A car is traveling at a speed of 70 kilometers per hour. What is the car's speed in miles per hour? How many miles will the car travel in 5 hours? In your computations, assume that 1 mile is equal to 1.6 kilometers. Do not round your answers.

Answers

Answer 1

What is the car's speed in miles per hour?

Let's make a conversion:

[tex]\frac{70\operatorname{km}}{h}\times\frac{1mi}{1.6\operatorname{km}}=\frac{43.75mi}{h}[/tex]

How many miles will the car travel in 5 hours?

1h---------------------->43.75mi

5h---------------------> x mi

[tex]\begin{gathered} \frac{1}{5}=\frac{43.75}{x} \\ x=5\times43.75 \\ x=218.75mi \end{gathered}[/tex]


Related Questions

Find the present value that will grow to $6000 if the annual interest rate is 9.5% compounded quarterly for 9 yr.The present value is $(Round to the nearest cent as needed)

Answers

We need to know how to calculate compound interest to solve this problem. The present value is $2577.32

Compound interest is the interest that is earned on interest. Inorder to calculate the compound interest we need to know the principal amount, the rate of interest, the time period and how many times the interest is applied in per time period. In this question we know the amount after 9 years and the rate of interest is 9.5% and the interest is compounded quarterly. We will use the formula for compound interest get the principal value.

A=P[tex](1+\frac{r}{n}) ^{nt}[/tex]

where A= amount, P= principal, t=time period, n= number of times interest applied per time period, r=rate of interest

A=$6000

r=9.5%

t=9 yrs

n=4

6000=P[tex](1+\frac{9.5}{400} )^{36}[/tex]

6000= P x 2.328

P=6000/2.328=2577.32

Therefore the present value that will grow to $6000 in 9 years is $2577.32

Learn more about compound interest here:

https://brainly.com/question/24274034

#SPJ1

Referring to the figure, find the value of x in circle C.

Answers

The tangent-secant theorem states that given the segments of a secant segment and a tangent segment that share an endpoint outside of the circle, the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.

Graphically,

[tex]PA\cdot PB=(PD)^2[/tex]

In this case, we have:

[tex]3x\cdot5=10^2[/tex]

Now, we can solve the equation for x:

[tex]\begin{gathered} 3x\cdot5=10^2 \\ 15x=100 \\ \text{ Divide by 15 from both sides of the equation} \\ \frac{15x}{15}=\frac{100}{15} \\ \text{Simplify} \\ x=\frac{20\cdot5}{3\cdot5} \\ x=\frac{20}{3} \\ \text{ or} \\ x\approx6.67 \end{gathered}[/tex]

Therefore, the value of x is 20/3 or approximately 6.67.

Choose the left side that makes a True statement, and shows at the sum of the given complex numbers is 10Choose the left side that makes a true statement, and shows that the product of the given complex numbers is 40

Answers

For statement one:

We need to add up to complex numbers and their sum must give us equal to 10.

Also, we need to use the complex numbers:

5+i√15 and 5-i√15.

Then, we can use:

(5+i√15)+( 5-i√15) =

5+i√15+5-i√15 =

5+5+ i√15-i√15 =

= 10 + 0

= 10

For the second statement:

We need to show the product of complex numbers:

Then, we use:

(5+i√15)(5-i√15))=

5*5 - 5*i√15) +5*i√15) +√15*√15=

25 + 0 + 15=

40

I need help with the problem!

Answers

a)The vertex of the function is (3, -1)

b)The line of symmetry is  x= 3

c) The maximum is no maximum and  minimum is  (3, -1)

a) What is the vertex of the function of the parabola ?

[tex]f(x) = x^{2} -6x+8[/tex]

Transforming the function in the vertex form,

[tex]f(x) = a(x-h)^{2} +k[/tex]

[tex]f(x)=(x-3)^{2} -1[/tex]

The vertex of the function  is given by,

(h, k) =  (3, -1)

So ,the vertex of the function of the parabola is (3, -1)

b) What is the line of symmetry in the function?

In a parabola , the axis of symmetry  is x = h.

