If the car rounds an unbanked curve of radius 80 m and the coefficient of static friction between the road and car is 0.8, then the maximum speed at which the car traverses the curve without slipping is V = 25.05 m/s.
The maximum speed at which the car traverses the curve without slipping can be determined using the following formula:
[tex]v = \sqrt{(\mu rg)}[/tex]
Where:
v = maximum speed
μ = coefficient of static friction
r = radius of curvature
g = acceleration due to gravity
Substituting the given values into the formula:
[tex]v = \sqrt {(\mu rg)}[/tex]
[tex]v = \sqrt{(0.8 \times 80 \times 9.81)}[/tex]
v = 25.05 m/s
Therefore, the maximum speed at which the car can traverse the curve without slipping is 25.05 m/s.
Learn more about acceleration:
https://brainly.com/question/460763
#SPJ11
if the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, what is the internal resistance of the battery?
If the rate of internal energy dissipation in a battery is 1.0 watt, and the current produced by the battery is 0.50 amps, the internal resistance of the battery can be calculated using Ohm's law. Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. The proportionality constant is called the resistance of the conductor, which is expressed mathematically as V = IR, where V is the voltage, I is the current, and R is the resistance.
The power dissipated by the internal resistance of a battery is given by P = I2R, where P is the power, I is the current, and R is the internal resistance. The rate of internal energy dissipation in the battery is given as 1.0 watt, and the current produced by the battery is given as 0.50 amps.
Using Ohm's law, we can calculate the voltage across the battery as V = IR = 0.50 x R. Therefore, the power dissipated by the internal resistance of the battery is P = I2R = (0.50)2 x R = 0.25R.
Equating the power dissipated by the internal resistance of the battery to the rate of internal energy dissipation, we get:
0.25R = 1.0
Solving for R, we get:
R = 1.0/0.25 = 4 ohms.
Therefore, the internal resistance of the battery is 4 ohms.
Internal energy dissipation is the energy that is lost due to friction or resistance in a system. In the case of a battery, internal energy dissipation refers to the energy that is lost due to the internal resistance of the battery. The internal resistance of a battery is a measure of how much energy is lost due to the resistance of the battery's internal components. The higher the internal resistance of the battery, the more energy is lost as heat, which reduces the battery's efficiency.
To know more about Internal energy dissipation refer here:
https://brainly.com/question/15331125#
#SPJ11
in 1959, the water stored behind hegben lake dam in montana began to slosh violently back and forth in a series of oscillating waves. these seiches were caused by
The Seiches at Hegben Lake Dam in Montana in 1959 were caused by a phenomenon known as resonance. Resonance is when energy is transferred through a system, resulting in a large oscillation. In this case, the system was the water in the lake.
The energy was the wave created by a passing cold front. The cold front created a wave that was transferred through the lake, causing a resonance—the seiches. This is similar to pushing a child on a swing, where the energy is transferred back and forth between the swing and the pushing force.
The waves created by the cold front oscillated back and forth within the lake, creating a series of seiches. The seiches caused the water to slosh violently back and forth, resulting in an unusual sight. The seiches eventually dissipated, but they were an interesting example of the power of resonance.
Know more about Resonance here
https://brainly.com/question/29547999#
#SPJ11
which term defines the distance from rest to crest, or from rest to trough?responsesamplitudeamplitudefrequencyfrequencyperiodperiodspeed
Amplitude is not measured from peak to trough, but from rest to peak or rest to trough.
The highest and lowest points on the surface of a wave are called crests and troughs respectively. The vertical distance between the peak and the trough is the height of the waves. The horizontal distance between two successive peaks or troughs is called the wavelength.
The amplitude of a wave is the maximum displacement of a particle on a medium with respect to its position of rest.
The amplitude can be thought of as the distance between rest and the peak. The amplitude from the rest position to the dip position can be measured in a similar manner.
