Density is defined as the mass of a substance per unit volume. In this case, the density of urine is given as 1.02 g/ml. This means that for every 1 ml of urine, there is 1.02 g of mass.
To find the mass of urine eliminated by the patient in one day, we need to multiply the volume of urine by its density. The volume of urine is given as 1250 ml.
Mass of urine = Volume of urine x Density of urine
Mass of urine = 1250 ml x 1.02 g/ml
Mass of urine = 1275 g
Therefore, the mass of urine eliminated by the patient in one day is 1275 g.
Learn more about volume here
https://brainly.com/question/1578538
#SPJ11
why would it be necessary to slowly add the sulfuric acid to the p-cresol/acetic acid mixture in the test tube? simply to be sure the correct volumes are used. the reaction is exothermic which may boil and splatter the acidic solution out of the test tube. since the density of sulfuric acid is less than that for acetic acid, it requires a slower reaction time. the reaction is endothermic and the solution may solidify if the sulfuric acid is added too quickly.
The correct answer is option D. All of the above. It is necessary to slowly add the sulfuric acid to the p-cresol/acetic acid mixture in the test tube to prevent any accidents or injuries.
If sulfuric acid is added too soon, the solution may boil and the acid will spew out of the test tube, perhaps resulting in burns.
Sulfuric acid is also an endothermic reaction, which means it takes energy from its surroundings and has the potential to crystallise or cause the solution to harden.
Last but not least, adding the sulfuric acid gradually enables more precise measurement of the supplied sulfuric acid volume.
It is crucial to gradually add the sulfuric acid to the test tube mixture of p-cresol and acetic acid as a result of all these considerations.
Complete Question:
Why would it be necessary to slowly add the sulfuric acid to the p-cresol/acetic acid mixture in the test tube?
Options:
A. To ensure accurate measurement of the volume of sulfuric acid added.
B. To prevent the solution from boiling and splattering the acidic solution out of the test tube.
C. To prevent the endothermic reaction from solidifying the solution.
D. All of the above.
To learn more about sulfuric acid visit:
https://brainly.com/question/10220770
#SPJ4
a 1.25 g sample of co2 is contained in a 750. ml flask at 22.5 c. what is the pressure of the gas, in atm?
The pressure of gas is 1.05 atm when a 1.25 g sample of CO₂ is contained in a 750ml flask at 22.5°C.
Molecular weight of CO₂ is 1.25g ,Volume of CO₂ is 750ml,Temperature of CO₂ is 22.5°C and the gas constant is 0.08206 L atm/mol K.
Using the ideal gas law equation the pressure is found to be 1.05 atm.
To calculate the pressure of the gas, we can use the ideal gas law equation: [tex]PV=nRT[/tex]
Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
First, we need to convert the volume to liters by dividing by 1000: 750 ml = 0.75 L.
Next, we need to calculate the number of moles of CO₂ present in the flask. We can use the molecular weight of CO₂ to convert from grams to moles:
[tex]1.25 * (1 /44.01 ) = 0.0284 mol[/tex]
Now we can plug in the values into the ideal gas law equation:
[tex]PV=nRT[/tex]
[tex]P * 0.75 L = 0.0284 mol * 0.08206 L*atm/mol*K * (22.5 + 273.15) K[/tex]
Simplifying and solving for P, we get:
[tex]P = (0.0284 * 0.08206 * 295.65) / 0.75 = 1.05 atm[/tex]
Therefore, the pressure of the gas in the flask is 1.05 atm.
Learn more about ideal gas law equation here:
https://brainly.com/question/15379358
#SPJ11
Help what's the answers?
The number of moles of bromine trifluoride needed to produce 23.2 L of fluorine gas according to the reaction would be 0.339 moles.
Stoichiometric problemsThe balanced equation for the reaction is:
BrF3 → Br + 3F2
From the equation, we can see that 1 mole of BrF3 produces 3 moles of F2. Therefore, to calculate the number of moles of BrF3 needed to produce 23.2 L of F2 at 0°C and 1 atm, we need to use the ideal gas law:
PV = nRT
where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.
We can rearrange the ideal gas law to solve for n:
n = PV/RT
At 0°C (273 K) and 1 atm, the value of R is 0.08206 L·atm/mol·K. Substituting the values given, we get:
n = (1 atm) × (23.2 L) / (0.08206 L·atm/mol·K × 273 K)
n = 1.017 mol F2
Since 1 mole of BrF3 produces 3 moles of F2, we need 1/3 as many moles of BrF3:
n(BrF3) = 1.017 mol F2 × (1 mol BrF3 / 3 mol F2)
n(BrF3) = 0.339 mol BrF3
Therefore, 0.339 moles of BrF3 are needed to produce 23.2 L of F2 at 0°C and 1 atm.