Here, x = 3

So, the line of symmetry of the function of the parabola is x= 3

c) What is the maximum and minimum?

There is no maximum for the function because, the parabola opens upward. (Refer image for graph)The minimum for the function is the vertex (h, k) = (3, -1)

What is a function of a parabola?

A parabola is the shape of a quadratic function's graph. Although the width or steepness of a parabola can vary as well as its direction of opening, they  share the same fundamental U form. Regarding a line known as the axis of symmetry, all parabolas are symmetric. The vertex of a parabola is the location where the axis of symmetry of the curve crosses.

To learn more about function of a parabola , refer:

https://brainly.com/question/23952969

#SPJ13

I got the first part I’m not sure of the 2nd is it 38.5

Answers

We will have the following:

The surface area of the onion can be best modeled by a sphere. Base on the model, the approximate area of the onion is 38.5 square inches:

[tex]A_s=4\pi(\frac{3.5}{2})^2\Rightarrow A_s\approx38.5[/tex]

Find the real solutions of the equation by graphing. 4x^3-8x^2+4x=0

Answers

x = 0,1 are the real solutions of the equation .

What are real solutions in math?

Any equation's solution that is a real number is known as a "real solution" in algebra.Discriminant b2 - 4ac is equal to zero when there is only one real solution. One solution, x = -1, exists for the equation x2 + 2x + 1 = 0.There are a number of solutions to the given quadratic equation depending on whether the discriminant is positive, zero, or negative. The existence of two unique real number solutions to the quadratic is indicated by a positive discriminant. A repeating real number solution to the quadratic equation is indicated by a discriminant of zero.

 4x³ - 8x² + 4x = 0

x( 4x² - 8x + 4 ) = 0

x( 4x² - 4x - 4x + 4 ) = 0

x ( 4x ( x - 1) -4 ( x - 1 )) = 0

x ( ( 4x - 4 ) ( x - 1 ) ) = 0

x = 0

4x - 4 = 0 ⇒ x = 1

x - 1 = 0 ⇒ x = 1

Learn more about real solution

brainly.com/question/4526506

#SPJ13

13. Puppies have 28 teeth and most adult dogs have 42 teeth. Find the primefactorization of each number. Write the result using exponents. (Example 5)

Answers

To solve our question, first we need to know that a prime factorization is a way to represent a number by a sequence of prime numbers that multiplied together gives us the original number.

So let's calculate our first prime factorization:

As we can see, we divide our number by the smallest prime number and then the factor we follow the same rule until we get "1" (for all divisions we just have integers).

Now, for the second number we have:

And both prime factorizations are our final answers.

an airplane flew for one hour and landed 100 miles north and 80 miles east from its origin. what was the distance traveled, speed and angle of direction from its origin?

Answers

The distance traveled by airplane is 180 miles.

The speed of the airplane is 3 miles per minute and the angle of direction from the origin is 51.34°

The airplane landed 100 miles north and 80 miles east from its origin and it flew for one hour.

Then, the total distance traveled by airplane will be:

= 100 miles + 80 miles = 180 miles.

The speed can be defined as the distance traveled by the total time taken.

Speed = distance/time

Speed = 180 miles/ 1 hour

Speed = 180 miles/60 minutes

Speed = 3 miles per minute

The angle of direction from its origin will be:

tan (x) = 100 miles/80 miles

x = tan⁻¹ ( 100/80)

x = tan⁻¹ ( 10/8) =  tan⁻¹ ( 5/4)

x = 51.34°

Learn more about speed here:

brainly.com/question/13943409

#SPJ1

X+27+32 = 8
X+ 3y +32 = 10
X + 2y +42 = 9

Answers

Value of x and y are -51 and 8 respectively

What is Algebra?

One of the many branches of mathematics is algebra. Algebra, which is a common thread throughout practically all of mathematics, is broadly defined as the study of mathematical symbols and the rules for using these symbols in formulas.

