a sample of 51 observations will be taken from an infinite population. the population proportion equals 0.85. what is the probability that the sample proportion will be between 0.9115 and 0.946? (show work; 1 point)

Answers

Answer 1

The probability that the sample proportion will be between 0.9115 and 0.946 is 0.1496.

To calculate the probability that the sample proportion will be between 0.9115 and 0.946, we can use the sampling distribution of the sample proportion, assuming that the sample is taken from an infinite population.

The standard deviation of the sample proportion is given by:

σ_p = sqrt((p * (1 - p)) / n)

where p is the population proportion and n is the sample size.

In this case, p = 0.85 and n = 51. Plugging these values into the formula, we get:

σ_p = sqrt((0.85 * (1 - 0.85)) / 51)

= sqrt(0.127275 / 51)

≈ 0.092

Now, we can standardize the interval (0.9115, 0.946) using the sample proportion distribution:

z1 = (0.9115 - p) / σ_p

= (0.9115 - 0.85) / 0.092

≈ 0.667

z2 = (0.946 - p) / σ_p

= (0.946 - 0.85) / 0.092

≈ 1.043

Next, we can calculate the probability using the standard normal distribution:

P(0.9115 < p < 0.946) = P(z1 < Z < z2)

Looking up the values in the standard normal distribution table, we find:

P(0.9115 < p < 0.946) ≈ P(0.667 < Z < 1.043)

≈ 0.1496

Therefore, the probability that the sample proportion will be between 0.9115 and 0.946 is approximately 0.1496.

To learn more about probability here:

brainly.com/question/30034780#

#SPJ11


Related Questions

Which two expressions are equivalent? A 4 + (3 • y) and (4 + 3) • y B (18 ÷ y) + 10 and 10 + (y ÷ 18) C 12 - (y • 2) and 12 - (2 • y) D (10 - 6) ÷ y and 10 - (6 ÷ y)

Answers

The correct answer is C) 12 - (y • 2) and 12 - (2 • y),  are Equivalent expressions.

The two expressions that are equivalent are:

C) 12 - (y • 2) and 12 - (2 • y)

The equivalence, let's expand both expressions:

Expression C: 12 - (y • 2)

Expanding the expression, we have: 12 - 2y

Expression D: 12 - (2 • y)

Expanding the expression, we have: 12 - 2y

The order of the terms being subtracted (y • 2 or 2 • y) does not affect the result. Therefore, expressions C) 12 - (y • 2) and 12 - (2 • y) are equivalent.

A) 4 + (3 • y) and (4 + 3) • y

Expanding the expressions, we have: 4 + 3y and 7y

These expressions are not equivalent as they have different terms.

B) (18 ÷ y) + 10 and 10 + (y ÷ 18)

Simplifying the expressions, we have: (18/y) + 10 and 10 + (y/18)

These expressions are not equivalent either as the terms are arranged differently.

D) (10 - 6) ÷ y and 10 - (6 ÷ y)

Simplifying the expressions, we have: 4/y and 10 - (6/y)

These expressions are not equivalent as they have different structures and operations.

Therefore, the correct answer is C) 12 - (y • 2) and 12 - (2 • y), which are equivalent expressions.

To know more about Equivalent .

https://brainly.com/question/2972832

#SPJ11

Please explain how to get to the correct answer
when we divide polynomial 4x3 - 2x2 - 7x +
5 by x + 2, we get the quotients ax2 + bx + c and
remainder d where
a = -4
b = 6
c = -19
d = 43

Answers

The given polynomial 4x³ - 2x² - 7x + 5 can be divided by (x + 2) in order to get quotients and remainder. We need to find the values of a, b, c, and d, such that;

`4x³ - 2x² - 7x + 5 = (x + 2) * ax² + bx + c + d`

[tex]`4x³ - 2x² - 7x + 5 = (x + 2) * ax² + bx + c + d`[/tex] We are given the values of a, b, c, and d

[tex]`a = -4` `b = 6` `c = -19` `d = 43`Let's substitute the given values into the equation above;`4x³ - 2x² - 7x + 5 = (x + 2) * (-4x² + 6x - 19) + 43`On solving the equation, we get;`4x³ - 2x² - 7x + 5 = (-4x³ + 2x² + 8x² - 4x - 19x - 38) + 43``4x³ - 2x² - 7x + 5 = -4x³ + 10x² - 23x + 5[/tex]`Comparing the coefficients of the like terms on both sides of the equation,

we get;[tex]`4x³ = -4x³` `- 2x² = 10x²` `- 7x = -23x` `5 = 5`[/tex]We observe that we are left with no remainder, therefore, we can conclude that;`

4x³ - 2x² - 7x + 5` is divisible by `x + 2`Therefore, the given polynomial is completely divisible by x + 2.