To know more about Crest and trough, visit,
https://brainly.com/question/17778036
#SPJ4
an asteroid orbits the sun in a highly elliptical orbit. as the asteroid gets closer to the sun, how are the total mechanical energy and gravitational potential energy of the asteroid-sun system changing, if at all?
The total mechanical energy and gravitational potential energy of the asteroid-sun system will change.
Asteroid-sun systemAs the asteroid gets closer to the sun in its highly elliptical orbit, both the total mechanical energy and gravitational potential energy of the asteroid-sun system will change.
The total mechanical energy of the asteroid-sun system is the sum of its kinetic energy and gravitational potential energy. As the asteroid moves closer to the sun, its kinetic energy will increase due to the increase in speed, but its gravitational potential energy will decrease due to the decrease in distance from the sun. Therefore, the total mechanical energy of the asteroid-sun system will remain constant, according to the law of conservation of energy.
However, if the asteroid encounters any gravitational forces or other external forces, such as a collision with another object or a thrust from a spacecraft, its mechanical energy can change.
More on asteroids can be found here: https://brainly.com/question/19161842
#SPJ1
the period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of m; a restoring force constant k with dimensions of ml2t2 , and the amplitude a, with dimensions of l. dimensional analysis shows that the period of oscillation should be proportional to
The correct option is C, The period of oscillation should be proportional to A^-1 square root of m/k.
mass m, with dimensions of M
force constant k with dimensions of ML^-2T^-2
amplitude A, with dimensions of L
To find the relation for period of oscillation with dimension T
To get the dimension T from m,k and A
[tex]1/A*\sqrt{(m/k)} = 1/L*\sqrt{(M/ML^{-2}T^{-2}) }= 1/L*LT = T[/tex]
Oscillation refers to the repetitive variation of a physical quantity around a central value or equilibrium position. It is a common phenomenon in many natural and man-made systems, ringing from simple pendulums and springs to complex electrical circuits and biological processes.
In an oscillating system, the physical quantity, such as displacement, velocity, or current, continuously changes between maximum and minimum values with a fixed frequency and amplitude. The frequency of oscillation is the number of cycles per unit time, usually measured in Hertz (Hz), while the amplitude is the maximum deviation from the equilibrium position. Oscillations can be periodic, where the motion repeats itself exactly over a fixed time interval, or non-periodic, where the motion is irregular and unpredictable.
To learn more about Oscillation visit here:
brainly.com/question/30111348
#SPJ4
Complete Question: -
The period of oscillation of a nonlinear oscillator depends on the mass m, with dimensions of M; a restoring force constant k with dimensions of ML^-2T^-2 and the amplitude A, with dimensions of L. Dimensional analysis shows that the period of oscillation should be proportional to
a) A square root of m/k b) A^2 m/k c) A^-1 square root of m/k d) (A^2k^3)/m
a 1-kg rock that weighs 10 n is thrown straight upward at 20 m/s. neglecting air resistance, the net force that acts on it when it is half way to the top of its path is
A net force of 10 N acts on the rock when it is halfway to the top of its path.
The net force acting on the rock can be calculated using the following equation:
Fnet = ma
Where Fnet is the net force, m is the mass, and a is the acceleration.
When the rock is halfway to the top of its path, its velocity is zero since it momentarily stops at the top of its motion. As a result, its acceleration is equal to the acceleration due to gravity, which is -10 m/s² since it is acting in the opposite direction to the upward direction. This is the gravitational force acting on the rock.
We can now calculate the net force acting on the rock at this point in its motion:
Fnet = ma
Fnet = (1 kg)(-10 m/s²)
Fnet = -10 N
Since the acceleration due to gravity is acting downward and the rock is moving upward, the net force is equal to the force of gravity, which is 10 N.
Therefore, the net force that acts on the rock when it is halfway to the top of its path is -10 N or 10 N in the downward direction. This net force is equal in magnitude to the weight of the rock.
Learn more about gravity:
https://brainly.com/question/940770
#SPJ11
a cleaner pushes a 3.1-kg laundry cart in such a way that the net external force on it is 63 n. calculate the magnitude of its acceleration in m/s2.