Let,

X+27+32 = 8

X+ 3y +32 = 10

X + 2y +42 = 9

Be, equation 1, 2 and 3 respectively

X+27+32 = 8 -----(1)

X+ 3y +32 = 10 -----(2)

X + 2y +42 = 9 -----(3)

From equation we can find the value of x

X+27+32 = 8

X + 59 = 8

X = 8 - 59

X = - 51

Substituting the value of x in equation 3

X + 2y +42 = 9

(-51) + 2y + 42 = 9

-51 + 42 + 2y = 9

-9 + 2y = 9

2y = 9 + 9

2y = 18

y = 18/2

y = 9

Hence, the value of x = -51 and y = 9

To learn more about Algebra click on the link

https://brainly.com/question/22399890

#SPJ13

how many km/h equals 880ft/min? Explain how you solved this problem

Answers

The number of kilometers per hour in 880 feet / minute can be found to be 16.09 kilometers per hour

How does km/h relate to ft/ min?

Based on the conversion rates between kilometers and feet, the number of feet per minute for each kilometer per hour is 54.6807 feet per minute.

In other words, 1 km / h is equal to 54.6807 feet per minute.

If there are 880 ft / minute therefore, the number of kilometers per hour is:

= Speed in feet per minute / feet per minute per kilometer per hour

= 880 / 54.6807

= 16.09 kilometers per hour

Find out more on kilometers per hour at https://brainly.com/question/17263672

#SPJ1

A. What is the common ratio of the pattern?B. Write the explicit formula for the pattern?C. If the pattern continued how many stars would be in the 11th set?

Answers

Given:

The sequence of number of stars is 2,4,8,16

a) To find the common ratio of the pattern.

[tex]\begin{gathered} \text{Common ratio=}\frac{2nd\text{ term}}{1st\text{ term}} \\ r=\frac{4}{2} \\ r=2 \end{gathered}[/tex]

Hence the common ratio is 2.

b) To find the explicit formula for the pattern.

The general for a geometric progression sequence is,

[tex]a_n=a_1(r)^{n-1}_{}_{}[/tex]

Hence, the formula for the above pattern will be,

[tex]a_n=2(2)^{n-1}[/tex]

c) To find the number of stars in 11th set.

Substitute n=11 in the explicit formula of the pattern.

[tex]\begin{gathered} a_{11}=2(2)^{11-1} \\ a_{11}=2(2)^{10} \\ a_{11}=2(1024) \\ a_{11}=2048 \end{gathered}[/tex]

Hence, the number of stars in 11th set will be 2048.

5)Which of the following is a critical number of the inequality x^2+5x-6<0 ?

Answers

Answer:

B. 1

Explanation:

Given the inequality:

[tex]x^2+5x-6<0[/tex]

To find the critical number, first, change the inequality sign to the equality sign :

[tex]x^2+5x-6=0[/tex]

Next, solve for x:

[tex]\begin{gathered} x^2+6x-x-6=0 \\ x(x+6)-1(x+6)=0 \\ (x-1)(x+6)=0 \\ x-1=0\text{ or }x+6=0 \\ x=1\text{ or }x=-6 \end{gathered}[/tex]

Therefore, from the options, 1 is the critical number.

The correct option is B.

Put the equation y = x2 - 10x + 16 into the form y = =(x - h)² + ki Answer: y = > Next Question

Answers

To complete the perfect square ((x-h)²) we add and subtract constants:

[tex]\begin{gathered} y=x^{2}-10x+16 \\ y=x^{2}-10x+25-25+16 \\ y=x^{2}-10x+5^{2}-9 \\ y=(x-5)^{2}-9 \end{gathered}[/tex]

4. Identify the properties that are always true for the given quadrilateral by placing an X in the appropriate box. Property Parallelogram Rectangle Rhombus Square Isosceles Trapezoid Kite a. Opposite sides are parallel. b. Only one pair of opposite sides is parallel C. Opposite sides are congruent Side Relationships d. Only one pair of opposite sides is congruent e. All sides are congruent. f. 2 pairs of consecutive sides are congruent.

Answers

There is quadrilateral, means it has 4 lines

Is a rhombus

30 randomly selected students took the statistics final. If the sample mean was 84, and the standard deviation was 12.2, construct a 99% confidence interval for the mean score of all students

Answers

The confidence interval for the mean score of the 30 randomly selected students is: 99% CI {78.26, 89.73}

What is confidence interval?

