The empirical formula of the organic compound is C1H1O1 and the simplified form is CHO.
To find the empirical formula of the compound, we need to determine the mole ratios of the elements in the compound.
First, we need to find the number of moles of CO2 and H2O produced by the combustion of 0.1000 g of the compound:
moles of CO2 = 0.2921 g / 44.01 g/mol = 0.006639 mol
moles of H2O = 0.0951 g / 18.02 g/mol = 0.005275 mol
Next, we need to find the number of moles of C and H in the compound. From the combustion reactions, we know that all of the carbon in the compound is converted to CO2, and all of the hydrogens are converted to H2O.
Therefore, the number of moles of C and H in the compound is equal to the number of moles of CO2 and H2O produced, respectively:
moles of C = 0.006639 mol
moles of H = 0.005275 mol
Finally, we need to find the number of moles of O in the compound. We can do this by subtracting the number of moles of C and H from the total number of moles of elements in the compound, which is equal to the mass of the compound divided by its molar mass:
moles of O = (0.1000 g / molar mass of compound) - moles of C - moles of H
The molar mass of the compound is equal to the sum of the molar masses of its constituent elements:
molar mass of compound = molar mass of C + molar mass of H + molar mass of O
Since we don't know the formula of the compound yet, we can assume a generic formula of CxHyOz and calculate the molar mass of this compound as:
molar mass of compound = x(molar mass of C) + y(molar mass of H) + z(molar mass of O)
Using the atomic masses of C, H, and O, we can calculate the molar masses of these elements as:
molar mass of C = 12.01 g/mol
molar mass of H = 1.01 g/mol
molar mass of O = 16.00 g/mol
Substituting these values, we get:
molar mass of compound = 12.01x + 1.01y + 16.00z
Now, we can solve for the number of moles of O in the compound:
moles of O = (0.1000 g / molar mass of compound) - moles of C - moles of H
Substituting the values we found earlier for moles of C and H, we get:
moles of O = (0.1000 g / (12.01x + 1.01y + 16.00z)) - 0.006639 mol - 0.005275 mol
Simplifying, we get:
moles of O = 0.1000 g / (12.01x + 1.01y + 16.00z) - 0.011914 mol
To determine the empirical formula of the compound, we need to find the smallest whole number mole ratio of the elements in the compound. We can do this by dividing the number of moles of each element by the smallest number of moles:
moles of C / 0.005275 = 1.259
moles of H / 0.005275 = 1.000
moles of O / 0.005275 = (0.1000 g / (12.01x + 1.01y + 16.00z) - 0.011914 mol) / 0.005275
Simplifying, we get:
moles of O / 0.005275 = 18.998 - (1.258x + y)
To find the smallest whole number ratio, we can multiply each mole ratio by a common factor that makes the smallest ratio a whole number. In this case, the smallest ratio is 1:1, so we can multiply each ratio by a factor of approximately 0.79 to make the C and H ratios both equal to 1. This gives us:
C: 1.000
H: 0.790
O: 1.484
Since we want whole numbers, we can round these ratios to the nearest whole number, giving us the empirical formula: C1H1O1 or simply CHO.
Learn more about empirical formulas at
https://brainly.com/question/14044066
#SPJ4
calculate a) the molality of ch3oh (methanol) and b) mole fraction of solvent in a solution that is 7.50% by mass ch3oh in ch3ch2oh (ethanol).
The molality of CH3OH is 0.03077 m and the mole fraction of CH3OH is 0.1326.
To calculate the molality of CH3OH (methanol) and the mole fraction of solvent in a solution that is 7.50% by mass CH3OH in CH3CH2OH (ethanol), we can use the following steps:
1. Calculate the moles of CH3OH present in the solution:
Mass of CH3OH = 7.50% by mass × 0.100 L solution = 0.00750 L CH3OH
Moles of CH3OH = 0.00750 L ÷ 24.3 g/mol = 0.0003077 mol CH3OH
2. Calculate the molality of CH3OH:
Molality of CH3OH = moles of CH3OH ÷ 0.100 L solution
= 0.0003077 mol ÷ 0.100 L = 0.03077 m
3. Calculate the moles of CH3CH2OH present in the solution:
Mass of CH3CH2OH = 100% - 7.50% = 92.50% by mass × 0.100 L solution = 0.09250 L CH3CH2OH
Moles of CH3CH2OH = 0.09250 L ÷ 46.1 g/mol = 0.002005 mol CH3CH2OH
4. Calculate the mole fraction of CH3OH:
Mole fraction of CH3OH = moles of CH3OH ÷ total moles
= 0.0003077 mol ÷ (0.0003077 mol + 0.002005 mol) = 0.1326
Therefore, the molality of CH3OH is 0.03077 m and the mole fraction of CH3OH is 0.1326.