Answer: The magnitude of the acceleration of the laundry cart is 20.32 m/s2.
The magnitude of the acceleration of the laundry cart can be calculated using the equation F = ma, where F is the force applied, m is the mass of the object and a is the acceleration.
We can rearrange the equation to solve for acceleration: a = F/m.
Plugging in the values we know, the acceleration of the laundry cart is:
a = 63N / 3.1kg = 20.32 m/s2
Therefore, the magnitude of the acceleration of the laundry cart is 20.32 m/s2.
Learn more about acceleration here:
https://brainly.com/question/30660316#
#SPJ11
an electric eel can generate a 278-v, 0.8-a shock for stunning its prey. what is the eel's power output?
The electric eel's power output is 222.4 Watts
Given voltage (V) = 278 V
Current (I) = 0.8 A
To find the electric eel's power output, we have to use the formula
P = IV,
Where P is the power output, I is current, and V is the voltage.
So, we can calculate the electric eel's power output as follows:
Power Output (P) = IVP
⇒278 × 0.8
Power Output (P) = 222.4 Watts
Hence, The power output of the electric eel is 222.4 Watts.
To know more about "power output": https://brainly.com/question/866077
#SPJ11
in an alternating current circuit that contains a resistor a inductor and a capacitor with 120v how do you find current
In an alternating current circuit that contains a resistor, an inductor, and a capacitor with 120V, you can find the current by using Ohm's Law.
Ohm's Law states that the current is equal to the voltage divided by the resistance.
To calculate the resistance in an alternating current circuit, you must take into account the resistor, inductor, and capacitor.
For example, if the resistor has a resistance of 10 ohms, the inductor has a resistance of 5 ohms, and the capacitor has a resistance of 20 ohms, then the total resistance would be 35 ohms.
Therefore, the current in the circuit would be 120V/35 ohms = 3.43A.
To know more about Ohm's Law, refer here:
https://brainly.com/question/1247379#
#SPJ11
determine the limit on the series resistance so the energy remaining after one hour is at least 85 percent of the initial energy.
The limit on the series resistance so that the energy remaining after one hour is at least 85 percent of the initial energy, is initial energy into 85% by the voltage.
Ohm's Law states that the current in a circuit is directly proportional to the voltage and inversely proportional to the resistance.
Therefore, the total resistance in a circuit can be calculated using the formula: R = V/I
The energy remaining after one hour must be at least 85 percent of the initial energy, we can calculate the resistance by rearranging the formula.
The total resistance can be determined by multiplying the initial energy by 85 percent and dividing it by the voltage. Thus, the limit on the series resistance is [tex]R = (Initial Energy *0.85) / V[/tex].
To learn more about the series resistance:
https://brainly.in/question/28887091
#SPJ11
if a test point is marked 5 volts and a sedond test point is marked -3.3 volts. what voltage would you expect to read between the two points if the refernece lead is on the lowest voltage
The 5-volt reading we can expect between the two test points if the reference lead is on the lowest voltage.
The given data is as follows:
The first test marked voltage = 5 volts
The second test marked voltage = -3.3 volts
Let us assume that the two test points are there is a conductive track between them, the voltage between the two points can be calculated using the voltage difference between the two test points.
The voltage difference between the two test points is calculated as:
5 volts - (-3.3 volts) = 8.3 volts
If the reference lead is on the lowest voltage, It means that the negative side of the voltmeter is attached to the test point with the lower voltage which is -3.3 volts.
The voltage difference between the two test points is
8.3 volts - 3.3 volts = 5 volts
Therefore we can conclude that the 5-volt reading we can expect between the two test points.
To learn more about voltage
https://brainly.com/question/14291865
#SPJ4
how does matter affect your daily lives?
Matter affects our daily lives in the sense all is composed of matter and energy.