Confidence interval is the range of values for which which is expected to have the values at a certain percentage of the times.

How to construct a 99% confidence interval

Given data form the question

99% confidence interval

30 randomly selected students

mean sample = 84

Standard deviation = 12.2

Definition of variables

confidence level, CI = 99%

mean sample, X = 84

standard deviation, SD = 12.2

Z score, z = 2.576

from z table z score of 99%confidence interval = 2.576

sample size, n = 30

The formula for the confidence interval is given by

[tex]CI=X+Z\frac{SD}{\sqrt{n} }[/tex]    OR    [tex]CI=X-Z\frac{SD}{\sqrt{n} }[/tex]  

[tex]=84+2.576\frac{12.2}{\sqrt{30} }[/tex]

=[tex]=84+2.576*2.2274[/tex]

= 84 + 5.7378     OR       84 - 5.7378

= 89.7378           OR        78.2622

=  89.73 to 78.26  

The confidence interval for the mean score of all students is 78.26 to 89.78

Learn more about confidence interval at: https://brainly.com/question/17097944

#SPJ1

I would like to make sure my answer is correct ASAP please

Answers

step1: Write out the formula for exponential growth

[tex]y=a(1+r)^n[/tex][tex]\begin{gathered} a=\text{initial population} \\ r=\text{rate} \\ n=\text{years} \end{gathered}[/tex]

Hence we have

[tex]a=800,r=3\text{ \%, n=x}[/tex]

Step2: substitute into the formula in step 1

[tex]\begin{gathered} y=800(1+\frac{3}{100})^x \\ y=800(1+0.03)^x \\ y=800(1.03)^x \end{gathered}[/tex]

Hence the right option is A

3. The sum of two consecutive odd integersis 168. What are the integers?

Answers

Integers are numbers such as

[tex]N=\text{ }.\ldots\text{-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9}\ldots.[/tex]

And odd numbers are

[tex]1\text{ 3 5 7 9 11 13 }\ldots[/tex]

the remainder when f(x)is divided by x-3 is 15. Does f(-3) =15? explain why or why not

Answers

We will see that the function f(x) is:

f(x) = 15*(x - 3)

Evaluating it in x = -3 we can see that:

f(-3) =  -90

Is the statement true?

We know that when we divide f(x) by (x - 3), the quotient is 15. (that is the statement given in the question)

so we can write the equation:

f(x)/(x - 3) = 15

And we can solve this for f(x) as if it were a variable, then we get:

f(x) = 15*(x - 3)

Now, if we evaluate the function in x = -3 (this is replacing the variable x with the number -3), we will get:

f(-3) = 15*(-3 - 3) = 15*(-6) = -90

So the statement:

f(-3) = 15

Is false

Learn more about evaluating functions:

https://brainly.com/question/1719822

#SPJ1

what would be the value if m in a angle on 50 degrees and 10m

Answers

50 + 10m = 90 Reason: This is a right angle, which sum up to 90 degree.

10m = 90 - 50

10m = 40

m = 40/10

m = 4

g(x) = 2x - 5f(x) = 4x + 2Find g(f(x))

Answers

[tex]g(f(x))=8x-1[/tex]

Explanation

Step 1

Let

[tex]\begin{gathered} g(x)=2x-5 \\ \text{and} \\ f(x)=4x+2 \end{gathered}[/tex]

then

[tex]\begin{gathered} g(f(x))= \\ g(x)=2x-5 \\ g(f(x))=2(4x+2)-5 \\ \text{apply distributive property} \\ g(f(x))=8x+4-5 \\ g(f(x))=8x-1 \end{gathered}[/tex]

I hope this helps you

*You will use the following scenario forquestions 1-4*On the Wechsler Adult IntelligenceScale a mean IQ is 100 with a standarddeviation of 15. You may assume thatIQ scores follow a normal distribution.What percent of people have an IQscore less than 90?*Write your answer as a percent andround to 2 decimal places*

Answers

The Solution:

Given:

[tex]\begin{gathered} x=90 \\ \mu=100 \\ \sigma=15 \end{gathered}[/tex]

By formula,

[tex]Z=\frac{x-\mu}{\sigma}=\frac{90-100}{15}=\frac{-10}{15}=-0.6667[/tex]

From the z-score tables:

[tex]P(Z\leq90)=0.25248[/tex]

Convert to percent by multiplying with 100.