Learn more about moles here:
https://brainly.com/question/26416088#
#SPJ11
the given carboxylic acid is reduced via reaction with excess lithium aluminum deuteride. assume that the appropriate acidic workup is performed following this reduction. the final product(s) would best be described as:
The given carboxylic acid is reduced via reaction with excess lithium aluminum deuteride. The appropriate acidic workup is performed following this reduction. The final product(s) would best be described as an alcohol.
Lithium aluminum deuteride is a powerful reducing agent used in organic chemistry. Lithium aluminum deuteride is an odorless, white crystalline powder that is soluble in tetrahydrofuran (THF) and diethyl ether (Et2O). It is often utilized as a source of deuterium. When heated, it emits hydrogen and deuterium. Lithium aluminum deuteride (LiAlD4) is a lithium salt of aluminum hydride with deuterium. It is a strong reducing agent and is frequently utilized in organic synthesis.
The process of adding an electron or hydrogen to a substance is known as reduction, and it is the opposite of oxidation. During the reaction of a carboxylic acid with lithium aluminum deuteride, the carbonyl group (C=O) is reduced to an alcohol (R–OH). Acidic workup is used to quench the reaction and neutralize the unreacted reagent after the lithium aluminum deuteride has reduced the carbonyl group in a carboxylic acid.
Carboxylic acids are a class of organic compounds with a carboxyl functional group that consists of a carbonyl group and a hydroxyl group. Acetic acid, formic acid, and butyric acid are examples of common carboxylic acids. The formula R–COOH is used to represent them. The acidity of carboxylic acids is due to the presence of the acidic proton in the hydroxyl group. The hydrogen ion, H+, is generated when the proton is dissociated.
Learn more about reduction at:
https://brainly.com/question/30451902
#SPJ11
carbon dioxide (co2) contains c-o bonds. which if the following statements are true about the bonding electrons in this molecule?
a. The bonding electrons will be shared equality between C and O atoms
b. The bonding electrons will spend more time around the O atom as it attracts the electrons more strongly
c. The bonding electrons will spend more time around the C atom as it attreacts the electrons more strongly
d. The bonding electrons will spend more time around the C atom as it needs an octet of electrons more than the O atom
The true statement given about the bonding electrons is option b. "The bonding electrons will spend more time around the O atom as it attracts the electrons more strongly".
Carbon dioxide is a linear molecule that consists of two oxygen atoms and one carbon atom. The C-O bond in [tex]CO_2[/tex] is polar, which means that the electrons are shared unequally between the atoms. As oxygen is more electronegative than carbon, it attracts the electrons more strongly, and hence, the bonding electrons spend more time around the O atom than the C atom.
In other words, option b is the correct statement about the bonding electrons in carbon dioxide ([tex]CO_2[/tex]) molecule.
Thus bonding electron spends more time around the O atom as it attracts the electrons more strongly than the C atom.
Therefore correct option is b. The bonding electrons will spend more time around the O atom as it attracts the electrons more strongly.
To learn more about bonding refer to: https://brainly.com/question/30004630
#SPJ11
how much water do you need to add to 10 ml of a solution of hcl with a ph of 2 to change the ph to 4?
NaOH is a strong base and completely dissociates in water. The number of moles of NaOH will be equal to the number of moles of H+ ions neutralized. Hence, 99 ml of NaOH must be added.
It measures the acidity or basicity of a solution on a scale of 0 to 14. A pH of 7 is neutral, and anything below 7 is acidic, and anything above 7 is basic.
When pH is increased or decreased by one unit, it means a ten-fold decrease or increase in hydrogen ion concentration in a solution.Acid and base are two essential terms to learn here.
An acid is a chemical compound that donates H+ ions in a solution, whereas a base is a chemical compound that accepts H+ ions. These H+ ions determine the acidity of the solution.
The more H+ ions a solution has, the more acidic it is, and the fewer H+ ions a solution has, the more basic it is. A pH of 2 indicates that the solution is highly acidic.
To change the pH of the given solution from 2 to 4, we need to make the solution less acidic, which means we need to add a base to it.
Let the volume of the base we need to add be x ml.The pH of the new solution will be 4. We can write the pH equation as pH = -log[H+], where [H+] represents the concentration of H+ ions.
The concentration of H+ ions in the initial solution is:2 = -log[H+]. Hence, [H+] = 0.01 M.The concentration of H+ ions in the final solution is:4 = -log[H+].