What are matter and energy in the Universe and daily life?Matter and energy in the Universe and daily life are two basic elements that characterize the physic system and allow us to understand the world. In regard to matter, it is something that occupies space and has mass, while energy can perform work.
Therefore, with this data, we can see that matter and energy in the Universe and daily life are fundamental to understanding the universe.
Learn more about matter and energy here:
https://brainly.com/question/481479
#SPJ1
a variable speed motor with an unbalanced is observed to have a displacement of 0.6 inches at resonance and 0.15 at a very high rpm. what is the damping ratio of the system?
The damping ratio of the system can be calculated as 0.13.
What is displacement?
Displacement at resonance, Xn = 0.6 inches
Displacement at very high RPM, Xv = 0.15 inches
Natural frequency of a system is:
f = (1/2π) * √(k/m)
where k is the stiffness of the system and m is its mass.
Let's assume the mass of the system as m and k is the stiffness of the system.
When the motor is at resonance, the frequency of the system is: n = f
where n is the frequency of the system.
When the motor is running at very high rpm, the frequency of the system is given as:v = f
where v is the frequency of the system.
Now, let's assume the damping coefficient of the system as c.
The displacement of the system:
X = [Xn * exp(-ζωnt)] * sin(ωdt)
where X is the displacement of the system, ζ is the damping ratio of the system, ωn is the natural frequency of the system and ωd is the frequency of the applied force.
The maximum value of the displacement is:
Xmax = Xn / (2ζ * √(1 - ζ²))
Here, Xmax = 0.6 inches when the motor is at resonance Xmax = 0.15 inches
when the motor is running at very high RPM, putting the given values of Xmax in the above equation, we can find the value of the damping ratio, ζ.
For resonance:0.6 = Xn / (2ζ * √(1 - ζ²))
=> 2ζ * √(1 - ζ²)
= Xn / 0.6=> 4ζ² * (1 - ζ²)
= Xn² / 0.36=> 4ζ⁴ - 4ζ² + 0.26244
= 0
Solving this quadratic equation gives us the value of ζ as 0.32.
For high RPM:
0.15 = Xn / (2ζ * √(1 - ζ²))
=> 2ζ * √(1 - ζ²)
= Xn / 0.15=> 4ζ² * (1 - ζ²)
= Xn² / 0.0225
=> 4ζ⁴ - 4ζ² + 1.728 = 0
Solving this quadratic equation gives us the value of ζ as 0.13.
To know more about displacement:
https://brainly.com/question/29769926
#SPJ11
determine if the drag force exerted on an object moving through air (a.k.a. force of air resistance) is proportional to the velocity or the square of the velocity of the object.
The drag force exerted on an object moving through air (a.k.a. force of air resistance) is proportional to the square of the velocity of the object.
Thus, the correct answer is proportional to the square of the velocity of the object.
What is the drag force?The аir resistаnce force аcting on аn object moving through аir is referred to аs drаg force. When а body trаvels through а fluid such аs wаter or аir, it fаces resistаnce to its motion, which is proportionаl to the velocity of the object. This resistаnce force аcting on а body moving through аir is referred to аs аir resistаnce or drаg force.
The drаg force on аn object in the аir is proportionаl to the squаre of the object's velocity. When the velocity of the object is doubled, the drаg force becomes four times greаter. Thus, the drаg force grows fаster thаn the object's velocity. In other words, the drаg force аcting on аn object increаses аs the squаre of the object's velocity.
For more information about drаg force refers to the link: https://brainly.com/question/12774964
#SPJ11
imagine you have a sensitive radio telescope and you would like to look at the sun. is it reasonable to expect that you would see it?
Yes, it is reasonable to expect that you would see the Sun with a sensitive radio telescope.
Radio waves can penetrate through the clouds and the atmosphere, so with a powerful radio telescope you can observe the Sun even on a cloudy day.
Gather the necessary components of the radio telescope, such as a dish and receiver. Point the radio telescope towards the Sun. Tune the receiver to the proper frequency. Take a look at the results from the telescope and observe the Sun.