To know more about order visit:

https://brainly.com/question/31801586

#SPJ11

change from rectangular to spherical coordinates. (let ≥ 0, 0 ≤ ≤ 2, and 0 ≤ ≤ .) (a) (0, −9, 0) (, , ) = (b) (−1, 1, − 2 ) (, , ) =

Answers

(A) In spherical coordinates, (0, -9, 0) is represented as:

(ρ, θ, φ) = (9, π/2, φ).

(B) In spherical coordinates, (-1, 1, -2) is represented as :

(ρ, θ, φ) = (√6, arccos (-2/√6), -π/4).

(a) To change from rectangular to spherical coordinates for the point (0, -9, 0), we first calculate the radial distance, inclination angle, and azimuthal angle. In this case, the radial distance, ρ, is the distance from the origin to the point, which is given by ρ = √(x² + y² + z²) = √(0² + (-9)² + 0²) = 9.

The inclination angle, θ, is the angle between the positive z-axis and the line connecting the origin to the point. Since z = 0, the inclination angle is π/2 (90 degrees). The azimuthal angle, φ, is the angle between the positive x-axis and the projection of the line connecting the origin to the point onto the xy-plane.

Since x = 0, the azimuthal angle can be any value from 0 to 2π. Therefore, in spherical coordinates, (0, -9, 0) is represented as (ρ, θ, φ) = (9, π/2, φ).

(b) For the point (-1, 1, -2), the radial distance, ρ, can be calculated as ρ = √(x² + y² + z²) = √((-1)² + 1² + (-2)²) = √6. The inclination angle, θ, is the angle between the positive z-axis and the line connecting the origin to the point.

Using trigonometry, we can find θ as θ = arccos(z/ρ) = arccos(-2/√6). The azimuthal angle, φ, is the angle between the positive x-axis and the projection of the line connecting the origin to the point onto the xy-plane. Using trigonometry, we can find φ as φ = arctan(y/x) = arctan(1/-1) = -π/4 (since x < 0 and y > 0).

Therefore, in spherical coordinates, (-1, 1, -2) is represented as (ρ, θ, φ) = (√6, arccos(-2/√6), -π/4).

Learn more about Coordinates:

brainly.com/question/22261383

#SPJ11

let x1, x2, · · · , xn have a uniform distribution on the interval (0, θ), where θ is an unknown parameter.

Answers

It seems like you are describing a set of random variables, x1, x2, ..., xn, which are uniformly distributed on the interval (0, θ), where θ is an unknown parameter.

In a uniform distribution, all values within a given interval have an equal probability of occurring. In this case, the interval is (0, θ), meaning that the random variables xi can take any value between 0 and θ, with each value having an equal chance of occurring.

Since θ is an unknown parameter, it represents the upper bound of the interval and needs to be estimated based on the observed values of the xi variables.

One common approach to estimate the value of θ is through maximum likelihood estimation (MLE). The MLE for θ in this case would be the maximum value observed among the xi variables. This is because any value larger than the maximum would not be consistent with the assumption that all values within the interval (0, θ) are equally likely.

It's important to note that further assumptions or information about the distribution, such as the sample size or specific properties of the random variables, would be needed to perform a more detailed analysis or draw specific conclusions about the unknown parameter θ.