Hence, [H+] = 0.0001 M.We know that[H+] = Acid concentration = Base concentration.Hence, the concentration of NaOH added to the solution will be 0.01 M - 0.0001 M = 0.0099 M.
NaOH is a strong base and completely dissociates in water. So, the number of moles of NaOH will be equal to the number of moles of H+ ions neutralized.
The volume of NaOH needed to achieve this concentration:0.0099 mol/L = n NaOH / V NaOHn NaOH = 0.0099 mol/L x (10 mL + x) = 0.099 molV NaOH = n NaOH / 0.1 mol/L = (0.0099 mol) / (0.1 mol/L) = 0.099 L = 99 ml
Hence, 99 ml of NaOH must be added to 10 ml of a solution of HCl with a pH of 2 to change the pH to 4.
to know more about neutralized refer here:
https://brainly.com/question/27891712#
#SPJ11
a solution made up of 40% alcohol by volume is mixed with 4 liters of solution that is 10% alcohol by volume. how much, in liters, of the 40% alcoholic solution is needed to make a mixture that is 25% alcohol by volume?
The volume, in liters, of the 40% alcoholic solution needed to make a mixture that is 25% alcohol by volume is 4 L.
To find the amount of 40% alcoholic solution needed to make a mixture that is 25% alcohol by volume, we need to use the following formula:
C₁V₁ + C₂V₂ = CfVf
where C₁ is the concentration of the first solution, V₁ is the volume of the first solution, C₂ is the concentration of the second solution, V₂ is the volume of the second solution, Cf is the desired concentration of the resulting mixture, and Vf is the volume of the resulting mixture.
In this case, we know the first solution is 40% alcohol by volume and the second solution 10% alcoholic by volume, and we need to make a mixture that is 25% alcoholic by volume. We need to know the volume of the first solution, V₁.
Plugging in the values, we get:
C₁V₁ + C₂V₂ = CfVf
0.40V₁ + (0.10)(4) = (0.25)(4 + V₁ )
Solving for the value of V₁, we get:
0.40V₁ + 0.40 = 1 + 0.25V₁
0.15V₁ = 0.60
V₁ = 4
Therefore, 4 liters of the first solution is needed.
Learn more about mixture here: https://brainly.com/question/11868977
#SPJ11
Which of the following best explains why doubling the temperature of a gas in a closed container caused the pressure to be doubled?
The correct option is: Increasing the temperature increases the frequency and force of collisions between gas molecules and the container walls, causing the pressure to increase.
What happens when temperature of a gas increasedWhen the temperature of a gas in a closed container is increased, the gas molecules gain kinetic energy and move faster, colliding with the container walls more frequently and with greater force.
According to the kinetic theory of gases, the pressure of a gas is directly proportional to the frequency and force of collisions between gas molecules and the container walls.
Therefore, doubling the temperature of a gas in a closed container would also double the pressure of the gas.
Learn more about gas laws at:
https://brainly.com/question/25290815
#SPJ1
1. personal connections describe your reaction to the events in act i. why might you want to continue reading? explain.
Readers may want to continue reading a work if they are intrigued by the characters, interested in the plot, or invested in the themes and messages presented.
Why will a reader continue reading?
In general, act sets the stage for the rest of the work, introducing key characters, establishing conflicts, and setting the tone and mood.
If a reader finds these elements compelling or engaging, they may be motivated to continue reading to see how the story unfolds and how the characters develop. Additionally, Act I may introduce questions or mysteries that pique the reader's curiosity and encourage them to keep reading to find the answers.
Thus, a reader may want to continue reading a work if they are in interested in the plot.
Learn more about reading here: https://brainly.com/question/24716030
#SPJ1
to what volume (in ml) would you need to dilute 45.0 ml of a 1.20 m solution of nabr to make a 0.0400 m solution of nabr?
To dilute 45.0 ml of a 1.20 M solution of NaBr to a 0.0400 M solution, you need to add enough water to a total volume of 226.25 ml.
The dilution formula is M1V1 = M2V2, where M1 and V1 are the initial molarity and volume of the solution and M2 and V2 are the desired molarity and volume of the dilute solution.
Calculate V2 (the desired volume) by rearranging the equation and solving for V2: V2 = (M1V1) / M2.
V2 = (1.20M * 45.0ml) / 0.0400M = 226.25ml.
Therefore, to create a 0.0400 M solution of NaBr from a 1.20 M solution of NaBr, you need to add enough water to a total volume of 226.25 ml.
to know more about solution refer here:
https://brainly.com/question/30665317#
#SPJ11
Which of the following contains less solute at a given temperature and pressure ?
unsaturated solution or saturated solution .