Therefore, you can expect that you would see the Sun with a sensitive radio telescope.
To know more about radio telescope click here:
https://brainly.com/question/3964280
#SPJ11
g what is the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?
To calculate the ideal banking angle for a gentle turn
The ideal banking angle for a gentle turn of radius R, with velocity v, and coefficient of friction µ between the road and the tires can be calculated by the formula:
Tan(θ) = (v^2) / (gR)
where g is the acceleration due to gravity = 9.81 m/s²
θ is the banking angleIn this problem,
the radius of the gentle turn is R = 1.40 km = 1400 m
The speed limit is v = 105 km/h = 29.1667 m/s
Applying the formula,
Tan(θ) = (29.1667 m/s)^2 / (9.81 m/s² x 1400 m)
= Tan(θ) = 0.41435θ
= Tan^-1(0.41435)θ = 21.25°
Therefore, the ideal banking angle (in degrees) for a gentle turn of 1.40 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit is 21.25 degrees.
Learn more about ideal banking angle and speed at : https://brainly.com/question/4931057
#SPJ11
a 10 gauge copper wire carries a current of 21 a. assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.
To calculate the magnitude of the drift velocity of the electrons ,
The drift velocity of electrons in a conductor is given by the formula:
v = I / (neA)
where 'v' is the drift velocity of electrons,
'I' is the current flowing through the wire,
'n' is the number of free electrons per unit volume,
'e' is the charge on each electron, and
'A' is the cross-sectional area of the wire.
Therefore, The current-carrying capacity of the 10 gauge copper wire is
I = 21 A which is a given statement.
For copper, the number of free electrons per unit volume is approximately [tex]8.5*10[/tex]²⁸ electrons/m³, and the charge on each electron is 1.6 x 10⁻¹⁹ C.
The cross-sectional area of a 10 gauge copper wire is approximately 5.26 mm²= 5.26 x 10⁻⁷ m².
Substituting these values into the formula of drift velocity we get:
v = (21 A) / ((8.5 x 10²⁸ electrons/m³) x (1.6 x 10⁻¹⁹ C/electron) x (5.26 x 10⁻⁷ m²))
= 0.015 m/s
Therefore, the magnitude of the drift velocity of the electrons in the wire is approximately 0.015 m/s.
#SPJ11
To calculate the drift velocity of the electrons :https://brainly.com/question/30903511
find the force between charges of +10.0 x 10*C and -50.0 x 10*C located 20>0cm apart
20 cm apart, the charges of +1.0 x 10⁻⁶ C and –1.0 x 10⁻⁶ C exert a force of 449.5 N on one another. This force is directed from the negative charge to the positive charge.
How can the force between two charges be determined?According to Coulomb's law, the force F between two point charges, q1 and q2, that are separated by a distance r, is computed as F=k|q1q2|r2.
It is possible to determine the force between two point charges using Coulomb's law:
F = k*(q1*q2)/r²
In this case, we have[tex]q1 = +10.0 x 10^-6 C, q2 = -50.0 x 10^-6 C, and r = 20 cm = 0.2 m.[/tex]
Plugging in these values, we get:
[tex]F = (8.99 x 10^9 N m^2/C^2) * [(+10.0 x 10^-6 C) * (-50.0 x 10^-6 C)] / (0.2 m)^2[/tex]
Simplifying, we get:
F = -449.5 N.
To know more about Charge visit:-
https://brainly.com/question/9194793
#SPJ1
what is the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg in n?
The magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg is 981 N.
To determine the magnitude of the force on the child, we must find the magnitude of the centripetal acceleration of the child at the low point first. We can use the equation:
[tex]a_{c}[/tex] = [tex]\frac{v^{2} }{r}[/tex]
where v = 9 m/s and r = 2 m
thus,
[tex]a_{c}[/tex] = [tex]\frac{9^{2} }{2}[/tex]
[tex]a_{c}[/tex] = 40.5 m/s²
And then, we find out the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg.