[tex]0.25248\times100=25.248\approx25.25\text{\%}[/tex]

Thus, the number of people that have an IQ score less than 90 is 25.25%

Therefore, the correct answer si 25.25%

Calculate the probabilities of each of these situations. A standard deck of cards has 52 cards and 13 cards cards in each suit (Spades, Clubs, Hearts, & Diamonds). Which of the following is LEAST likely to occur? a) Selecting any spade card from a standard deck of cards, keeping it, then selecting the queen of hearts. b) Selecting a spade from a standard deck of cards, not putting it back, then selecting another spade. c) Selecting an ace from a standard deck of cards, not replacing it, then selecting a king.Event CEvent AEvent B

Answers

Answer

The least likely to occur is Event C

Explanation

A.

P(spade card) = 13/52

P(queen) = 4/51 Note: Without replacement

⇒ 13/52 x 4/51

= 52/2652

= 0.0196

B.

P(a spade) = 13/52

P( another spade) = 12/51 Note: Without replacement

⇒ 13/52 x 12/51

= 156/2652

= 0.0588

C.

P(an ace) = 4/52

P(king) = 4/51

⇒ 4/52 x 4/51

= 16/2652

= 0.006

∴ The least likely to occur is Event C

Solve fort 30 on t =(Type (Type an integer or a simplified fraction)

Answers

[tex]\frac{12}{10}=\frac{30}{t}[/tex]

Multiply both sides by t:

[tex]\frac{12t}{10}=30[/tex]

Multiply both sides by 10:

[tex]12t=300[/tex]

Divide both sides by 12:

[tex]\begin{gathered} t=\frac{300}{12} \\ t=25 \end{gathered}[/tex]

Кр2.345 67 8Identify each angle as acute, obtuse, or right123345678.

Answers

we have the following:

Therefore:

Solve this system of equations by elimination. Enter your answer as an ordered pair (x,y). Do not use spaces in your answer. If your answer is no solution, type "no solution". If your answer is infinitely many solutions, type "infinitely many solutions".

Answers

5x + 2y = -12 (a)

3y + 5x =-8 (b)

First, write (b) in the ax+by=c form:

5x + 3y = -8 (b)

Now, subtract (b) to (a) to eliminate x

5x + 2y = -12

-

5x + 3y = -8

__________

-y = -4

solve for y:

Multiply both sides by -1

y=4

Replace y=4 on (a) and solve for x:

5x + 2 (4) = -12

5x + 8 = -12

5x = -12-8

5x = -20

x = -20/5

x = -4

Solution: (-4,4)

Use area under the curve to complete probability for continuous probability dentist functionsuse the uniform distribution to compute probabilityfind the mean and standard deviation Love the uniform distribution1.One type of card stock which may be used for the cover of a booklet is uncoated paper with waymark as 65 pounds the standard thickness of 65# of card stuck is 9.5 points (0.0095”). A manufacturer determines that the thickness of 65# of card stuck produced followed a uniform distribution varying between 9.25 points and 9.75 points.A)Sketch the description for this situation.B)compute the mean and standard division of the thickness of the 65# cards stuck producedC)compute the probability that a randomly selected piece of 65# card stark has a thickness of a list 9.4 points.D)Compute the probability that a randomly selected piece of 65# card stock has thickness between 9.75 points.