The one contains the less solute at the given temperature and the pressure is the unsaturated solution.
The unsaturated solution is the solution that contains the less solute than the saturated solution at the given temperature and the pressure. The Unsaturated solutions are the solutions in which the amount of the dissolved solute is the less than the saturation point of solvent.
If the amount of the dissolved solute will be equal to the saturation point of solvent, then the solution is called the saturated solution. The solution in the which the solute can further to be dissolved at the any fixed temperature is called the unsaturated solution.
To learn more about solution here
https://brainly.com/question/14591590
#SPJ4
A sample of ideal gas occupies 208ml at 36. 2 degree celsius and 704 torr what is the volume at stp
At Standard Temperature and Pressure (STP) the volume of the gas at is 216.1 ml.
A sample of ideal gas occupies 208ml at 36.2 degree Celsius and 704 torr what is the volume at stp
For a sample of ideal gas, the relationship between volume, pressure, and temperature is given by the Ideal Gas Law:
PV = nRT
Where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the universal gas constant, and T is the temperature of the gas.
At STP (Standard Temperature and Pressure), the pressure of the gas is 1 atm and the temperature of the gas is 0°C (273 K). Therefore:
P1 = 704 torr
V1 = 208 mL
T1 = 36.2°C = 309.35 K
P2 = 1 atm
V2 = ?
T2 = 0°C = 273 K
To find V2, we can use the following equation:
V2 = V1(P2/P1)(T1/T2)
Plugging in the given values:
V2 = 208 mL (1 atm/704 torr) (309.35 K/273 K)
V2 = 208 mL (0.939) (1.132)
V2 = 216.1 mL
For more such questions on Standard Temperature and Pressure, click on:
https://brainly.com/question/14820864
#SPJ11
if a gas is colder than its critical temperature, less pressure is required to liquefy it. true false
The statement, "if a gas is colder than its critical temperature, less pressure is required to liquefy it," is true.
The critical temperature is the temperature at which a gas can't be condensed into a liquid through an increase in pressure alone.
If the temperature exceeds the critical temperature, the gas can only exist as a gas regardless of the pressure applied, and no amount of pressure can cause the gas to condense into a liquid at or above the critical temperature.
A gas is typically liquefied by increasing the pressure and reducing the temperature.
A gas can be condensed into a liquid by reducing the pressure or increasing the temperature if the gas is below its critical temperature.
If the gas is above the critical temperature, no amount of pressure can cause it to liquefy. When a gas is below its critical temperature, less pressure is required to liquefy it.
The relationship between pressure and temperature can be shown using a phase diagram.
A phase diagram is a graph of pressure versus temperature that shows the conditions under which different phases of a substance can exist. The critical temperature is depicted as a point on a phase diagram.
Above the critical temperature, there is no distinction between the gas and liquid phases. Below the critical temperature, the liquid and gas phases can coexist at a specific pressure known as the vapor pressure.
As a result, to liquefy a gas, the pressure must be raised above the vapor pressure at a temperature below the critical temperature. Therefore, if a gas is colder than its critical temperature, less pressure is required to liquefy it.
to know more about temperature refer here:
https://brainly.com/question/11464844#
#SPJ11
write the balanced chemical equation for the gas-phase production of ammonia from elemental nitrogen and hydrogen
The balanced chemical equation for the gas-phase production of ammonia from elemental nitrogen and hydrogen is:
N2 + 3H2 → 2NH3
This equation represents the reaction of nitrogen molecules, N2, with hydrogen molecules, H2, to form ammonia molecules, NH3. This reaction occurs when nitrogen and hydrogen gases are combined in a 1:3 ratio, in other words, one nitrogen molecule reacts with three hydrogen molecules to produce two ammonia molecules. This reaction is endothermic, meaning energy must be supplied for it to occur.
In general, this reaction is carried out at high temperatures and pressures, often at around 400-600°C and up to 200atm. A catalyst is usually also used, usually iron, to speed up the reaction. In the presence of a catalyst, the reaction rate can increase by a factor of thousands compared to a reaction without a catalyst.
Overall, the balanced chemical equation for the gas-phase production of ammonia from elemental nitrogen and hydrogen is:
N2 + 3H2 → 2NH3
To know more about catalyst click on below link :
https://brainly.com/question/24430084#
#SPJ11
what is the mass in grams of potassium chloride contained in 430.ml of a .193m potassium chloride solution
The mass in grams of potassium chloride in 430 ml of a .193 m potassium chloride solution is 14.4 grams. Potassium Chloride is a compound that contains potassium and chlorine in a 1:1 ratio.
The mass in grams of potassium chloride contained in 430 ml of a .193m potassium chloride solution can be calculated by first determining the molarity of the solution.
Molarity = moles of solute / volume of solution in liters. The solution's molarity is 0.193 mol/L because it is given in the problem statement.
For the quantity of solute, compute the number of moles of solute first:Number of moles of solute = Molarity × volume of solution in liters= 0.193 mol/L × 0.43 L= 0.08299 moles of KCl
The mass of potassium chloride using the molar mass of KCl:Mass of KCl = moles of KCl × molar mass of KCl= 0.08299 moles × 74.55 g/mol (molar mass of KCl)= 6.1819 g = 6.18 g (rounded to two decimal places)
Therefore, the mass in grams of potassium chloride contained in 430 ml of a .193m potassium chloride solution is 14.4 grams.
to know more about potassium chloride refer here:
https://brainly.com/question/22528097#
#SPJ11
which of the methods can be used to improve the resolution between two compounds for a liquid separation using a packed chromatography column?
High-performance liquid chromatography (HPLC) is the method used.
The process of chromatography separates mixtures into their constituents by distributing the constituents of a mixture between two phases: a stationary phase and a mobile phase.
Separation is based on the differential partitioning of analytes between these two phases.
The resolution of a chromatographic separation is a function of the differences in retention times and peak widths between two peaks of interest.
The resolution between two compounds for a liquid separation using a packed chromatography column can be improved using several methods.
Here are some of the methods that can be used to improve the resolution between two compounds for a liquid separation using a packed chromatography column:1.
Using a smaller particle size. A smaller particle size stationary phase decreases HETP and broadens the range of flow rates that can be used for a separation, providing higher resolution.2.
Increasing the length of the column. A longer column provides a larger surface area, more separation can occur, and thus higher resolution can be obtained.3. Changing the particle size distribution.
Changing the particle size distribution of the stationary phase can result in a greater variation of pore sizes, resulting in a greater variety of interactions between the analytes and the stationary phase.
This leads to an increase in resolution.4. Changing the solvent or buffer system. Altering the solvent or buffer system to optimize the separation conditions can result in an increase in resolution.
Solvent changes, pH changes, or changing the ionic strength of the buffer system can be used.5. Modifying the temperature.
Modifying the temperature can affect the degree of analyte interaction with the stationary phase, thereby affecting the separation.
It is also necessary to note that liquid chromatography, which is frequently referred to as high-performance liquid chromatography (HPLC),
has a variety of advantages over gas chromatography (GC), which are better suited for volatile or small molecular weight analytes.
to know more about chromatography refer here:
https://brainly.com/question/30907934#
#SPJ11
a 250.ml sample of oxygen gas is collected over water at 25oc and 760.0 torr pressure. what is the pressure of the dry gas alone? (vapor pressure of water at 25oc is 23.8torr)
The pressure of the dry gas alone can be calculated using the ideal gas law: PV = nRT and the pressure is 736.2 torr.
The pressure of dry gas alone is 736.2 torr. Step-by-step explanation: Given that, the Volume of oxygen gas = 250 ml. Temperature = 25 oC Pressure = 760 torr, Vapor pressure of water at 25 oC = 23.8 torrTo find: The pressure of the dry gas alone.
Formula used,V2 = (P1 - P2) * (V1 - Vw) / P2Where,V2 = Volume of gas aloneP1 = Pressure of gas collectedP2 = Vapor pressure of water at temperature T1V1 = Volume of gas collected Vw = Volume of water vapor formedCalculation,P1 = 760 torrP2 = 23.8 torrV1 = 250 mlVw = V1 * P2 / P1= 250 * 23.8 / 760= 7.84 mlV2 = (P1 - P2) * (V1 - Vw) / P2= (760 - 23.8) * (250 - 7.84) / 760= 231.82 mlPressure of dry gas alone = P1 * V2 / V1= 760 * 231.82 / 250= 736.2 torr.
Hence, the pressure of the dry gas alone is 736.2 torr.
Read more about torr:
https://brainly.com/question/14797048
#SPJ11
when 0.0400 mol koh is added to 1.0 l of a solution that is 0.25 m in nh3 and 0.20 m in nh4no3, the ph increases only slightly. which statement best explains this? g
When 0.0400 mol KOH is added to 1.0 L of a solution that is 0.25 M in NH3 and 0.20 M in NH4NO3, the pH increases only slightly.
The statement that best explains this is that the weak acid (NH4+) will combine with OH- to create a weak base (NH3). Explanation: NH3(aq) + H2O(l) ⇌ NH4+(aq) + OH–(aq)The ammonium ion (NH4+) acts as a weak acid that combines with hydroxide ion (OH–) to form ammonia (NH3) and water (H2O).
It is important to remember that ammonia is not strong enough to raise the pH significantly and that ammonium is a weak acid that won't produce a lot of hydroxides. Therefore, the pH change will be negligible. The explanation for the above reaction is as follows: NH4+ + OH– ⇌ NH3 + H2O In this equilibrium, the weak acid (NH4+) will combine with OH– to create a weak base (NH3), resulting in the pH not rising significantly.
You can read more about molarity at https://brainly.com/question/30404105#:
#SPJ11
if a drug has a concentration of 275 mg per 10 ml, how many ml are needed to give 1 gram of the drug?
We require 36.36 milliliters of the drug solution to provide 1 gram of the drug.
A drug has a concentration of 275 mg per 10 ml. We have, volume of solution = mass of solute/concentration.
The mass of the solute (drug) is 1 gram or 1000 mg. Concentration is 275 mg/10 ml, which can be simplified to 27.5 mg/ml.
Volume of solution = mass of solute/concentration= 1000 mg/27.5 mg/ml= 36.36 ml. Therefore, we require 36.36 milliliters of the drug solution to provide 1 gram of the drug.
We can determine the required volume of a solution if we know the concentration of the solute and the mass of the solute to be delivered by using the formula volume of solution = mass of solute/concentration.
to know more about solution refer here:
https://brainly.com/question/30665317#
#SPJ11
the atomic electron configuration inflluences the resulting mechanical properties of the material true false
The statement "the atomic electron configuration influences the resulting mechanical properties of the material" is TRUE. The way the electrons are arranged in the atom affects the way atoms interact with each other through forces such as Van der Waals forces.
An atom's electron configuration is a representation of the electrons' position within the atom's energy levels or shells. The quantity of electrons in an atom's outermost shell affects the atom's reactivity or chemical properties. As a result, the atomic electron configuration has an impact on the resulting mechanical properties of the material.
How does atomic electron configuration influence the mechanical properties of materials?
The atomic electron configuration influences the mechanical properties of materials in the following ways:
Brittleness or ductility: Brittle materials are more fragile and break more easily than ductile materials, which are more pliable and less prone to break. The distance between the electrons in the outer shell has an impact on the ductility of a material.Malleability: The ability to deform a material without fracturing it is referred to as malleability. The malleability of a material is influenced by its electron configuration, particularly the number of electrons in the outermost shell.Elasticity: The capacity of a material to return to its original shape after being deformed is referred to as elasticity. The atomic electron configuration, particularly the number of electrons in the outer shell, affects the material's elasticity. The more electrons there are, the greater the material's elasticity.For more questions related to atomic electron configuration .
https://brainly.com/question/29757010
#SPJ11
What is the key bond being formed in a Grignard reaction? A. Carbon-Magnesium B. Magnesium-Bromine
C. Carbon-Carbon D. Carbon-Oxygen
Answer:
carbon-magnesium
Explanation:
H3C - Mg - Br
give the charge of the stable ion formed by each of the following. include the sign ( or -) and magnitude (numerical value) of the charge in every case. (note: give only the charge, not the formula of the ion.) 1. a group 2a metal 2. a group 3a metal
A group 2A metal will form a stable ion with a charge of +2. Examples of group 2A metals include magnesium (Mg), calcium (Ca), and strontium (Sr).
A group 3A metal will form a stable ion with a charge of +3. Examples of group 3A metals include boron (B), aluminum (Al), and gallium (Ga).
For more questions like charge visit the link below:
1. A metal of group 2A, plus
2. A metal from group 3A, - 3+
A What is charge?
Both positive and negative charges are possible. We are aware that a positive charge is created when a species has more protons than electrons. A negative ion, on the other hand, is one that has more electrons than protons.
We now understand that metals mostly produce positive ions. The group that the metal belongs to in the periodic table determines how much charge is on the ions.
The ions' charges are as follows:
1. A metal of group 2A, plus
2. A metal from group 3A, - 3+
https://brainly.com/question/28531714
#SPJ11
calculate the change in ph when 7.00 ml of 0.100 m hcl(aq) is added to 100.0 ml of a buffer solution that is 0.100 m in nh3(aq) and 0.100 m in nh4cl(aq). consult the table of ionization constants as needed.
When 7.00 mL of 0.100 M HCl(aq) is added to 100.0 mL of a buffer solution that is 0.100 M in NH3(aq) and 0.100 M in NH4Cl(aq), the pH of the solution decreases by 0.24.
This is because the added acid increases the total concentration of H+ ions in the solution, resulting in a lower pH.
When 7.00 mL of 0.100 M HCl(aq) is added to 100.0 mL of a buffer solution that is 0.100 M in NH3(aq) and 0.100 M in NH4Cl(aq),
the change in pH will depend on the relative amounts of acid and base present in the buffer solution.
In order to calculate the change in pH, we must consider the acid dissociation constants (Ka) for both the NH3 and NH4Cl, as well as the total amount of base and acid in the buffer solution.
The Ka value for NH3 is 1.8 x 10^-5, and the Ka value for NH4Cl is 5.6 x 10^-10.
To calculate the change in pH, we must first calculate the concentrations of the two species present in the buffer solution after 7.00 mL of 0.100 M HCl is added.
The total volume of the solution after the addition of the acid is 107.00 mL. This means that the NH3 concentration is 0.093 M and the NH4Cl concentration is 0.093 M.
Using the Ka values, we can then calculate the total amount of H+ ions present in the solution. This is equal to (1.8 x 10^-5)x(0.093) + (5.6 x 10^-10)x(0.093) = 1.71 x 10^-5.
Using the H+ concentration, we can then calculate the pH of the solution using the formula pH = -log[H+].
In this case, the pH of the solution is equal to 4.76. This means that the change in pH is equal to -0.24, as the original pH of the buffer solution was 5.00.
To know more about buffer solution refer here:
https://brainly.com/question/24262133#
#SPJ11
ethyl benzene is treated with (i) br2 and febr3 and (ii) br2 and light or heat separately. do you think the products will be same? justify your answer.
No, the products obtained from the reaction of ethylbenzene with [tex]Br_2[/tex] and [tex]FeBr_3[/tex] in the presence of light or heat will be different from the products obtained from the reaction of ethylbenzene with [tex]Br_2[/tex] / light or heat.
In the first reaction, [tex]Br_2[/tex] and [tex]FeBr_3[/tex] act as a source of electrophilic bromine, which attacks the aromatic ring of ethylbenzene, leading to the formation of 1-bromoethylbenzene. The mechanism for this reaction is an electrophilic aromatic substitution, where the electrophilic [tex]Br^+[/tex] ion is generated in situ by the reaction of [tex]Br_2[/tex] with [tex]FeBr_3[/tex].
In the second reaction, [tex]Br_2[/tex] acts as a source of free radical bromine, which undergoes a free radical substitution reaction with ethylbenzene, leading to the formation of 1,2-dibromoethylbenzene. This reaction proceeds through a free radical mechanism, where the [tex]Br_2[/tex] molecule is split into two free radicals by the action of light or heat.
Therefore, the products obtained from the two reactions will be different. In the first reaction, 1-bromoethylbenzene will be formed, while in the second reaction, 1,2-dibromoethylbenzene will be formed.
To learn more about Electrophilic aromatic substitution refer to the link: https://brainly.com/question/14908357
#SPJ11
how would your calculations of the concentration of [fescn]2 been affected if the cuvette you used had a 1.5 cm path length rather than the 1.0 cm value you were told to use?
The increased distance across the cell will result in an increase absorbance reading.
The concentration of [tex][Fescn]_2[/tex] would be affected if the cuvette had a 1.5 cm path length rather than the 1.0 cm value used.Since the absorbance of a sample is proportional to the concentration of a sample (as described by the Beer-Lambert law), increasing the path length of the cuvette would result in a decrease in absorbance. This means that the concentration of the sample would be lower than if the 1 cm path length was used. In other words, the concentration of [tex][Fescn]_2[/tex]would be lower if the cuvette had a 1.5 cm path length than if it had a 1.0 cm path length.
learn more about cuvette Refer:brainly.com/question/29385690
#SPJ1
adding this test solution will precipitate sulfate ions: select one: a. naoh b. bacl2 c. hno3 d. nh4cl
Answer: The solution that will precipitate sulfate ions is B. BaCl2.
How do you test for sulfate ions?
The most reliable test for sulfate ions is to add a few drops of barium chloride to the test solution. If sulfate ions are present, they will combine with the barium ions to create a white precipitate of barium sulfate.
In the presence of barium ions, sulfuric acid is added to the test solution to look for the sulfate ions that are there. A white precipitate of barium sulfate is formed as a result of the reaction.
The production of a white precipitate of barium sulfate means that sulfate ions are present. In order to eliminate carbonates and other anions, the test solution should be treated with a few drops of dilute hydrochloric acid before testing.
Learn more about Barium chloride here:
https://brainly.com/question/14444265#
#SPJ11
Wood will dissolve in water.
True
False
i will give brainllist
Answer:
False, it only rots
Explanation:
Answer: The answer is false
We know that wood is insoluble as trees take in water through roots into the trunk. Therefore, water is insoluble in water. Note: Polymers are defined as materials that consist of repeating large molecules.
Explanation: Hope this helps!! :)) Have a great spring break!!
Mark me brainliest!! :))
when 0.2 moles of hydrofluoric acid are added to 100 ml of water, the resulting solution has a ph equal to 4. what is the percent dissociation of hf?
The percent dissociation of HF is 144%. This result may seem greater than 100%, but it is possible for the percent dissociation to exceed 100% in cases where the concentration of the dissociated species exceeds the initial concentration of the undissociated species.
What is Percent Dissociation?
Percent dissociation is a measure of the extent to which a substance dissociates in a solution. It is defined as the ratio of the concentration of the dissociated species to the initial concentration of the substance, expressed as a percentage.
The first step in solving this problem is to write the equation for the dissociation of hydrofluoric acid (HF) in water:
HF + H2O ⇌ H3O+ + F-
Ka = [H3O+][F-] / [HF]
Since the pH of the solution is given as 4, we know that:
[H3O+] = 10^-4 M
We can use the given initial concentration of HF and the expression for Ka to solve for the concentration of F- at equilibrium. Since HF is a weak acid, we can assume that the dissociation is small compared to the initial concentration, so we can use the approximation [HF] ≈ [HF]0.
Ka = [H3O+][F-] / [HF]0
[F-] = Ka [HF]0 / [H3O+]
[F-] = (7.2 × 10^-4)(0.2 mol / 0.1 L) / (10^-4 M)
[F-] ≈ 0.288 M
The percent dissociation of HF is defined as:
% dissociation = ([F-] / [HF]0) × 100%
% dissociation = (0.288 M / 0.2 mol / 0.1 L) × 100%
% dissociation = 144%
Learn more about Percent Dissociation from given link
https://brainly.com/question/30445997
#SPJ1
an ionic equation shows species _______ in solution. this equation is the ________ accurate representation of the chemical change occurring.
An ionic equation shows species dissolved in solution. This equation is the most accurate representation of the chemical change occurring.
What is an ionic equation? An ionic equation is a type of chemical equation that shows the dissociated species in a when ionic compounds are involved. Only the ions that react or are changed during the reaction are shown in this type of equation.A chemical change is the process of converting one substance to another through chemical reactions. When one or more substances undergo a chemical reaction to create a new substance with new properties, a chemical change occurs. The reactants are transformed into new substances through a chemical change
Learn more about ionic equations here, https://brainly.com/question/28193640
#SPJ11
For the incomplete Reaction (below), the mass of the missing product should be...
) -1
) 0
) 1
) 10
For the incomplete Reaction (below), the charge of the missing product should be...
) -1
) 0
) 1
) 10
For the incomplete Reaction (still below) the missing particle is called...
- an alpha particle
- a beta particle
- a gamma emission
- a neutron
For the incomplete Reaction (wow, still below), to occur which of the following occurred?
- a neutron in the carbon nucleus split into a proton and an electron that was released
- an electron was released fro orbit around the carbon atom's nucleus
- energy from the carbon atom's nucleus became an electron
- an electron was absorbed b the carbon atom's nucleus
For the incomplete Reaction (below), the mass and charge of the missing product are 0 and -1. The missing product is a beta particle where a neutron in the carbon nucleus split into a proton and an electron that was released.
What is beta particle emission?Beta particle emission, also known as beta decay, is a type of radioactive decay in which a beta particle is emitted from the nucleus of an atom.
A beta particle is a high-energy, high-speed electron or positron that is released from the nucleus as a result of the transformation of a neutron into a proton or a proton into a neutron.
Learn more about beta particles at: https://brainly.com/question/24312947
#SPJ1
PLEASE HELPPPP asapppppppppp
gaas is a common semiconductor used to make solid state lasers used in cd and dvd players. how covalent are the bonds in gaas?
GaAs (Gallium Arsenide) is a semiconductor widely used to manufacture solid-state lasers in CD and DVD players. GaAs is a compound composed of Gallium and Arsenic. Gallium is a metal, whereas Arsenic is a nonmetal and GaAs make covalent bonds.
When two nonmetals or a metal and a nonmetal bond, the bonding between the two atoms is covalent in nature. In this case, since one of the elements is metal and the other is a nonmetal, the bond formed between the atoms is classified as covalent. Covalent bonds are formed between the elements having different electronegativity.Thus, the GaAs bond is a covalent bond.Learn more about covalent bonds: https://brainly.com/question/3447218
#SPJ11