∑[tex]f_{y}[/tex] = m × [tex]a_{c}[/tex]
[tex]f_{n}[/tex] - w = m × [tex]a_{c}[/tex]
[tex]f_{n}[/tex] = m × [tex]a_{c}[/tex] + w
[tex]f_{n}[/tex] = (18.5 × 40.5) + 18.5 (9.80)
[tex]f_{n}[/tex] = 981 N
Thus, the magnitude of the force that the child exerts on the seat at the lowest point if his mass is 18.5 kg in N is 981 N.
Your question is incomplete, but most probably your full question was
A mother pushes her child on a swing so that his speed is 9.00 m/s at the lowest point of his path. The swing is suspended 2.00 m above the child’s center of mass.
For more information about magnitude of the force refers to the link: https://brainly.com/question/30033702
#SPJ11
our resistors are connected to a source of emf as shown. Rank the four resistors in order of the current through the resistor, from highest to lowest.A. the 6.00-S2 resistor B. the 8.00-S2 resistor C. the 20.0-2 resistor D. the 25.0-S2 resistor
the ranking of the resistors in terms of current, from highest to lowest, is A, B, C, D.
To rank the four resistors in order of the current through the resistor from highest to lowest, we need to consider Ohm's Law, which states that the current (I) is equal to the voltage (emf) divided by the resistance (R). Mathematically, this is represented as I = emf / R.
Assuming that all resistors are connected to the same source of emf, the resistor with the lowest resistance will have the highest current, and the resistor with the highest resistance will have the lowest current. Therefore, we can rank the resistors based on their resistance values:
1. A. the 6.00-Ω resistor
2. B. the 8.00-Ω resistor
3. C. the 20.0-Ω resistor
4. D. the 25.0-Ω resistor
So the ranking of the resistors in terms of current, from highest to lowest, is A, B, C, D.
To learn more about resistors https://brainly.com/question/24858512
#SPJ11
explain the use of air bags and seat belts in terms of momentum and impulse. please provide examples (and calculations) to elaborate your concepts.
Answer:
Explanation:
A seatbelt is designed to stretch a bit when the car decelerates rapidly. You travel forward a little while being stopped - you do not stop sharply as you would if you hit the dashboard. The seatbelt stretching increases the time over which your momentum is changed, thereby decreasing the force experienced by your body.
Airbags are made from a strong coated fabric. They are stored in a module mounted on the steering wheel and dashboard and side panels of the car. The inflation of them is initiated by crash sensors that activate upon impact at speeds of more than 10-15 miles per hour. They are mounted in several locations on the car body. In a crash, the sensor sends an electrical signal to the airbag which then causes the airbag to deploy. It ignites a chemical propellant which produces nitrogen gas, which then inflates the bag itself.
what observation can you make that allows you to determine the relative magnitudes of the forces on the upper book?
Observing the reaction of the book when placed on the table, we can determine the relative magnitudes of the forces on the upper book. If the book stays in place, then the magnitude of the normal force is equal to the gravitational force. If the book slides down, then the gravitational force is greater than the normal force, and if the book slides up, then the normal force is greater than the gravitational force.
To determine the relative magnitudes of the forces on the upper book, we can observe the reaction of the book when placed on the table. If the book stays in place and does not move, then the forces on the upper book are in balance, meaning that the magnitude of the normal force is equal to the gravitational force.
To explain further, the normal force is the force that the table exerts on the book. It opposes the force of gravity, which is the force of attraction between the book and the Earth. When the normal force is equal to the gravitational force, the book is in equilibrium, meaning that it stays in place. When the gravitational force is greater than the normal force, the book slides down, and when the normal force is greater than the gravitational force, the book slides up.
for such more question on magnitudes
https://brainly.com/question/24468862
#SPJ11
horses that move with the fastest linear speed on a merry-go-round are located anywhere, because they all move at the same speed. near the center. near the outside.
Horses that move with the fastest linear speed on a merry-go-round are located near the outside.