To know more about parameter refer here

https://brainly.com/question/29911057#

#SPJ11

Sec2asec2b + tan2bcos2a=sin2a+tan2b
prove the identity​

Answers

Answer:

We'll start with the left-hand side of the identity:

sec^2(a)sec^2(b) + tan^2(b)cos^2(a)

We can rewrite sec^2(a) as 1/cos^2(a) and sec^2(b) as 1/cos^2(b):

1/cos^2(a) * 1/cos^2(b) + tan^2(b)cos^2(a)

Multiplying the first term by cos^2(a)cos^2(b) gives:

cos^2(a)cos^2(b)/cos^2(a)cos^2(b) + tan^2(b)cos^2(a)

Simplifying the first term gives:

1 + tan^2(b)cos^2(a)

Using the identity tan^2(x) + 1 = sec^2(x), we can rewrite tan^2(b) as sec^2(b) - 1:

1 + (sec^2(b) - 1)cos^2(a)

Simplifying gives:

cos^2(a) + cos^2(a)sec^2(b)

Using the identity 1 + tan^2(x) = sec^2(x), we can rewrite sec^2(b) as 1 + tan^2(b):

cos^2(a) + cos^2(a)(1 + tan^2(b))

Simplifying gives:

cos^2(a) + cos^2(a)tan^2(b) + cos^2(a)

Using the identity sin^2(x) + cos^2(x) = 1, we can rewrite cos^2(a) as 1 - sin^2(a):

1 - sin^2(a) + (1 - sin^2(a))tan^2(b) + 1 - sin^2(a)

Simplifying gives:

2 - 2sin^2(a) + (1 - sin^2(a))tan^2(b)

Using the identity tan^2(x) + 1 = sec^2(x), we can rewrite tan^2(b) as sec^2(b) - 1:

2 - 2sin^2(a) + (1 - sin^2(a))(sec^2(b) - 1)

Simplifying gives:

2 - 2sin^2(a) + sec^2(b) - sin^2(a)sec^2(b) - 1 + sin^2(a)

Combining like terms

After simplifying, we have:

1 + cos^2(a)tan^2(b) = 1 + tan^2(b)

This is equivalent to the right-hand side of the identity, so we have proven the identity.

If you have scores and you don't know the shape of their distribution, find the minimum proportion of scores that fall within 2.5 standard deviations on both sides of the mean? Round to two decimal places.

Answers

The minimum proportion of scores that fall within 2.5 standard deviations on both sides of the mean is 0.84.

To find the minimum proportion of scores that fall within 2.5 standard deviations on both sides of the mean when the shape of their distribution is unknown, the Chebyshev’s theorem formula can be used. Chebyshev’s theorem is a mathematical formula that provides an inequality for a wide range of probability distributions. This theorem can be used to determine what proportion of observations fall within a certain distance from the mean. The Chebyshev’s theorem states that for any set of scores, the minimum proportion that will fall within k standard deviations of the mean is at least [tex]1 - 1/k²[/tex]. If we take k = 2.5, we get:

[tex]1 - 1/2.5² = 1 - 0.16[/tex]

= 0.84

This means that at least 84% of the scores will fall within this range. The answer should be rounded to two decimal places, so the final answer is 0.84.

To learn more about standard deviation, visit:

https://brainly.com/question/29115611

#SPJ11

under the bounded rationality model of problem solving and decision making:

Answers

The statement that best summarizes the bounded rationality model of problem solving and decision making is 'Managers are comfortable making decisions without identifying all options'. Therefore, the correct option is B.

This is because the bounded rationality model recognizes that managers have limitations in their cognitive ability to process all information and alternatives, and therefore they use heuristics and simplified decision-making processes. However, this does not mean that they completely ignore options or do not consider the consequences of their decisions. Instead, they focus on the most relevant information and use their experience and judgment to make the best possible decision given the constraints they face.

Therefore, while option A) is partially correct, it does not capture the essence of the bounded rationality model. Option C) is too idealistic and implies that managers have unlimited time and resources to generate all possible options, which is not realistic. Option D) is not accurate as the bounded rationality model does not rely solely on statistical rules for decision making. Hence, the correct answer is option B.

Note: The question is incomplete. The complete question probably is: Which statement best summarizes the bounded rationality model of problem solving and decision making? A) Managers critically view the world as complex and multivariate. B) Managers are comfortable making decisions without identifying all options. C) Managers generate a wide array of decision options and select the one that meets all decision criteria. D) Managers follow statistical rules for decision making.

Learn more about Bounded rationality:

https://brainly.com/question/14892026

#SPJ11

find the distance of the point (2,6,−4)(2,6,−4) from the line r(t)=⟨1 3t,1 4t,3−2t⟩.

Answers

The distance between the point (2, 6, -4) and the line r(t) = ⟨1, 3t, 1, 4t, 3, -2t⟩ can be calculated using the formula d = ||PQ||/||v||, where PQ is the vector connecting the point P to any point Q on the line, and v is the direction vector.

