle spasms, and increased muscle tone, is a frequent consequence. Patients with SCI at or above the T6 level may develop autonomic dysreflexia, a potentially fatal illness that is characterised by an abrupt rise in blood pressure. When someone stands up, their blood pressure drops, causing lightheadedness and dizziness. This condition is known as orthostatic hypotension.
While essential tremor, Parkinson's disease, and other neurological illnesses are frequently linked to resting tremor, SCI is not typically one of them.
learn more about autonomic dysreflexia here:
https://brainly.com/question/30331093
#SPJ11
The right response is resting tremor (option b). A patient may have spasticity, autonomic dysreflexia, and orthostatic hypotension following a spinal cord injury (SCI). SCI is not often linked to resting tremor.
SCI can interfere with the body's ability to communicate with the brain, leading to a variety of physical symptoms. Spasticity, which manifests as stiffness, muscle spasms, and increased muscle tone, is a frequent consequence. Patients with SCI at or above the T6 level may develop autonomic dysreflexia, a potentially fatal illness that is characterised by an abrupt rise in blood pressure. When someone stands up, their blood pressure drops, causing lightheadedness and dizziness. This condition is known as orthostatic hypotension.
While essential tremor, Parkinson's disease, and other neurological illnesses are frequently linked to resting tremor, SCI is not typically one of them.
learn more about autonomic dysreflexia here:
brainly.com/question/30331093
#SPJ4
A planet has mass M = 8.00 × 1023 kg. At what distance will the centripetal acceleration of an orbiting space station be equal to the gravitational acceleration on Earth’s surface? (G = 6.67 × 10–11 m3·kg–1·s–1)answer is 2.33 x10^6 m. Can someone show the work on how to get this answer?
To find the distance at which the centripetal acceleration of an orbiting space station around a planet is equal to Earth's gravitational acceleration, we need to set up an equation involving the planet's mass (M), gravitational constant (G), and Earth's gravitational acceleration (g).
Given:
M = 8.00 × 10²³ kg
G = 6.67 × 10^(-11) m³·kg^(-1)·s^(-1)
g = 9.81 m/s² (Earth's gravitational acceleration)
Centripetal acceleration (a_c) is given by the formula:
a_c = (G * M) / r²
where r is the distance from the planet's center.
We want the centripetal acceleration to be equal to Earth's gravitational acceleration, so we can set them equal:
g = (G * M) / r²
Now, we need to solve for r:
r² = (G * M) / g
r² = (6.67 × 10^(-11) m³·kg^(-1)·s^(-1) * 8.00 × 10²³ kg) / 9.81 m/s²
r² ≈ 5.42 × 10¹² m²
Now, take the square root of both sides to find r:
r ≈ 2.33 × 10^6 m
So, at a distance of 2.33 x 10^6 meters from the planet's center, the centripetal acceleration of an orbiting space station will be equal to the gravitational acceleration on Earth's surface.
To learn more about Centripetal Acceleration and Gravitational Acceleration. Please Visit:
https://brainly.com/question/26143683
#SPJ11
The following formula can be used to determine the distance from the planet's centre at which the centripetal acceleration of an orbiting space station equals the gravitational acceleration on Earth's surface:
[tex]r = (GM/g)^(1/3)[/tex]
where the gravitational constant, G, equals 6.67 1011 m3 kg-1 s-1.
M is equal to 8.00 1023 kg (the planet's mass).
Gravitational acceleration on Earth's surface is equal to 9.81 m/s2.
When we change the values, we obtain:
[tex]r = [(6.67 × 10^-11) × (8.00 × 10^23) / 9.81]^(1/3)[/tex]
[tex]r = 2.33 × 10^6 m[/tex]
Therefore, 2.33 x 106 m is the necessary distance.
F = G (m1m2 / r2), where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them, can be used to express the gravitational force between two objects. When a planet and a satellite are involved, the centripetal force that holds the satellite in orbit around the planet is produced by the gravitational force. As a result, we may compare the centripetal force to gravity and find r. This results in the formula above, which we can use to calculate the necessary distance.
learn more about gravitational acceleration here:
https://brainly.com/question/30429836
#SPJ11
calculate the period of a horizontal mass-on-a-spring system where the stiffness of the spring is 500 n/m and the mass of the system is 25.7 kg.
The period of the horizontal mass-on-a-spring system with a stiffness of 500 N/m and a mass of 25.7 kg is approximately 1.424 seconds.
We'll use the following terms in our calculation: stiffness of the spring (k), mass of the system (m), and period (T).