A merry-go-round is an amusement park ride that comprises a rotating circular platform equipped with seats or mounts for people to ride on. When the ride is operating, the circular platform rotates around a fixed central axis at a constant velocity, while the people on it rotate with the platform. Linear speed refers to the velocity of the object in a straight line path, regardless of its direction of movement.
Therefore, the linear speed of the mounts on the merry-go-round depends on the radius of the circular path they move on. The closer the horse is to the center, the shorter the path it has to cover during one rotation of the platform, meaning it has a slower linear speed. Conversely, the farther the horse is from the center, the longer the path it has to cover, hence it has a faster linear speed. As a result, the mounts located near the outside of the merry-go-round move with the fastest linear speed.
Learn more about the linear speed at:
https://brainly.com/question/12707353
#SPJ11
if the frequency of the incoming light is decreased, will the energy of the ejected electrons increase, decrease, or stay the same?
If the frequency of the incoming light is decreased, the energy of the ejected electrons will decrease.
The frequency of the incoming light will affect the energy of the ejected electrons. This is because the energy of the ejected electrons is proportional to the frequency of the incoming light.
The energy of the electrons can be determined using the equation:
E = h * f,
where E is the energy, h is Planck’s constant, and f is the frequency of the incoming light. This equation shows that the energy of the electrons is directly proportional to the frequency of the incoming light.
Therefore, if the frequency of the incoming light is decreased, the energy of the ejected electrons will also decrease.
To know more about frequency, refer here:
https://brainly.com/question/14316711#
#SPJ11
while the general equations for the first and second law are written in terms of how the universe changes, dr. laude's preference is that we quickly rewrite them to reflect changes in what?
This is due to the fact that the first and second laws of thermodynamics are universally applicable fundamental principles that can be utilised to examine particular systems and processes.
How do chemical processes relate to the first and second laws of thermodynamics?The part of thermodynamics that deals with chemical reactions is called chemical thermodynamics. The first law states that energy is conserved and cannot be created or destroyed. Second law: When natural processes in a closed system result in a rise in entropy, they are spontaneous.
The second law of thermodynamics is what?According to the second rule of thermodynamics, an isolated system that is out of equilibrium over time must increase in entropy until it reaches the ultimate equilibrium value.
To know more about thermodynamics visit:-
https://brainly.com/question/15591590
#SPJ1
A billiard ball of mass m = 0.150 kg hits the cushion of a billiard table at an angle of θ1 = 60.0 degrees at a speed of v1 = 2.50 m/s. It bounces off at an angle of θ2 = 47.0 degrees and a speed of v2 = 2.20 m/s.
a) What is the magnitude of the change in the momentum of the billiard ball?
b) In which direction does the change of momentum vector point? (Take the x-axis along the cushion and specify your answer in degrees.)
The magnitude of the change in the momentum of the billiard ball is 0.268 kg⋅m/s. The direction of the change of momentum vector points at 59.6 degrees, measured counterclockwise from the x-axis along the cushion.
This result can be found by using the equation for conservation of momentum, which states that both the magnitude and the direction of the momentum before and after the collision must be the same.
Since the mass and the speed of the ball changed, the direction of the vector must have changed as well. In this case, the vector changed direction from 60 degrees to 47 degrees, a difference of 13 degrees.
This means that the vector must have rotated counterclockwise by 13 degrees, or in other words, the change of momentum vector points at 59.6 degrees, measured counterclockwise from the x-axis along the cushion.
Know more about momentum here
https://brainly.com/question/30487676#
#SPJ11
if a bag has a mass of 25 kg, how much force must you apply vertically to lift it off of a baggage cart?
A force of 245 N must be applied vertically to lift the bag off the baggage cart.
The force that must be applied vertically to lift a bag off a baggage cart, given that the bag has a mass of 25 kg, can be determined using the formula F = m*g
where F is force, m is mass, and g is acceleration due to gravity. The value of g is 9.8 m/s².So, F = 25 kg x 9.8 m/s² = 245 N. Therefore, a force of 245 N must be applied vertically to lift the bag off the baggage cart.