Answers

If x is uniformly distributed over the interval [ a , b ] then,

[tex]\begin{gathered} f(x)\text{ = }\frac{1}{b-a}\text{ , a }\leq\text{ x }\leq\text{ b} \\ f(x)\text{ = 0 , otherwise} \end{gathered}[/tex]

Also ,

[tex]\begin{gathered} \text{Mean = }\frac{a\text{ + b}}{2} \\ \text{Std deviation = }\sqrt[]{\frac{(b-a)^2}{12}} \end{gathered}[/tex]

It is given that ,

[tex]\begin{gathered} a\text{ = 9.25} \\ b\text{ = 9.75} \\ b\text{ - a = 9.75 - 9.25 = 0.5} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} f(x)\text{ = }\frac{1}{0.5}\text{ 9.25 }\leq\text{ x }\leq\text{ 9.75} \\ f(x)\text{ = 0 otherwise} \end{gathered}[/tex]

(a)The distribution is as follows :

(b)The mean is calculated as,

[tex]\begin{gathered} \text{Mean = }\frac{a\text{ + b}}{2} \\ \text{Mean = }\frac{9.25\text{ + 9.75}}{2} \\ \text{Mean = 9.5} \end{gathered}[/tex]

Standard deviation is calculated as,

[tex]\begin{gathered} \text{Standard deviation = }\sqrt[]{\frac{(b-a)^2}{12}} \\ \text{Standard deviation = }\sqrt[]{\frac{(0.5)^2}{12}} \\ \text{Standard deviation }\approx\text{ 0.1443} \end{gathered}[/tex]

(c) The probability is calculated as,

[tex]\begin{gathered} P(\text{ atleast 9.4 points ) = P( x }\ge\text{ 9.4)} \\ P(\text{ atleast 9.4 points ) = }\int ^{9.75}_{9.4}(\frac{1}{0.5})dx \\ P(\text{ atleast 9.4 points ) = }\frac{9.75\text{ - 9.4}}{0.5} \\ P(\text{ atleast 9.4 points ) = 0.7} \end{gathered}[/tex]

(d) The probability is calculated as,

[tex]\begin{gathered} P(\text{between 9.45 and }9.75\text{ ) = P( 9.45 }\leq\text{ x }\leq\text{ 9.75 )} \\ P(\text{between 9.45 and }9.75\text{ ) = }\int ^{9.75}_{9.45}(\frac{1}{0.5})dx \\ P(\text{between 9.45 and }9.75\text{ ) =}\frac{9.75\text{ - 9.45}}{0.5} \\ P(\text{between 9.45 and }9.75\text{ ) = 0.6} \end{gathered}[/tex]

14 pointsWhich are the coefficients of the terms in the algebraic expression, x2 - 3x?O and -31 and -3O and 351 and 36

Answers

Answer:

The coefficients of the terms in the algebraic expression are 1 and -3

[tex]1\text{ }and-3[/tex]

Explanation:

The coefficients are the number that multiplies an algebraic term in an algebraic expression.

for example; the coefficient of 3x is 3.

[tex]3x=3\times x[/tex]

For the question;

given the expression;

[tex]x^2-3x[/tex]

The coefficient of x^2 is 1

[tex]x^2=1\times x^2[/tex]

while the coefficient of x is -3

[tex]-3x=-3\times x[/tex]

Therefore, the coefficients of the terms in the algebraic expression are 1 and -3

[tex]1\text{ }and-3[/tex]

h(x) = x2 + 1 k(x) = x-2 (h - k)(3) = DONE

Answers

We are given two functions:

h(x) = x^2 + 1

and k(x) = x - 2

We are asked to find the value of:

(h - k) (3) (the value of the difference of the two functions at the point x = 3

So we performe the difference of the two functions:

(h - k) (x) = x^2 + 1 - (x - 2) = x^2 + 1 - x + 2 = x^2 - x + 3

So, this expression evaluated at 3 gives:

(h-k)(3) = 3^2 - 3 + 3 = 9

One could also evaluate what was asked by evaluating each function independently and subtracting the results of such evaluation:

h(3) = 3^2 + 1 = 10

k(3) = 3 - 2 = 1

Then, the difference is : h(3) - k(3) = 10 - 1 = 9

So use whatever method feels more comfortable for you.

If $2,000 is invested at 6% compounded monthly, what is the amount after 5 years?

Answers

Remember that

The compound interest formula is equal to

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  in decimal

t is the number of Time Periods

n is the number of times interest is compounded per year

in this problem we have

P=$2,000

t=5 years

r=6%=6/100=0.06

n=12

substitute the given values in the above formula

[tex]\begin{gathered} A=2,000(1+\frac{0.06}{12})^{12*5} \\ \\ A=\$2,697.70 \end{gathered}[/tex]

therefore

The answer is $2,697.70

The expression secθ - ((tan^2)(θ)/(sec)(θ)) simplifies to what expression?−tan θ−cot θcos θsec θ

Answers

Given the expression

[tex]sec(\theta)-\frac{tan^2(\theta)}{sec(\theta)}[/tex]

express in sen and cos terms

[tex]\frac{1}{cos(\theta)}-\frac{\frac{sin^2(\theta)}{cos^2(\theta)}}{\frac{1}{cos(\theta)}}[/tex][tex]\frac{1}{cos(\theta)}-\frac{sin^2(\theta)}{cos^(\theta)}[/tex][tex]\frac{1-sin^2(\theta)}{cos^(\theta)}[/tex][tex]\frac{cos^2(\theta)}{cos^(\theta)}[/tex][tex]cos^(\theta[/tex]

then the correct answer is option C

Cos (angle)

Other Questions
the practice of purchasing real estate using a small amount of your own money and a larger proportion of borrowed funds is called: group of answer choices loan floating leverage debt mortgaging all answers are correct As the speed of an object falling toward Earth increases, the gravitational potential energy of the object with respect to EarthA. IncreasesB. DecreasesC. Remains the same 4x+49x+8please help which two groups would issue eurobonds? multiple select question. sovereign governments small domestic corporations private banks multinational corporations Stephanie has 5 pizzas. She shares 4-of the pizzas with her friends. Estimate how much pizza Stephanie has left.81602/20pizzasO2 pizzasO01/Ppizzas01 pizza Question 2, please let me know if you have any questions regarding the materials, I'd be more than happy to help. Thanks! A line has slope 3. Through which two points could this line pass? a. (24. 19), (8, 10) b. (10, 8). (16, 0) C. (28, 10). (22, 2) d. (4, 20). (0, 17) Please select the best answer from the choices provided D The distance from the Old North Church in Boston to Charlestown is approximately 1,410 meters . Even on fast horse , that distance would take several minutes to travel . On April 18 , 1775 , lanterns were shown from the steeple of the Old North Church across the Charles River to warn American patriots that British soldiers were travelling Inland via water . The speed of light is approximately 3 x 10 to the power of 8 meters per second . How many seconds did it take for the light to be visible in Charlestown ? saliva secretion can be inhibited by pharmaceutical means. drugs such as ssri's, antihypertensives, tricyclic antidepressants, and tobacco smoke can be classified as antisialagogues because of their ability to suppress the action of the salivary glands. in what way might this impair digestion? The points 5, 11 and r, 9 lie on a line with slope 2. Find the missing coordinate r. Hey I just need someone to check my work and see what else i might need to add on. This is algebra 2 What doesn't a will list or designate? A.the executorB. End of life wishes C. Assets and property D. Beneficiaries Use the law of detachment to determine what you can conclude from the given information The midpoint of UV is (5,11). The coordinates of one endpoint are U(3,5). Find the coordinates of endpoint V. a powerful motorcycle can produce an acceleration of while traveling at 90.0 km/h. at that speed, the forces resisting motion, including friction and air resistance, total 400.0 n. (air resistance is analogous to air friction. it always opposes the motion of an object.) what is the magnitude of the force that motorcycle exerts backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? 34. a car with a mass o What should be included on your works cited page?all of your factsall of the sources you usedan outline organized by topic or eventyour research question what is the probability that when a coin is flipped six times in a row, it lands heads up every time? (enter the value of probability in decimals. round the answer to three decimal places.) According to the theory of classical conditioning, an unconditioned stimulus is a stimulus that elicits?. Organizations must have a strategy for managing all the resources that are involved in meeting customer demand for their product or service. This strategy is developed in the ________ activity of scm. A group worker is planning a group that will be conducted over the internet with web-conferencing software that allows people to meet together at a designated time. What type of specialty group is the group worker designing?.