The formula to calculate the period of a mass-on-a-spring system is:
T = 2π √(m/k)
where:
T = period (in seconds)
m = mass of the system (25.7 kg)
k = stiffness of the spring (500 N/m)
Now, we'll plug in the values:
T = 2π √(25.7 kg / 500 N/m)
To calculate the square root:
T = 2π √(0.0514)
T = 2π × 0.2266
Finally, multiply by 2π:
T ≈ 1.424 seconds
So, the period of the horizontal mass-on-a-spring system is approximately 1.424 seconds.
More on period: https://brainly.com/question/15299167
#SPJ11
a merry-go-round rotates from rest with an angular acceleration of 1.50 rad/s2. how long does it take to rotate through (a) the first 4.19 rev and (b) the next 4.19 rev?
a merry-go-round rotates from rest with an angular acceleration of 1.50 rad/s2. 8.67 seconds & 20.4 seconds it take to rotate through (a) the first 4.19 rev and (b) the next 4.19 rev.
To solve this problem, we need to use the equations of rotational motion. The equation we need to use is:
θ = ωi*t + 1/2*α*t^2
where θ is the angle rotated (in radians), ωi is the initial angular velocity (in radians per second), α is the angular acceleration (in radians per second squared), and t is the time (in seconds).
For part (a), we want to find the time it takes to rotate through the first 4.19 rev, which is equivalent to 4.19*2π radians. We know that the merry-go-round starts from rest (ωi = 0) and has an angular acceleration of 1.50 rad/s^2. Substituting these values into the equation above, we get:
4.19*2π = 0*t + 1/2*1.50*t^2
Simplifying, we get:
t = √(4.19*2π / 0.75) = 8.67 seconds
Therefore, it takes 8.67 seconds to rotate through the first 4.19 rev.
For part (b), we want to find the time it takes to rotate through the next 4.19 rev. At this point, the merry-go-round is already rotating with some angular velocity, which we need to find first. Using the equation:
ωf = ωi + α*t
where ωf is the final angular velocity, we get:
ωf = 0 + 1.50*8.67 = 13.00 rad/s
Now we can use the same equation as before to find the time it takes to rotate through the next 4.19 rev, but with ωi = 13.00 rad/s:
4.19*2π = 13.00*t + 1/2*1.50*t^2
Simplifying, we get a quadratic equation:
0.75t^2 + 13.00t - 26.17π = 0
Using the quadratic formula, we get:
t = (-13.00 ± √(13.00^2 + 4*0.75*26.17π)) / 1.50
t ≈ 20.4 seconds or t ≈ -34.4 seconds
We can discard the negative solution since time cannot be negative. Therefore, it takes approximately 20.4 seconds to rotate through the next 4.19 rev.
So, the answers are:
(a) 8.67 seconds
(b) 20.4 seconds
Learn more about angular acceleration here:
https://brainly.com/question/29428475
#SPJ11
a 1.00-m3 object floats in water with 20.0% of its volume above the waterline. what does the object weigh out of the water? the density of water is 1000 kg/m3.
The weight of the object out of water is 800 kg.
To solve this problem, we need to use the principle of buoyancy. When an object is placed in water, it experiences an upward force called buoyant force, which is equal to the weight of the water displaced by the object.
In this case, the object has a volume of 1.00 m³, and 20.0% of its volume is above the waterline. Therefore, the volume of the object submerged in water is:
Vsubmerged = 1.00 m3 - 0.20 x 1.00 m³ = 0.80 m³
We also know the density of water is 1000 kg/m³. Therefore, the weight of the water displaced by the object is:
Wwater = density of water x volume of water displaced
Wwater = 1000 kg/m³ x 0.80 m³
Wwater = 800 kg
This means the buoyant force acting on the object is 800 kg. In order for the object to float, the buoyant force must be equal to the weight of the object. Therefore, we can find the weight of the object as:
Weight of object = Buoyant force = 800 kg
So the object weighs 800 kg out of the water.
More on weight: https://brainly.com/question/19719921
#SPJ11
a satellite circles a spherical planet of unknown mass in a circular orbit of radius 2.5×107 m . the magnitude of the gravitational force exerted on the satellite by the planet is 110 n .
Since we don't know the mass of the satellite or its velocity, we can't solve for the mass of the planet with the given information alone. We would need at least one more piece of information to do so.
Answer - Based on the given information, we can use the equation for gravitational force:
F = (G * m1 * m2) / r^2
where F is the force, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers.
Since we don't know the mass of the planet, we can't directly solve for it. However, we can use the fact that the satellite is in a circular orbit, which means that the gravitational force is equal to the centripetal force:
F = (m * v^2) / r
where m is the mass of the satellite and v is its velocity.
We can solve for m by rearranging the equation:
m = (F * r) / v^2
Now we can use this mass value and plug it into the original equation for gravitational force, along with the given values for r and F, to solve for the mass of the planet:
110 N = (G * m * m_planet) / (2.5x10^7 m)^2
m_planet = (110 N * (2.5x10^7 m)^2) / (G * m)
where G is a constant equal to 6.67x10^-11 N*m^2/kg^2.