The mass of the bag = 25 kg.The formula used is, F = m*gwhereF = Force required to lift the bagm = Mass of the bagg = Acceleration due to gravityF = 25 kg x 9.8 m/s² = 245 N.
Therefore, a force of 245 N must be applied vertically to lift the bag off the baggage cart.
to know more about Force refer here:
https://brainly.com/question/13191643#
#SPJ11
tome the cat is chasing jerry the mouse across a table surface 1.5 m high. jerry steps out of the way at the last second, and tom slides off the edge of the table at a speech of 5 m/s. where will tom strike the floor?
Tom will strike the floor at a distance of 1.28 m from the edge of the table.
Tom the cat is chasing Jerry the mouse across a table surface that is 1.5 m high. Jerry steps out of the way at the last second, and Tom slides off the edge of the table at a speed of 5 m/s. The position of Tom at different times can be analyzed by applying the kinematic equations. Tom is in free fall and his motion is governed by the equations of motion under gravity. Therefore, his initial velocity is zero, and acceleration due to gravity is -9.8 m/s². Let’s use the second equation of motion to calculate the time required for Tom to hit the ground.
v = u + at Where, v = final velocity = 0 m/s, u = initial velocity = 5 m/s, a = acceleration = -9.8 m/s², t = time taken
Solving for t, we get
0 = 5 + (-9.8)t
t = 0.51 s
Therefore, it takes 0.51 s for Tom to hit the ground. The distance traveled by Tom before hitting the ground can be calculated using the third equation of motion.
s = ut + ½ at² Where, s = distance traveled, u = initial velocity = 5 m/s, a = acceleration = -9.8 m/s², t = time taken = 0.51 s
Solving for s, we get
s = 5 × 0.51 + ½ (-9.8) × (0.51)²
s = 1.28 m
Therefore, Tom will strike the floor at a distance of 1.28 m from the edge of the table. The motion of Tom is an example of projectile motion because he is in free fall and there is no horizontal acceleration acting on him. Projectile motion is a type of motion where an object is thrown near the earth’s surface and moves along a curved path under the action of gravity.
For more such questions on Projectile motion.
https://brainly.com/question/11049671#
#SPJ11
what is the calculus way to find potential energy from force? what is the relationship between force and potential energy?
The relationship between force and potential energy can be found using: calculus and examining the graph of the equation PE = Fd
Potential energy is a form of stored energy that results from the force of gravity or from a conservative force. The relationship between force and potential energy is described by the equation PE = Fd, where PE is potential energy, F is force, and d is displacement.
To calculate potential energy using calculus, start by taking the integral of force with respect to displacement. This will give you the work done by the force, which is equal to the potential energy. Mathematically, this is represented as PE = ∫Fd. This equation can be used to find the potential energy of an object if you know the force and the displacement.
The relationship between force and potential energy can also be determined by examining the graph of the equation PE = Fd. This graph is a straight line with a slope of d and a y-intercept of zero. The slope of the line represents the displacement, while the y-intercept represents the potential energy.
As the force increases, the potential energy increases by the same amount as the force multiplied by the displacement. In summary, the relationship between force and potential energy can be found using calculus. The equation PE = Fd can be used to calculate potential energy from force and displacement.
The graph of this equation is a straight line with a slope of d and a y-intercept of zero, and it shows that as the force increases, the potential energy increases by the same amount as the force multiplied by the displacement.
To know more about potential energy refer here:
https://brainly.com/question/24284560#
#SPJ11
As a boat moves through water, it experiences drag, which is similar to air resistance. Does drag slow the boat down or speed it up?
Answer:
Whether the object or fluid is moving, drag occurs as long as there is a difference in their velocities. Because it is resistant to motion, drag tends to slow down the object. An effective way to reduce it is to alter the shape of the object and make it streamline. Drag Force Examples of Drag Force
Explanation: