A deck of cards contains RED cards numbered 1,2,3 and BLUE cards numbered 1,2,3,4. Let R be the event of drawing a red card, B the event of drawing a blue card, E the event of drawing an even numbered card, and O the event of drawing an odd card. Drawing the Red 1 is an example of which of the following events? Select all correct answers.

Answers

Answer 1

The event Red 1 is an example of these following events:

R and O.E'.E or R.

Which events are included into Red 1?

Red cards are represented by the letter R, while the number 1, which is odd, is represented by the letter O.

Both events R and O happen in the, hence the event R and O is one of the possible events to this problem, as the card is both red and has an odd number.

The number is not even, hence the event E' is another one of the events in this problem.

The final event is E or R, as the card has a red number, meaning that at least one of the options E or R are satisfied.

Missing information

The options which the event respect are missing, and are given by the image at the end of the answer.

Learn more about statistical events at https://brainly.com/question/7965468

#SPJ1

A Deck Of Cards Contains RED Cards Numbered 1,2,3 And BLUE Cards Numbered 1,2,3,4. Let R Be The Event

Related Questions

Consider the following graph. Determine the domain and range of the graph? Is the domain and range all real numbers?

Answers

ANSWER

Domain = [-10, 10]

Range = [4]

EXPLANATION

Domain of a graph is the set of all input values on x-axis; while

Range is the set of all possible output values on y-axis.

Determining the Domain from the given graph,

The set of all INPUT values on x-axis are -10, -9, -8,....0......5,6,7,8,9,10.

So the Domain = [-10, 10].

Determining the Range from the given graph,

For the set of all possible OUTPUT values on y-axis, we only have 4,

So the Range = [4]

Hence, Domain = [-10, 10] and Range = [4]

x – a is the factor of a polynomial P(x) if P(a) is equal to

Answers

we know that

If (x-a) is a factor of P(x)

then

For x=a

the value of P(a)=0

therefore

the answer is option D

Find the area of the prism in the figure shown.

Answers

TherWe are asked to determine the area of the triangular prism. To do that we will add the area of the surfaces of the prism and add them together.

we have that the front and back areas are the areas of a triangle which is given by the following formula:

[tex]A_t=\frac{bh}{2}[/tex]

Where:

[tex]\begin{gathered} b=\text{ length of the base} \\ h=\text{ height of the triangle} \end{gathered}[/tex]

In this case, we have:

[tex]\begin{gathered} b=3 \\ h=4 \end{gathered}[/tex]

Substituting the values we get:

[tex]A_t=\frac{\left(3\right)\lparen4)}{2}[/tex]

Solving the operations:

[tex]A_t=6[/tex]

Since the front and back faces are the same triangle we can multiply the result by 2:

[tex]A_t=2\times6=12[/tex]

Therefore, the areas of the front and back faces add up to 12.

Now, we determine the area of the right side. This is the area of a rectangle and is given by the following formula:

[tex]A_r=lh[/tex]

Where:

[tex]\begin{gathered} l=\text{ length of the rectangle} \\ h=\text{ height of the rectangle} \end{gathered}[/tex]

In this case, we have:

[tex]\begin{gathered} l=5 \\ h=4 \end{gathered}[/tex]

Substituting the values we get:

[tex]A_r=\left(5\right)\left(4\right)[/tex]

Solving the operation:

[tex]A_r=20[/tex]

Now, we determine the area of the left face which is also a rectangle with the following dimensions:

[tex]\begin{gathered} h=5 \\ l=5 \end{gathered}[/tex]

Substituting we get:

[tex]A_l=\left(5\right)\left(5\right)=25[/tex]

Therefore, the area of the left side is 25.

The area of the bottom face is also a rectangle with the following dimensions:

[tex]\begin{gathered} h=5 \\ l=3 \end{gathered}[/tex]

Substituting we get:

[tex]A_b=\left(5\right)\left(3\right)=15[/tex]

Now, the total surface area is the sum of the areas of each of the faces:

[tex]A=A_t+A_r+A_l+A_b[/tex]

Substituting the values we get:

[tex]A=12+20+25+15[/tex]

Solving the operations:

[tex]A=72[/tex]

Therefore, the surface area is 72.

If f(x) = 2x+3, what is f(-2)

Answers

Answer: f(-2) = -1

Step-by-step explanation:

2x + 3

2(-2) +3

-4 + 3

-1

Answer:

Step-by-step explanation:

you plug in the -2 to the equation for x

f(-2)= 2(-2)+3

f(-2)=-1

A company has 10 software engineers and 6 civil engineers. In how many ways can they be seated around a round table so that no two of the civil engineers will sit together? [ 9! × 10!/4!)]​

Answers

The software engineers can be seated on a round table with no two civil engineers sitting together is 9!×10!/4!

Given, a company has 10 software engineers and 6 civil engineers.

we need to determine in how many ways can they be seated around a round table so that no two civil engineers will sit together.

10 software engineers can be arranged around a round table in :

=(10-1)!

= 9! ways .... eq(A)

Now, we must arrange the civil engineers so that no two can sit next to one another. In other words, we can place 6 civil engineers in any of the 10 *-designated roles listed below.

This can be done in ¹⁰P₆ ways ...(B)

From A and B,

required number of ways  = 9!×¹⁰P₆

= 9! × 10!/4!

Hence the number of ways the engineers can be seated is 9! × 10!/4!.

Learn more about Permutations and combinations here:

brainly.com/question/4658834

#SPJ1

Chain rule in calculus

Answers

[tex]\begin{gathered} \text{If we have }y=f(u),\text{ and }u=g(x).\text{ Then by chain rule, the derivative of }y\text{ is} \\ \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} \end{gathered}[/tex]

In the given example:

[tex]\begin{gathered} u=4x^3-5 \\ f(u)=u^4 \\ \text{If we do a function composition then they will be the same} \\ f(x)=\big(4x^3-5\big)^4\rightarrow f(u)=u^4,\text{ note that }u=4x^3-5 \end{gathered}[/tex]

Solve for each derivative of dy/du and du/dx

[tex]\begin{gathered} \frac{du}{dx}=3\cdot4x^{3-1}-0 \\ \frac{du}{dx}=12x^2 \\ \\ \frac{dy}{du}=4\cdot u^{4-1} \\ \frac{dy}{du}=4u^3,\text{ then substitute }u \\ \frac{dy}{du}=4(4x^3-5)^3 \\ \\ \text{Complete the chain rule} \\ \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} \\ \frac{dy}{dx}=\big(4(4x^3-5)^3\big)\big(12x^2\big)\text{ or }\frac{dy}{dx}=48x^2(4x^3-5)^3 \\ \end{gathered}[/tex]

Sketch the graph and circle the points that are solutions. (0-0)(2,5)(-3,-5)(-3,2)

Answers

(-3,-5)

1) Let's plot both inequalities to solve that geometrically at first.

y ≤ -1/3x -2

y< 2/3x +1

2) Since the possible solutions to that Linear system of Inequalities are within the darker and common region, after examining those options we can write:

The only (-3,-5) of those is a possible solution to that System.

3) Hence the only possible solution between them is (-3,-5).

13. A 640 kg of a radioactive substance decays to 544 kg in 13 hours. A. Find the half-life of the substance. Be sure to show your work including the formulas you used. Round to the nearest tenth of an hour. Only solutions using formulas from the 4.6 lecture notes will receive credit.B. How much of the substance is present after 3 days? Be sure to show the model you used.C. How long does it take the substance to reach 185 kg? Be sure to show your work.

Answers

EXPLANATION

The equation for half-life is given by the following formula:

[tex]H=\frac{t\cdot\ln(2)}{\ln(\frac{A_0}{A_t})}[/tex]

Replacing terms:

[tex]H=\frac{t\cdot\ln(2)}{\ln(\frac{A_0}{A_t})}=\frac{13\cdot\ln(2)}{\ln(\frac{640}{544})}=\frac{9.0109}{0.1625}=55.45[/tex]

The half-life time is H =55.4 hours.

B) After three days, that is, 72 hours, the amount of substance will be given by the following relationship:

[tex]A=A_o\cdot e^{-(\frac{\ln2}{H})t}=640\cdot e^{-(\frac{\ln2}{55.4})\cdot72}=640\cdot e^{-0.90084}[/tex]

Multiplying terms:

[tex]A=640\cdot0.4062=259.96\text{ Kg}[/tex]

There will be 259.96 Kg after 3 days.

C) In order to compute the number of days that will take to the substance to reach a concentration equal to 185 Kg, we need to apply the following formula:

[tex]t=\frac{\ln (\frac{A}{A_o})}{-\frac{\ln (2)}{t\frac{1}{2}}}[/tex]

Replacing terms:

[tex]t=\frac{\ln (\frac{185}{544})}{-\frac{\ln (2)}{55.45}}=\frac{-1.0785}{-0.0125}=\frac{1.0785}{0.0125}=86.28\text{ hours}[/tex]

It will take 86.28 hours to the substance to reach 185 Kg.

The illustration below shows the graph of y as afunction of xComplete the following sentences based on thegraph of the function.(Enter the x-intercepts from least to greatest.)* This is the graph of a (nonlinear, linear orconstant) function.* The y-intercept of the graph is the function value y = ___.The x-intercepts of the graph (in order from leastto greatest) are located at x = ___ and x = ___.* The greatest value of y is y = ___ and it occurswhen x = ___.* For x between x = 2 and x = 6, the function value y (<, 2, or =) 0.

Answers

* This is the graph of a (nonlinear, linear or constant) function.

Answer:

This is the graph of a nonlinear function (In this case it is a quadratic function).

--------------------------------------------------------------------------------------

The y-intercept of the graph is the function value y =

Answer:

From the graph we can conclude that, the y-intercept is:

[tex]y=-6[/tex]

----------------------------------------------------------------------------

The x-intercepts of the graph (in order from least to greatest) are located at x = ___ and x = ___.

Answer:

From the graph, we can conclude that the x-intercepts are located at:

[tex]\begin{gathered} x=2 \\ and \\ x=6 \end{gathered}[/tex]

----------------------------------------------------------------------

The greatest value of y is y = ___ and it occurs

Answer:

From the graph, we can see that the vertex of the function is:

[tex]\begin{gathered} y=2 \\ when \\ x=4 \end{gathered}[/tex]

----------------------------------------------------------------

For x between x = 2 and x = 6, the function value y is.

Answer:

For those values, y is always greater than or equal to 0, so:

[tex]2\le x\le6\to y\ge0[/tex]

The expression x^(3) gives the volume of a cube, where x is the length of one side of the cube. Find the volume of a cube with a side length of 2 meters.

Answers

Answer:

8 cubic meters

Explanation:

The length of one side of the cube = x

For any cube of side length, x:

[tex]\text{Volume}=x^3[/tex]

Therefore, the volume of the cube with a side length of 2 meters is:

[tex]\begin{gathered} V=2^3 \\ =8\; m^3 \end{gathered}[/tex]

On the desmos app can you have more standard forms or only one? ​

Answers

Answer: I am pretty sure you can only have one.

Step-by-step explanation:

Which of the following could be the product of two consecutive prime numbers?​

Answers

Answer:

There is no question

Step-by-step explanation:

Have a nice day

Laying down my n buffer is concerned after receiving her weekly paycheck she believes that her deductions for social security,Medicare,and federal income ta withholding (fit) may be incorrect Larsen is paid a salary of 4330 she is married filling jointly and prior to this payroll check has total earnings of 140,460 what are the correct deductions for social security Medicare and fit assume a rate of 6.3% on 142,809 for social security and 1.45% for Medicare

Answers

Correct deduction for social security Medicare and fit at 6.3% = 8,996.967

Correct deduction for Medicare at rate of 1.45% = 2,070.731

What is Medicare?

Medicare is defined as a type of health insurance that reduces the fees incurred by an individual following the reception of health services.

After deductions the total earning = 140,460

The correct deduction for social security, Medicare and fit at the rate of 6.3% of 142,809;

= 6.3/100 × 142,809

= 899696.7/100

= 8,996.967

The correct deduction for Medicare at the rate of 1.45%;

= 1.45/100 × 142,809

= 207,073.05/100

= 2,070.731.

Learn more about Medicare here:

https://brainly.com/question/24304697

#SPJ1

Simplify the expression.9n+ 18(2n-6)

Answers

The given expression is,

[tex]\begin{gathered} 9n+18(2n-6) \\ 9n+36n-108 \\ \\ 45n=108 \end{gathered}[/tex]

Calculate the answers. 13. An orbiting satellite is positioned 3,105 mi above the earth (rearth = 3,959 mi) and orbits the earth once every 201.3 min. Assuming its orbit is a circle, find the distance traveled in 50.0 min.

Answers

first you will calculate the speed of the orbiting satelite

[tex]\text{speed = }\frac{dis\tan ce}{time}[/tex]

distance = circumference of the of the orbit

[tex]\begin{gathered} \text{circumference = 2}\times\pi\times\text{ r} \\ r\text{ = radius of the earth + the height of the satelite above the earth} \\ r\text{ = 3105+3959 =7064mi} \end{gathered}[/tex][tex]\text{circ of the orbit = }2\text{ }\times3.142\times7064=\text{ 44390.176}[/tex][tex]\text{speed = }\frac{44390.176}{201.3}\text{ = 220.52mi/min}[/tex]

distance covered in 50.0 min

distance = speed X time

[tex]\text{distance = 220.52}\times50=11026mi[/tex]

the distance traveled is 11026 mi

Ashlynn is trying a low-carbohydrate diet. She would like to keep the amount of carbs consumed in grams between the levels shown in the following compound inequality:460 < 2x + 10 and 2x + 10 < 660Solve for x in the inequality, and explain what the answer represents

Answers

To find:

The value of x.

Solution:

The given compound inequalities are 460 < 2x + 10 and 2x + 10 < 660. Solve each separately to get the interval in which the value of x lies.

[tex]\begin{gathered} 460<2x+10 \\ 460-10<2x \\ 450<2x \\ 225225 \end{gathered}[/tex][tex]\begin{gathered} 2x+10<660 \\ 2x<650 \\ x<325 \end{gathered}[/tex]

So, from the above calculation, we have obtained that x is greater than 225 and less than 325. So, the answer is (225, 325).

The answer represents that the amount of carbs is between 225 grams and 325 grams.

Seth earns $25 a day and $3 for each ticket he sells at the local theatre. Write and solve aninequality that can be used to find how many tickets he must sell in a day to earn at least $115.Solve.

Answers

Seth earns $25 a day and also she earns $3 for each ticket he sells at the local theatre.

Therefore $25 is the independent value and $3 is the dependent value because it depends on how many tickets are sold.

We can write the next expression:

[tex]25+3x[/tex]

Now, we need to make an inequality about he must sell at least $115 in a day.

The word "at least" means greater than or equal to, therefore:

[tex]25+3x\ge115[/tex]

Now, let's solve the inequality:

Subtract both sides by 25:

[tex]25-25+3x\ge115-25[/tex][tex]3x\ge90[/tex]

Then, divide both sides by 3:

[tex]\frac{3x}{3}\ge\frac{90}{3}[/tex]

Simplify:

[tex]x\ge30[/tex]

Solve for y.
|6y + 12| = -18

Answers

Answer: y=-5

Step-by-step explanation:

12-12=0

-18-12=-30

6y=-30

y=-5

Samantha started with $25 in her account. she saves $7 per week. Australia has no money in his account, but adds $15 per week. for how many weeks will Australia have more money in his account than Samantha

Answers

In this problem we can made a function to calculate the total amount for Samantha (S) and total amound of Australia (A) fon any time:

[tex]\begin{gathered} S=25+7t \\ A=0+15t \end{gathered}[/tex]

when t is the number of weeks. if we made equal the ecuation we will have the time when they would have the same amound:

[tex]\begin{gathered} S=A \\ 25+7t=15t \end{gathered}[/tex]

and we solve for t

[tex]\begin{gathered} 25=15t-7t \\ 25=8t \\ \frac{25}{8}=t \\ 3.125=t \end{gathered}[/tex]

This means that in the next full number Australia will have more money than Samantha, so in 4 weeks this is going to happen.

Write a rule for the nth term of the geometric sequence given a_2 = 64, r = 1/4

Answers

The n-th term of a geometric sequence is given by the formula:

[tex]\begin{gathered} U_n=a_1r^{n-1} \\ r=\text{ common ration} \\ a_1=\text{ first term} \end{gathered}[/tex]

Given that:

[tex]\begin{gathered} a_2=64 \\ r=\frac{1}{4} \\ n=2 \end{gathered}[/tex]

Hence,

[tex]\begin{gathered} a_2=a_1(\frac{1}{4})^{2-1}=64 \\ a_1(\frac{1}{4})=64 \\ a_1=64\times4 \\ =256 \end{gathered}[/tex]

Therefore, the rule for the nth term of the sequence is

[tex]\begin{gathered} U_n=a_1r^{n-1} \\ U_n=256_{}(\frac{1}{4})^{n-1} \end{gathered}[/tex]

Fart A Now that you have converted a terminating decimal number Into a fractlon, try converting a repeating decimal number Into a fraction. Repeating decimal numbers are more difficult to convert Into fractions. The first step is to assign the given decimal number to be equal to a varlable, x. For the decimal number 0.3, that means X = 0.3. if x = 0.3, what does 10x equal? Font Sizes

Answers

Given x = 0.3, we're asked to find 10x. All we need to do is multiply 10 by 0.3(which is the value of x);

[tex]10\text{ }\ast\text{ 0.3 = 3}[/tex]

Therefore, 10x is equal to 3.

21 Mr. Bracken has 2 children that like to sit in trees. Jedi weighs 20kg and Phin weighs 25kg. The tallesttree in their yard is 20m high. The shortest branch is 10m high. If Jedi climbs to the highest branch andPhin climbs to the lowest brach, how much potential energy does each child have and which child has themost potential energy?A Jedi has 200 J, Phin has 500 J, therefore Jedi has the most potential energyB Jedi has 400 J, Phin has 250 J, therefore Phin has the most potential energy.c Jedi has 400 J, Phin has 250 J, therefore Jedi has the most potential energy.D Jedi has 200 J, Phin has 500 J, therefore Phin has the most potential energy.

Answers

Potential energy = mass x gravity x height

Where:

mass (kilograms)

gravity = 9.8 m/s2 =10 m/s2 (rounded)

Heigth = meters

Phin's potential energy = 25 kg x 10 m/s2 x 10m = 2500 J

Jedi's potential energy= 20kg x 10 m/s2 x 20 m= 4000 J

Comparing, 4000 (jedi)>2500 Phin

Jedi has the most potential energy.

Correct option : C

Use complete sentences to explain the process you would use to find the volume of the shipping box.(Trying to help my son with this)

Answers

Part A)

The given shipping box is a cuboid.

Recall that the longest length of the cuboid is diagonal.

The length of the longest item that fits inside the shipping box is the measure of the diagonal of the given box.

Given that measure breadth=16 inches and measure height = 12 inches.

Recall the formula for the diagonal d of the cuboid is

[tex]d=\sqrt[]{l^2+b^2+h^2}[/tex]

We need to find the measure of the length of the cuboid.

Consider the base of the cuboid which is in rectangle shape.

Here breadth of the rectangle is 16 inches and diagonal of the rectangle is 24 inches.

Recall the formula for the diagonal of the rectangle is

[tex]diagonal_{}=\sqrt[]{l^2+b^2}[/tex]

Substitute diagonal =24 inches and breath =16 inches, we get

[tex]24_{}=\sqrt[]{l^2+16^2}[/tex]

[tex]24_{}=\sqrt[]{l^2+256}[/tex]

Taking square on both sides, we get

[tex]24^2_{}=l^2+256[/tex]

[tex]576-256=l^2[/tex]

[tex]320=l^2[/tex]

Taking square root on both sides, we get

[tex]\sqrt[]{320}=l[/tex][tex]l=17.89\text{ inches}[/tex]

Now, substitute l=17.89, b=16, and h=12 in the diagonal of the cuboid equation to find the diagonal of the cuboid.

[tex]d^{}=\sqrt[]{17.89^2+16^2+12^2}[/tex]

[tex]d^{}=\sqrt[]{320+256+144}=\sqrt[]{720}=26.83\text{ inches}[/tex]

Hence the length of the longest item that fits inside the shipping box is 26.8 inches.

Part B)

Consider the length l=17.89 inches, b=16 inches, and height h=12 inches.

Recall the formula for the volume of the cuboid is

[tex]V=l\times w\times h[/tex]

Substitute the length l=17.89 inches, b=16 inches, and height h=12 inches, we get

[tex]V=17.89\times16\times12[/tex][tex]V=3434.88inches^3[/tex]

Hence the volume of the given shipping box is 3434.88 cubic inches.

Simplify the following: (4x + 3) -2(4x - 7) - 3(x +7)

Answers

Simplify: (4x + 3) -2(4x - 7) - 3(x +7)

Explanation:

[tex]\begin{gathered} (4x+3)-2(4x-7)-3(x+7) \\ =4x+3-8x+14-3x-21 \\ =4x-11x+17-21 \\ =-7x-4 \end{gathered}[/tex]

Final answer: -7x-4 is required simplify form .

can someone please show me if im correct because i got 12

Answers

Given the expression:

-3 + 15

Let's evaluate the expression.

Here, we have an addition operation.

To perform the operation, add -3 and 15.

Hence, we have:

-3 + 15 = 12

Therefore, the answer to the operation is 12.

ANSWER:

12

if you can tee the picture well please tell me

Answers

Since they give us the equation they have gotten for the line of best fit, we use it to estimate what thye answer is when x = 25:

Use:

y = 1.708 x - 4.011

then when x = 25:

y = 1.708 (25) - 4.011

y = 38.689

I don't read if the want you to round the answer to a given number of decimals, but if you try exactly the number we got (with the three decimals) that would be the most exact.

One group (A) contains 75 people. Two fifths of the people in group A will be selected to win $20 fuel cards. There is another group (B) in a nearby town that will receive the same number of fuel cards, but there are 154 people in that group. What will be the ratio of no winners in group A to nonwinners in group B after the selections are made? Express your ratio as a fraction or with a colon.

Answers

group A contains 75 people

Two-fifths of the people in group A (75*2/5=30) win $20 fuel cards.

so there are 30 fuel cards and 75-30=45 non-winners in group A

group B are 154 people and the same number of fuel cards, so 30

the number of non-winners in group B is 154-30=124

So the ratio of no winners in group A to nonwinners in group B is:

45/124

Find the average rate of change of f(x)=x^2-4x+1 from x=2 to x=6

Answers

Answer:

The answer is 4

Graph two or more functions in the same family for which the parameter being changed is the slope, m. and is less than 0.Refer to the graph of f(x) = x + 2

Answers

We have the expression:

[tex]f(x)=x+2[/tex]

If the slope is changing being less than 0, that is:

In 3 plays the southside football team drove 10 1/2 yards . How many yards did they average in each day?

Answers

If in three plays southside football team drove [tex]10\frac{1}{2}[/tex] yards, then the number of yard they drove average in each day is [tex]3\frac{1}{2}[/tex] yards

Number matches played by southside football team = 3

Total distance they drove = [tex]10\frac{1}{2}[/tex] yards

Convert the mixed fraction to the simple fraction

[tex]10\frac{1}{2}[/tex] yards = 21/2

Number of yards they drove average in each day = Total distance they drove ÷ Number matches played by southside football team

Substitute the values in the equation

= 21/2 ÷ 3

= 21/2 × (1/3)

= 7/2 yards

Convert the simple fraction to the mixed fraction

7/2 yards = [tex]3\frac{1}{2}[/tex] yards

Hence, if in three plays southside football team drove [tex]10\frac{1}{2}[/tex] yards, then the number of yard they drove average in each day is [tex]3\frac{1}{2}[/tex] yards

Learn more about average here

brainly.com/question/3841552

#SPJ1

Other Questions
IS4. Who has Peeta? Why can't the narrator rescue him this time? Suppose three companies, Optimax, Protade, and Electrodrink, dominate the sports drink market. Optimax enjoys the largest market share. Protade, dissatisfied with its market share, begins offering its sports drink in a new container that, according to Protade, keeps the drink colder for a longer period of time.This is an example of: Please answer quick! i'm stuck on th is and it is due today! (equation is on the bottom on the picture)4 - 1/3x = x + 2x HELP! WILL GIVE BRAINLIEST! APES* Brandon's car used 10 gallons to travel 310 miles. At what rate does the car use gas, in miles per gallon?On the double number line below, fill in the given values, then use multiplication or division to find the missing value. Economic globalization refers to the economic _____ of nations resulting from mutual____ The attitude someone has when committing acrime, their intentions Help pleas Which statement best completes the diagram. Attached is a photo of my written question, thank you. Simplify: I3 - 6| - (12 6 + 1)3 To find the area of a shape region:Find the area of the entire region:Fimd the area of the unshaded region(s)Subtract the area of the unshape region from the area of the entire region help!! I'm not sure if i'm right... are these the steps to solve for x? -5 *4 +3 /2 a person threw a small bundle toward their friend on a balcony 10 meters above them. how fast did they throw it up? a football player runs from a location 5m from the left sideline and 5m from his/her goal line to a location 35m from the left sideline and 60m from the goal-line. displacement is 63m. the player did not run in a straight line. at the start there is 1-minute left on the clock; at the end there is 50 seconds left on the clock. knowing only this information, what kinematic variables can we calculate? in order for market segmentation to be effective, market segments must be large enough for a firm to make a profit by serving them. this means that segments must be multiple choice measurable. differentiable. substantial. accessible. actionable. product x: revenue $15.00 variable cost $2.50 product y: revenue $25.00 variable cost $10.00 total fixed costs $50,000 what is the operating income, assuming actual sales total 150,000 units, and the sales mix is two units of product x and one unit of product y? Which label goes through the horizontal axis?A. DistanceB. Acceleration C. ForceD. Mass 1) K thinks of a number, then doubles the number ,and then multiplies the result by 3 . If her final number is 65 more than her original number, then what was her original number? Whats the correct answer answer asap for brainlist?? divide and Simplify 7/5 7/9