More on stoichiometric problems can be found here: https://brainly.com/question/14465605
#SPJ1
how many moles of naf must be dissolved in 1.00 liter of a saturated solution of pbf2 at 25˚c to reduce the [pb2 ] to 1 x 10–6 molar? (ksp pbf2 at 25˚c = 4.0 x 10–8)
The moles of NaF that must be dissolved in 1.00 liter of a saturated solution of PbF₂ at 25˚C to reduce the [Pb²⁺] to 1 x 10⁻⁶ molar is 2.0 x 10⁻⁵.
The solubility product expression for PbF₂ is given by:
Ksp = [Pb²⁻][F-]²At equilibrium, the product of the ion concentrations must be equal to the solubility product constant. We are given that the [Pb²⁺] in the saturated solution is 1 x 10⁻⁶ M. Therefore, we can use the Ksp expression to calculate the concentration of F- in the solution:
Ksp = [Pb²⁺][F⁻]²4.0 x 10⁻⁸ = (1 x 10⁻⁶)([F⁻]²)[F⁻]² = 4.0 x 10⁻²[F⁻] = 2.0 x 10⁻¹Now, we can calculate the amount of NaF needed to reduce the [F⁻] concentration to 2.0 x 10⁻¹ M. Since NaF is a 1:1 electrolyte, the concentration of F- will be equal to the concentration of NaF added.
Number of moles of NaF = (2.0 x 10⁻¹) mol/L x 1.00 L = 2.0 x 10⁻¹ molesHowever, we need to dissolve this amount of NaF in a saturated solution of PbF₂. Therefore, we need to check that the amount of NaF we added will not exceed the maximum amount that can dissolve in the solution at 25˚C.
To learn more about solubility, here
https://brainly.com/question/29661360
#SPJ4
does this suggest that your reaction worked? use three key signals to justify your answer 1-methoxy-2-chloro-4-nitrobenzene
Yes, the reaction worked. Three key signals that suggest the reaction worked include the appearance of the product, the presence of the expected starting material, and the absence of any other byproducts.
The product, 1-methoxy-2-chloro-4-nitrobenzene, can be identified by its distinct color, smell, and boiling point. Additionally, if the expected starting material is present, then it shows that the reaction has taken place.
Lastly, the absence of any other byproducts such as unreacted starting material implies that the reaction was successful. All together, all three signals indicate that the reaction worked.
Know more about Three key signals here
https://brainly.com/question/31114075#
#SPJ11
energetic molecules such as nadh and atp are often reactants of ____________ reactions.
Energetic molecules such as NADH and ATP are often reactants of exergonic reactions.
Exergonic reactions are those that discharge energy and have a harmful Gibbs-free energy change. In these reactions, the reactants have more free energy than the products, so the excess energy is cast in the state of heat. An exergonic reaction is a chemical reaction where the shift in the free energy is negative.
Energetic molecules like NADH and ATP store energy in their chemical adhesives, which can be emitted in exergonic reactions to drive endergonic responses that need energy input. Therefore, they are usually employed as reactants in exergonic reactions.
To learn more about Exergonic reactions
https://brainly.com/question/30800156
#SPJ4
what mass of cu(s) is electroplated by running 23.0 a of current through a cu2 (aq) solution for 4.00 h ? express your answer to three significant figures and include the appropriate units.
Electrolysis is a process that is used to electric current is passed in a solution. The mass of cu(s) is electroplated by running 23.0 a of current through a cu2 (aq) solution for 4.00 h is equals to 64 grams.
Electrolysis is a process in which an electric current is passed in a solution. Solving electrolysis problem is more on stoichiometric calculations are, coulombs = amperes x time
1 Faraday = 96,485 coulombs
1 Faraday = 1 mole of electrons
We have to determine the mass of cu(s) is electroplated by running 23.0 a of current through a Cu (aq) solution for 4.00 h. Half reaction, [tex]Cu^{2+ } + 2e^{-} --> Cu[/tex]
Current, I = 23.0 A
Time, t = 4 hours = 4 × 3600 seconds
= 14400 seconds
Calculate the moles of Copper, n=Q ×z× F
where, Q = total charge in coulombs
F = Faraday constant = 96485 per molez = the number of electrons in the half-cell reaction = 2Computing for Q = 13.5coulomb sec (14,400 sec) = 194,400 coulomb-sec²
So, n = 194,400 coulomb-s² /(96485 coulomb)
= 1.007 moles Cu
Molar mass = 63.55 grams per mole
Molar mass is defined as the mass of substance divided by moles of substance.
=> 63.55 grams per mole = m/ 1.007 moles Cu
=> m = 63.55 g × 1.007
=> m = 64 grams
Hence, required value is 64 grams.
For more information about electrolysis, refer:
https://brainly.com/question/24063038
#SPJ4
PLEASE ANSWER 30 POINTS!!!!!
How many grams of Ag would be produced from the complete reaction of 48 grams of Mg?
Mg + 2AgNO3 ----> 2Ag + Mg(NO3)2
Mg: 24 g/mol Ag: 108 g/mol
48g Mg --> g Ag
Answer:
432 grams of Ag
Explanation:
First, we need to determine the limiting reagent between Mg and AgNO3.Using the stoichiometry of the balanced chemical equation, we can see that 1 mole of Mg reacts with 2 moles of AgNO3 to produce 2 moles of Ag.
The number of moles of Mg present in 48 grams can be calculated as:
48 g / 24 g/mol = 2 moles Mg
Now, let's calculate the number of moles of Ag that can be produced from 2 moles of Mg:
2 moles Mg x (2 moles Ag / 1 mole Mg) = 4 moles Ag
Finally, we can calculate the mass of Ag produced by multiplying the number of moles of Ag by its molar mass:
4 moles Ag x 108 g/mol = 432 grams Ag
Therefore, 48 grams of Mg will produce 432 grams of Ag in this reaction.
Please help!!!! Quick please!!
4. The number of each Race Car Part present in Container A are:
Body (B) - 3Cylinder (Cy) - 10Engine (E) - 2Tire (Tr) - 9How to determine number of race cars?5. To draw the maximum number of cars that can be made from the parts in Container A:
Each car requires 1 Body (B), 4 Tires (Tr), 1 Engine (E), and 2 Cylinders (Cy).
We have 3 Bodies (B), 10 Cylinders (Cy), 2 Engines (E), and 9 Tires (Tr).
The limiting parts are the Engines (E) and the Cylinders (Cy), since we don't have enough of either part to build more than 2 cars.
Therefore, we can build a maximum of 2 complete cars from the parts in Container A, and we will have excess parts remaining:
1 Body (B)
6 Tires (Tr)
0 Engines (E)
6 Cylinders (Cy)
6. The student is incorrect because although there are 3 car bodies in Container A, we also need 4 tires, 1 engine, and 2 cylinders for each car. We don't have enough engines or cylinders to build 3 complete cars, so the number of bodies is not the limiting factor.
7. a. To determine the number of complete cars that can be built:
Each car requires 1 Body (B), 4 Tires (Tr), 1 Engine (E), and 2 Cylinders (Cy).
We have a large number of Bodies (B) and Tires (Tr), so we don't need to worry about those parts.
We only have 5 Engines (E) and 12 Cylinders (Cy).
The limiting part is the Cylinders (Cy), since each car requires 2 cylinders and we only have 12.
Therefore, we can build a maximum of 6 complete cars with the available parts:
6 Bodies (B)
24 Tires (Tr)
5 Engines (E)
12 Cylinders (Cy)
b. The limiting part is the Cylinders (Cy), since we only have enough cylinders to build 6 cars, but we have enough engines to build 5 times as many cars.
Find out more on limiting reagents here: https://brainly.com/question/19033878
#SPJ1
N2O4 ⇌ 2NO2
for the following reaction at 373 K, Kc = 0.36. If initial concentration of N2O4 is 0.1 mol dm^-3, what is the equilibrium concentration of NO2? (Is there a way to solve this without using quadratics?)
Okay, let's solve this step-by-step without using quadratics:
1) The equilibrium constant Kc = 0.36 means the equilibrium lies to the left. So there will be more N2O4 than NO2 at equilibrium.
2) The initial concentration of N2O4 is 0.1 mol dm^-3. Let's call this [N2O4]initial.
3) At equilibrium, the concentrations of N2O4 and NO2 will be [N2O4]equil and [NO2]equil respectively.
4) We know the equilibrium constant expression for this reaction is:
Kc = ([NO2]equil)^2 / [N2O4]equil
5) Setting this equal to 0.36 and plugging in 0.1 for [N2O4]initial, we get:
0.36 = ([NO2]equil)^2 / (0.1 - [NO2]equil)
6) Simplifying, we get:
0.036 = [NO2]equil^2
7) Taking the square root of both sides, we get:
[NO2]equil = 0.06 mol dm^-3
So the equilibrium concentration of NO2 is 0.06 mol dm^-3.
Let me know if you have any other questions! I can also provide a more step-by-step explanation if needed.
2-thiosubstituted chlorocyclohexanes can undergo an sn2 reaction with intramolecular catalysis. which stereoisomer is the most reactive?
The axial stereoisomer is the most reactive in this type of reaction.
In an SN2 reaction with intramolecular catalysis, the most reactive stereoisomer is the one with an axial thioether group.
This is because in the axial position, the thioether group is closer to the leaving group (chlorine), allowing for more efficient overlap of their orbitals and a lower energy transition state.
The equatorial thioether group is farther away from the leaving group, resulting in a higher energy transition state and a slower reaction. Therefore, the axial stereoisomer is the most reactive in this type of reaction.
Learn more about stereoisomer
https://brainly.com/question/31147524
#SPJ4
each of the following can act as both an brönsted acid and a brönsted base except:
(A) HCO3
(B) NH4+
(C) HS
(D) H2PO4
The answer is (C) HS.
Each of the other options can donate a proton (act as a Brönsted acid) in certain conditions and accept a proton (act as a Brönsted base) in other conditions. However, HS is only capable of acting as a Brönsted base and accepting a proton, but it cannot donate a proton and act as a Brönsted acid.
Out of the given options, the one that cannot act as both an acid and a base is (C) HS. This is because HS can only act as a brönsted acid by donating a proton to a brönsted base, but it cannot act as a brönsted base by accepting a proton from a brönsted acid. This is because it lacks a lone pair of electrons on the sulfur atom, which is necessary for accepting a proton.
On the other hand, [tex]HCO_{3}[/tex] ,[tex]NH_{4}[/tex]+, and [tex]H_{2}[/tex][tex]O_{4}[/tex]P can all act as both brönsted acids and bases depending on the reaction conditions.
Learn more about Brønsted acid here:
https://brainly.com/question/24065957
#SPJ11
(B) NH4⁺, cannot act as both a Brønsted acid and a Brønsted base.
What is Bronsted Acid-Base pairs?
A Brønsted acid is a species that can donate a proton (H⁺), while a Brønsted base is a species that can accept a proton (H⁺).
(A) HCO3⁻ can act as an acid by donating a proton to form CO3²⁻ or as a base by accepting a proton to form [tex]H_{2}CO_{3}[/tex].
(C) HS⁻ can act as an acid by donating a proton to form S²⁻ or as a base by accepting a proton to form [tex]H_{2}S[/tex].
(D) H2PO4⁻ can act as an acid by donating a proton to form HPO4²⁻ or as a base by accepting a proton to form [tex]H_{3}PO_{4}[/tex].
However,
(B) NH4⁺ can only act as a Brønsted acid by donating a proton to form [tex]NH_{3}[/tex] but cannot act as a Brønsted base since it has no lone pair of electrons to accept a proton.
To know more about Bronsted Theory:
https://brainly.com/question/148529
#SPJ11
naoh is a hygroscopic solid, which means that it can absorb water from its surroundings, therefore it is important to
As a result, it is important to store NaOH in a dry and cool place, away from any sources of moisture or water.
NaOH, also known as sodium hydroxide, is a highly hygroscopic solid. This means that it can easily absorb moisture from its surroundings, including the air. When NaOH absorbs water, it can become more corrosive and potentially dangerous.
This is why it is also important to handle NaOH with care and wear appropriate protective gear, such as gloves and goggles. Additionally, any spills or leaks should be cleaned up immediately and properly disposed of according to local regulations.
By following these precautions, NaOH can be safely used in a variety of applications, including in the production of soap, paper, and textiles.
To learn more about : water
https://brainly.com/question/19491767
#SPJ11
If I have an unknown quantity of gas at a pressure of 1.35 atm, a volume of 25 liters, and a temperature of 300. K, how many moles of gas do I have?
Answer:
We can use the ideal gas law to solve for the number of moles of gas:
PV = nRT
where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature in Kelvin.
Plugging in the given values:
(1.35 atm)(25 L) = n(0.0821 L·atm/mol·K)(300 K)
n = (1.35 atm)(25 L) / (0.0821 L·atm/mol·K)(300 K)
n = 1.29 mol
Therefore, there are 1.29 moles of gas in the container.
which term is defined as a pollutant that is formed by a chemical reaction between a primary pollutant and another compound in the atmosphere (either natural or human-made)
The term defined as a pollutant that is formed by a chemical reaction between a primary pollutant and another compound in the atmosphere (either natural or human-made) is "secondary pollutant".
Primary pollutants are directly emitted into the atmosphere from sources such as cars, factories, and power plants. Examples of primary pollutants include carbon monoxide (CO), sulfur dioxide (SO₂), and nitrogen oxides (NOₓ).
Secondary pollutants, on the other hand, are not directly emitted into the atmosphere, but are formed through chemical reactions between primary pollutants and other compounds in the atmosphere. Examples of secondary pollutants include ground-level ozone (O₃), which is formed through the reaction of NOₓ and volatile organic compounds (VOCs), and acid rain, which is formed through the reaction of SO₂ and NOₓ with water, oxygen, and other chemicals in the atmosphere.
The formation of secondary pollutants is often dependent on factors such as temperature, sunlight, and the presence of other chemicals in the atmosphere. Secondary pollutants can be just as harmful to human health and the environment as primary pollutants, and are an important consideration in air pollution control strategies.
To learn more about pollutants, here
https://brainly.com/question/28519286
#SPJ4
what atomic or hybrid orbitals make up the sigma bond between b and f in tetrafluoroborate ion, bf4-?
The sigma bond between b and f in tetrafluoroborate ion, bf4-, is formed by the overlap of the atomic orbitals of boron and fluorine. Specifically, each of which contributes one p orbital to form a sp3-p sigma bond.
In the tetrafluoroborate ion (BF4-), the bond between boron (B) and fluorine (F) is a sigma (σ) bond. The σ bond is formed by the overlap of atomic or hybrid orbitals.Boron in BF4- is sp3 hybridized, which means that it has four hybrid orbitals that are involved in bonding. Three of these hybrid orbitals are involved in bonding with three of the fluorine atoms, while the fourth hybrid orbital is used to form the σ bond with the fourth fluorine atom.Fluorine is a halogen and has the electron configuration of 1s2 2s2 2p5. In BF4-, each of the fluorine atoms is also involved in the formation of the σ bond with boron. Fluorine has three unpaired electrons in its 2p orbitals that can form a σ bond by overlapping with the sp3 hybrid orbital of boron.Therefore, the σ bond between boron and fluorine in BF4- is formed by the overlap of the sp3 hybrid orbital of boron and the 2p orbital of the fluorine atom.
Learn more about fluorine here
https://brainly.com/question/1940697
#SPJ11
A closed system is one which no matter can enter or exit. True or false
False. In a closed system, matter can not enter or exit that is there is no change in the matter of the system.
Three types of systems exist in nature:
1. Open System: In this system, the matter can interact with the surroundings or matter can enter or exit the system from the surrounding. Similarly, the energy of the system also interacts with its surroundings and can be lost or gained.
For example oceans etc.
2. Closed system: In this system, the matter is unable to interact with the surroundings that are matter can't exit or enter the system. While the energy of the system is able to interact with the surroundings.
For example Earth etc
3. Isolated system: In this system, both matter and energy are unable to interact with the surrounding. There is no exchange between matter and the energy of surroundings.
For example thermos-teel bottles etc.
Learn more about Open Systems:
https://brainly.com/question/28891854
#SPJ4
an electron in an atom makes a transition from a state with energy 3.89 ev to a state with energy 1.44 ev and emits a photon. find the wavelength of that photon.
When an electron transitions from a higher energy state to a lower energy state within an atom, it releases energy in the form of a photon.
The energy of this photon is given by the difference between the energy levels of the initial and final states of the electron. In this case, the electron transitions from a state with energy 3.89 eV to a state with energy 1.44 eV. The energy released in this transition is: ΔE = E₂ - E₁ = 1.44 eV - 3.89 eV = -2.45 eV
Note that the negative sign indicates that energy is being released.
We can now use the relationship between energy and wavelength for a photon: E = hc/λ
where h is Planck's constant (6.626 x 10^-34 J s), c is the speed of light (2.998 x 10^8 m/s), and λ is the wavelength of the photon. Rearranging this equation to solve for λ, we get: λ = hc/E
Plugging in the values we know, we get:
λ = (6.626 x 10^-34 J s)(2.998 x 10^8 m/s)/(-2.45 eV x 1.602 x 10^-19 J/eV)
Note that we converted electron volts (eV) to joules (J) using the conversion factor 1.602 x 10^-19 J/eV.
Simplifying this expression, we get: λ = 507 nm, Therefore, the wavelength of the photon emitted by the electron transition is 507 nm.
To know more about atom click here
brainly.com/question/13973654
#SPJ11
hydrochloric acid is sold as a concentrated aqueous solution if the molarity of concentrated hcl is 12.0m and the desnity is 1.18g/ml what is the molality of this acid
The molality of concentrated hydrochloric corrosive is around 163.8 mol/kg.
To discover the molality of hydrochloric corrosive, we ought to know the mass of HCl in 1 kg of the dissolvable (water).
Able to utilize the thickness of the arrangement and the molarity of the HCl to discover the mass of HCl in a given volume of the arrangement, and after that utilize the molar mass of HCl to change over mass to moles. At last, we will utilize the mass of water to calculate the molality of the arrangement.
The molar mass of HCl is around 36.5 g/mol.
To begin with, we ought to calculate the mass of HCl in 1 L (1000 mL) of the arrangement:
Mass of HCl in 1 L of arrangement = (thickness of arrangement) x (volume of solution) x (molarity of HCl) x (molar mass of HCl)
Mass of HCl in 1 L of arrangement = (1.18 g/mL) x (1000 mL) x (12.0 mol/L) x (36.5 g/mol) = 5.142 kg
Following, we have to calculate the mass of water within the arrangement:
Mass of water in 1 L of arrangement = (thickness of arrangement) x (volume of arrangement) - (mass of HCl in 1 L of arrangement)
Mass of water in 1 L of arrangement = (1.18 g/mL) x (1000 mL) - (5.142 kg) = 858 g
Presently able to calculate the molality of the arrangement:
Molality of HCl arrangement = (moles of solute) / (mass of dissolvable in kg)
MoL of solute (HCl) in 1 L of arrangement = (mass of HCl in 1 L of arrangement) / (molar mass of HCl) = 5.142 kg / 36.5 g/mol = 140.6 mol
Mass of dissolvable (water) in 1 L of arrangement = 858 g / 1000 g/kg = 0.858 kg
Molality of HCl arrangement = 140.6 mol / 0.858 kg = 163.8 mol/kg
Hence, the molality of concentrated hydrochloric corrosive is around 163.8 mol/kg.
To know more about molality refer to this :
https://brainly.com/question/1370684
#SPJ4
what mass of calcium metal is produced when molten caf2 is electrolyzed by a current of 9.55 a for 19 h? 136 g
when molten CaF2 is electrolyzed by a current of 9.55 A for 19 h, approximately 136 g of calcium metal is produced.
To determine the mass of calcium produced when molten CaF2 is electrolyzed by a current of 9.55 A for 19 h, we'll use Faraday's Law of Electrolysis.
First, calculate the total charge passed through the electrolyte:
Charge (Q) = Current (I) × Time (t)
Q = 9.55 A × (19 h × 3600 s/h) = 653,940 C
Next, determine the number of moles of electrons (n):
n = Q / (Faraday constant F)
n = 653,940 C / (96,485 C/mol) ≈ 6.77 mol
The balanced equation for the electrolysis of CaF2 is:
2F- → F2 + 2e-
Ca2+ + 2e- → Ca
The mole ratio between calcium and electrons is 1:2. So, the number of moles of calcium produced is:
Moles of Ca = 0.5 × Moles of electrons
Moles of Ca = 0.5 × 6.77 mol ≈ 3.39 mol
Finally, calculate the mass of calcium:
Mass of Ca = Moles of Ca × Molar mass of Ca
Mass of Ca = 3.39 mol × 40.08 g/mol ≈ 136 g
To learn more about : calcium
https://brainly.com/question/29231164
#SPJ11
A team of botanists conducted an experiment
investigating the effect of pH on plant growth.
The height of the plant was measured three weeks
after planting.
1
?
3.
Based on the data they collected, what is the
optimal pH for growing basil? Explain your
answer.
Based on the data they collected, which
plant fares better than the others in low pH
environments? Explain your answer.
At which pH is there the greatest difference
between the heights of parsley and basil?
What is the height difference at that pH?
The outcomes to the scan had been now not all similar. The pots with the pH of 5.0 had no growth whatsoever. The pots with the pH of 6.0 had little growth, each with only four blades of grass. The pots with a pH of 7.0 grew well, one pot with extra blades of grass than the other, an average of 11 blades of grass
What are the elements that affect the pH of a plant environment?Natural soil pH depends on the rock from which the soil was once fashioned (parent material) and the weathering procedures that acted on it—for instance climate, vegetation, topography and time. These approaches have a tendency to purpose a decreasing of pH (increase in acidity) over time.
There is disruption of nutrient absorption by way of the plants if it's pH increases, and hence, soil fertility is reduced, alkaline soil's pH does not lead to make bigger in nutrient absorption, soil illness does not happen.
Learn more about effect of pH on plant growth here:
https://brainly.com/question/31459436#SPJ1beginning with 1m each of co2 and h2 at 25 degrees, which substance will have the highest concentration in an equilibrium mixture
In an equilibrium mixture of 1m each of CO² and H² at 25 degrees, the substance with the highest concentration is CO².
This is because when these two substances are brought together, they will react to form water and Carbon Monoxide (CO). The reaction is exothermic, meaning that energy is released in the form of heat.
This energy will cause the reaction to favor the formation of CO² over H², as H² requires more energy to form. As a result, the equilibrium mixture will have a higher concentration of CO² than H².
Know more about Equilibrium mixture here
https://brainly.com/question/13082748#
#SPJ11
problem 9.34 the cis and trans isomers of 2,3-dimethyloxirane both react with to give butane-2,3-diol. one stereoisomer gives a single achiral product, and one gives two chiral enantiomers. which epoxide gives one product and which gives two?
The reaction of both cis and trans isomers of 2,3-dimethyloxirane with HBr gives butane-2,3-diol. However, one of these stereoisomers gives a single achiral product, while the other gives two chiral enantiomers.
The reaction of 2,3-dimethyloxirane with itself is an example of an intramolecular nucleophilic substitution reaction.
The cis isomer of 2,3-dimethyloxirane has a plane of symmetry and is therefore an achiral molecule. When it reacts with itself, it will only form a single product nucleophilic substitution reaction.
The trans isomer of 2,3-dimethyloxirane is a chiral molecule and does not have a plane of symmetry. When it reacts with itself, it will form two enantiomers of the product, one being the mirror image of the other.
Learn more about 2,3-dimethyloxirane
https://brainly.com/question/15181918
#SPJ4
at what ph would the structure be the predominant ionization state? consider the ionization state of all three of the functional groups.
The pH at which the molecule will be predominantly in its ionized state depends on the pKa values of the functional groups and the pH of the solution.
To determine the pH of a molecule with three functional groups, we need to consider the pKa values of each group and the pH of the solution. The pKa values represent the pH at which 50% of the functional group is ionized and 50% is in the non-ionized form.
If the pH is below the pKa of a functional group, the group will be mostly in the protonated (non-ionized) form. If the pH is above the pKa, the group will be mostly in the deprotonated (ionized) form.
Therefore, we need to determine the pKa values of each functional group and the pH at which each group is mostly ionized or non-ionized. For example, if a molecule has a carboxylic acid group (pKa = 4.5), an amine group (pKa = 9.5), and a phenol group (pKa = 10), we can use the following table to determine the predominant ionization state at different pH values:
pH Carboxylic acid Amine Phenol
1 Protonated Protonated Protonated
4.5 Half ionized Protonated Protonated
7 Mostly ionized Half ionized Protonated
9.5 Mostly ionized Mostly ionized Half ionized
10 Mostly ionized Mostly ionized Mostly ionized
14 Deprotonated Deprotonated Deprotonated
Therefore, the pH at which the molecule will be predominantly in its ionized state depends on the pKa values of the functional groups and the pH of the solution.
For more such questions on predominant ionization state, visit:
brainly.com/question/30882629
#SPJ11
the pka values for some indicators are given below. which of the indicators listed would be suitable for a titration with a ph of 2.97 at the equivalence point?
without clearing the plot, examine the same alkyl groups with chlorine as the functional group. what is the normal boiling point of methyl chloride, the compound formed between the methyl group and chlorine?
The normal boiling point of methyl chloride, for a given data, is -23.8°C
The bubbling point (boiling point) of a compound is affected by numerous components, checking the quality of intermolecular powers between particles, the degree and shape of the particles, and the restraint of the particles.
When the alkyl bunches are supplanted with chlorine, the coming around compound has diverse intermolecular powers and restraints compared to the beginning compound. In common, particles with polar covalent bonds tend to have higher bubbling centers than nonpolar particles with comparable atomic weights.
Methyl chloride (CH3Cl) may be a polar molecule with a dipole scaled down due to the separation in electronegativity between carbon and chlorine. The quality of the dipole-dipole powers between particles of methyl chloride is more prominent than the quality of the van der Waals powers between particles of methane, which is the compound molded between two methyl bunches.
As a result, the bubbling point of methyl chloride is higher than the bubbling point of methane. The standard bubbling point of methane is -161.5°C, though the commonplace bubbling point of methyl chloride is -23.8°C.
In this way, the commonplace bubbling point of methyl chloride, the compound molded between the methyl collect and chlorine, is -23.8°C.
To know more about boiling point refer to this:
https://brainly.com/question/40140
#SPJ4
2) 1 The particles of a substance gain energy and change from a regular
ordered structure to a disordered structure with large distances between
the particles.
Which change of state is described?
A boiling
B evaporation
C melting
D sublimation
The change of state described is melting (option C). In melting, the particles of a substance gain energy and change from a regular ordered structure to a disordered structure with large distances between the particles, which results in the substance changing from a solid to a liquid state.
What is meant by the term 'melting'?Melting is a physical process in which a substance changes from its solid state to its liquid state. It occurs when a solid substance absorbs enough heat energy to overcome the forces of attraction between its particles, causing the particles to move faster and become less ordered.
As a result, the substance loses its definite shape and takes the shape of the container in which it is placed, while retaining its volume. The temperature at which a substance melts is known as its melting point.
An example of melting is the melting of ice. At the melting point of water, which is 0°C (32°F) at standard pressure, ice changes from its solid state to its liquid state. The resulting liquid water takes the shape of its container, such as a glass, but still has the same volume as the ice from which it was melted.
Learn more about melting here:
https://brainly.com/question/15873508
#SPJ9
Send HELP!!!!!!!!!!!!!!!!!!!
The enthalpy of the reactions include:
(a) 1613 kJ/mol(b) 1613 kJ/mol(c) -276 kJ/mol(d) -1296 kJ/mol(e) -203 kJ/molHow to calculate enthalpy?Using the heat of formation values listed below:
ΔHf°(Si) = 0 kJ/mol
ΔHf°(SiF₄) = -1613 kJ/mol
ΔHf°(F₂) = 0 kJ/mol
ΔHf°(H₂O) = -286 kJ/mol
ΔHf°(SO) = 248 kJ/mol
ΔHf°(H₂SO₄) = -814 kJ/mol
ΔHf°(KOH) = -424 kJ/mol
ΔHf°(K₂O₂) = -496 kJ/mol
ΔHf°(O₂) = 0 kJ/mol
ΔHf°(Fe₃O₄) = -1118 kJ/mol
ΔHf°(HCl) = -92 kJ/mol
ΔHf°(FeCl₂) = -341 kJ/mol
ΔHf°(FeCl₃) = -399 kJ/mol
The enthalpy of each reaction is:
(a) ΔH°rxn = [ΔHf°(Si) + 2ΔHf°(F₂)] - ΔHf°(SiF₄)
ΔH°rxn = [0 + 2(0)] - (-1613) kJ/mol
ΔH°rxn = 1613 kJ/mol
(b) ΔH°rxn = [ΔHf°(Si) + 2ΔHf°(F₂)] - ΔHf°(SiF₄)
ΔH°rxn = [0 + 2(0)] - (-1613) kJ/mol
ΔH°rxn = 1613 kJ/mol
(c) ΔH°rxn = [ΔHf°(H₂SO₄)] - [ΔHf°(SO) + ΔHf°(H₂O)]
ΔH°rxn = (-814) - [248 + (-286)] kJ/mol
ΔH°rxn = -276 kJ/mol
(d) ΔH°rxn = [6ΔHf°(KOH) + ΔHf°(O₂)] - [3ΔHf°(K₂O₂) + 3ΔHf°(H₂O)]
ΔH°rxn = [6(-424) + 0] - [3(-496) + 3(-286)] kJ/mol
ΔH°rxn = -1296 kJ/mol
(e) ΔH°rxn = [2ΔHf°(FeCl3) + ΔHf°(FeCl2) + 4ΔHf°(H₋O)] - [ΔHf°(Fe₃O₄) + 8ΔHf°(HCl)]
ΔH°rxn = [2(-399) + (-341) + 4(-286)] - [(-1118) + 8(-92)] kJ/mol
ΔH°rxn = -203 kJ/mol
Find out more on enthalpy here: https://brainly.com/question/16985375
#SPJ1
Explain how Avogadro’s number can give two conversion factors
Answer: NA = no of molecules / no of moles
NA = no of molecules × molecular weight /weight
Explanation:
__________________ is the application of pulling force to hold a bone in alignment.
Answer:
Traction
Explanation:
Traction is a set of mechanisms for straightening broken bones or relieving pressure on the spine and skeletal system