Unfortunately, since we don't know the mass of the satellite or its velocity, we can't solve for the mass of the planet with the given information alone. We would need at least one more piece of information to do so.
To know more about gravitational force , click on this -
brainly.com/question/24783651
#SPJ11
The most popular grip in tennis is
the western grip
the eastern grip
the double handed grip
the continental grip
Answer:
The answer is Continental Grip
what are reasons that a promontory will be more vulnerable to wave erosion than a bay? multiple select question. waves bend around a promontory and strike it from both sides. larger waves enter into a bay than strike a promontory. a promontory will receive more wave action than a bay. powerful waves focus most of their energy at a promontory.
The reasons that a promontory will be more vulnerable to wave erosion than a bay;- Waves bend around a promontory and strike it from both sides,- Powerful waves focus most of their energy at a promontory and - A promontory will receive more wave action than a bay.
A promontory is more vulnerable to wave erosion than a bay due to the following reasons:
1. Waves bend around a promontory and strike it from both sides: This phenomenon, called wave refraction, concentrates the wave energy on the promontory, making it more prone to erosion.
2. A promontory will receive more wave action than a bay: Bays are generally more sheltered and have a lower exposure to waves, whereas promontories are exposed to the full force of waves, leading to more erosion.
3. Powerful waves focus most of their energy at a promontory: Due to the shape of the coastline, waves tend to focus their energy on the headlands, like promontories, which makes them more vulnerable to erosion compared to bays.
More on promontory: https://brainly.com/question/29758672
#SPJ11
help me please oml 2 one
Color: Both the bromine gas and steak have a brownish color.
What is bromine gas?Bromine gas is a reddish-brown, nonflammable, and highly toxic gas with a very strong, unpleasant odor. It is composed of two heavy, diatomic, halogen molecules, Br2, and is the only nonmetal element that exists as a liquid at room temperature. Bromine gas is denser than air and is soluble in water and organic solvents.
Texture: The bromine gas is a gas and therefore has no texture, while the steak is solid and has a firm texture.
Temperature: The bromine gas is a gas and therefore has a lower temperature than the steak, which is at room temperature.
Bromine Gas and Juice:
Color: The bromine gas is brownish and the juice is a yellowish or orange color.
Texture: The bromine gas is a gas and therefore has no texture, while the juice is a liquid and has a smooth texture.
Temperature: The bromine gas is a gas and therefore has a lower temperature than the juice, which is at room temperature.
To learn more about bromine gas
https://brainly.com/question/1126306
#SPJ1
what is the typical voltage drop (in volts) across the collector and emitter (vce) of a bjt when in saturation?
The VCE voltage drop in saturation for a typical BJT can be assumed to be between 0.1V and 0.3V.
How VCE voltage drop in saturation for a typical BJT?The voltage drop across the collector and emitter (VCE) of a bipolar junction transistor (BJT) when it is in saturation depends on several factors such as the type of BJT, the collector current, and the biasing conditions.
However, as a general rule of thumb, the VCE voltage drop in saturation for a typical BJT can be assumed to be between 0.1V and 0.3V, depending on the specific characteristics of the transistor. This value may vary based on the operating conditions and the specific transistor used.
It's worth noting that the VCE voltage drop in saturation is typically lower than the voltage drop in the active region, where the BJT behaves as a current amplifier. In the active region, the VCE voltage drop can range from a few tenths of a volt up to several volts, depending on the transistor's characteristics and operating conditions.
Learn more about voltage drop
brainly.com/question/31431320
#SPJ11
at 2.1 km from the transmitter, the peak electric field of a radio wave is 350 mv/m . what is the peak electric field 10 km from the transmitter?
The peak electric field 10 km from the transmitter is approximately 15.435 mV/m.
To find the peak electric field 10 km from the transmitter, we can use the inverse square law.
This law states that the intensity of a wave (such as the electric field in this case) is inversely proportional to the square of the distance from the source.
Here's a step-by-step explanation:
1. Note the initial distance (d1) and electric field (E1):
d1 = 2.1 km, E1 = 350 mV/m.
2. Convert d1 to meters:
d1 = 2100 m.
3. Note the final distance (d2):
d2 = 10 km.
4. Convert d2 to meters:
d2 = 10,000 m.
5. Use the inverse square law formula:
E2 = E1 * (d1²) / (d2²).
6. Plug in the values:
E2 = 350 * (2100²) / (10,000²).
7. Calculate E2:
E2 ≈ 15.435 mV/m.
Learn more about electric field:
https://brainly.com/question/14372859
#SPJ11
a merry-go-round accelerates from rest to 0.63 rad/s in 27 s . assuming the merry-go-round is a uniform disk of radius 7.5 m and mass 29000 kg , calculate the net torque required to accelerate it.
The net torque required to accelerate is 28496 Nm.
What is the net torque required to accelerate it?The net torque required to accelerate a uniform disk of radius 7.5 m and mass 29000 kg from rest to 0.63 rad/s in 27 s is needed.
The problem is asking for the net torque required to accelerate a merry-go-round from rest to a final angular velocity of 0.63 rad/s in 27 seconds. The merry-go-round is assumed to be a uniform disk, which means that its mass is evenly distributed across its entire radius. We are also given the radius of the merry-go-round (7.5 m) and its mass (29000 kg).
To solve the problem, we can use the formula:
[tex]τ = Iα[/tex]
where τ is the net torque applied to the merry-go-round, I is its moment of inertia, and α is its angular acceleration. Since the merry-go-round is initially at rest, its initial angular velocity is zero. Using the formula for angular acceleration, we can find that:
[tex]α = Δω/Δt = (0.63 rad/s - 0 rad/s) / 27 s = 0.0233 rad/s^2[/tex]
To find the moment of inertia of the merry-go-round, we can use the formula for the moment of inertia of a uniform disk:
[tex]I = (1/2)mr^2[/tex]
where m is the mass of the disk and r is its radius. Substituting the given values, we get:
[tex]I = (1/2)(29000 kg)(7.5 m)^2 = 1220625 kg m^2[/tex]
Finally, we can use the formula [tex]τ = Iα[/tex] to find the net torque required to accelerate the merry-go-round:
[tex]τ = (1220625 kg m^2)(0.0233 rad/s^2) = 28496 Nm[/tex]
Therefore, the net torque required to accelerate the merry-go-round is 28496 Nm.
Learn more about torque
brainly.com/question/25708791
#SPJ11
The majority of Venus's surface is:
A. volcanic plains with flowing lava.
B large, flat mesas with tiny valleys.
C. thick, soupy clouds of hydrogen.
D. frozen dunes of dust and sand.
Answer:
C.
Explanation:
When Venus surface get bit cold when weather hits the planet gets soupy clouds and etc.
when does a star become a main-sequence star? when the rate of hydrogen fusion within the star's core is high enough to maintain gravitational equilibrium when hydrogen fusion is occurring throughout a star's interior when the protostar assembles from a molecular cloud when a star becomes luminous enough to emit thermal radiation the instant when hydrogen fusion first begins in the star's core
Answer: hope it helps
Explanation:
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
A 0. 300 kg
toy car moving with a speed of 0. 820 m/s
collides with a wall. The figure shows the force exerted on the car by the wall over the course of the collision
The negative sign indicates that the force is exerted in the opposite direction to the motion of the car. This force is applied over a short time interval and is relatively large, causing the car to experience a significant deceleration during the collision.
During the collision, the toy car experiences a change in momentum. Since momentum is conserved in the absence of external forces, the momentum of the car before the collision must be equal in magnitude and opposite in direction to the momentum after the collision.
The initial momentum of the car is given by:
p = mv = 0.3 kg * 0.82 m/s = 0.246 kgm/s
After the collision, the car comes to a stop, so its final momentum is zero. Therefore, the change in momentum is:
Δp = p_final - p_initial = -0.246 kg*m/s
The force exerted by the wall on the car during the collision can be calculated using the impulse-momentum theorem
J = Δp = FΔt
where J is the impulse, Δt is the time interval over which the force is applied, and F is the force
From the figure, we can see that the time interval for the collision is approximately 0.020 s. Therefore, the force exerted by the wall on the car is: F = Δp / Δt = -0.246 kg*m/s / 0.020 s = -12.3 N
Learn more about collision.
https://brainly.com/question/13138178
#SPJ4
15) monochromatic coherent light shines through a pair of slits. if the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern? (there is more than one correct choice.) a) the distance between the maxima stays the same. b) the distance between the maxima decreases. c) the distance between the minima stays the same. d) the distance between the minima increases. e) the distance between the maxima increases.
Two of the correct statements regarding this are:
b) the distance between the maxima decreases
d) the distance between the minima increases
When monochromatic coherent light shines through a pair of slits, an interference pattern is created. This pattern is dependent on the distance between the slits. If the distance between the slits is decreased, the resulting interference pattern will be affected.
When the distance between the slits is decreased, the interference pattern becomes wider, and the distance between the maxima decreases. The distance between the minima, on the other hand, increases.
This is because the interference pattern is created by the interaction of waves, and when the distance between the slits is decreased, the waves interfere with each other differently.
This causes the pattern to shift and change. Therefore, the resulting interference pattern is affected by the distance between the slits.
To learn more about : minima
https://brainly.com/question/29512870
#SPJ11