To find the distance between the point P(2, 6, -4) and the line defined by the parametric equations r(t) = ⟨1, 3t, 1, 4t, 3, -2t⟩, we can use the formula for the distance between a point and a line in three-dimensional space.

The formula for the distance between a point and a line is given by:

d = ||PQ||/||v||

where PQ is the vector connecting the point P to any point Q on the line, v is the direction vector of the line, and || || represents the magnitude of a vector.

Let's first find the direction vector of the line. By examining the parametric equations, we can see that the direction vector of the line is v = ⟨1, 4, -2⟩.

Now, we need to find the vector PQ connecting the point P(2, 6, -4) to any point Q on the line. We can represent PQ as the difference between the coordinates of P and Q:

PQ = ⟨2 - 1, 6 - 3t, -4 - 1, 4t, -4 - 3, -2t⟩ = ⟨1, 6 - 3t, -5, 4t, -7, -2t⟩

Next, we calculate the magnitude of PQ:

||PQ|| = √(1^2 + (6 - 3t)^2 + (-5)^2 + (4t)^2 + (-7)^2 + (-2t)^2)

= √(1 + 36 - 36t + 9t^2 + 25 + 16t^2 + 49 + 4t^2)

= √(29t^2 - 36t + 111)

Finally, we calculate the magnitude of the direction vector v:

||v|| = √(1^2 + 4^2 + (-2)^2) = √(1 + 16 + 4) = √21

Now we can substitute these values into the formula for the distance:

d = ||PQ||/||v|| = (√(29t^2 - 36t + 111))/√21

To find the minimum distance between the point P and the line, we need to minimize the function d with respect to t. We can accomplish this by finding the critical points of the function and determining the value of t that gives the minimum distance.

Taking the derivative of d with respect to t and setting it equal to zero, we have:

d' = (29t - 18)/(√21(√(29t^2 - 36t + 111))) = 0

Solving for t, we get:

29t - 18 = 0

29t = 18

t = 18/29

By substituting this value of t into the formula for d, we can find the minimum distance between the point P and the line.

d = (√(29(18/29)^2 - 36(18/29) + 111))/√21

Simplifying this expression will give us the final value of the distance.

In summary, the distance between the point (2, 6, -4) and the line r(t) = ⟨1, 3t, 1, 4t, 3, -2t⟩ can be calculated using the formula d = ||PQ||/||v||, where PQ is the vector connecting the point P to any point Q on the line, and v is the direction vector

Learn more about distance here

https://brainly.com/question/26550516

#SPJ11

Can someone help me with this parallelogram problem

Answers

The parallelogram have values for its sides and angles as:

(1). AR = 9 (2). MR = 30 (3). m∠YRA = 80° (4). m∠MAR = 100° and (5). m∠MYA = 70

What is a parallelogram

A parallelogram is a geometric shape with four sides, where opposite sides are parallel and have equal lengths. Its opposite angles are also equal in measure.

(1) line AR and MY are opposite sides so their length are equal

AR = 9

(2) The diagonals MR and AY bisects each other so;

MR = 2(OM)

MR = 2(15) = 30

(3). m∠YRA = 180 - (30 + 70) {sum of interior angles of a triangle}

m∠YRA = 80°

(4). m∠MAR = m∠AYR + m∠YAR

m∠MAR = 30° + 70° = 100°

(5). m∠MYA and m∠YAR are alternate angles so they are equal

m∠MYA = 70°

Therefore, the parallelogram have values for its sides and angles as:

(1). AR = 9 (2). MR = 30 (3). m∠YRA = 80° (4). m∠MAR = 100° and (5). m∠MYA = 70

Read more about parallelogram here:https://brainly.com/question/20526916

#SPJ1

.it is defined as the process of comparison of specific values of input and output of instrument with the corresponding reference standards.

a- Estimation, b- Calculation, C- Calibr"

Answers

Calibration is the process of comparing an instrument's input and output values with reference standards to ensure accuracy and reliability in various fields.



The correct answer is C - Calibration.

Calibration is the process of comparing specific values of inputs and outputs of an instrument with corresponding reference standards. It is an essential procedure used to ensure the accuracy, reliability, and traceability of measurement devices or instruments. The purpose of calibration is to determine any deviations or errors in the instrument's readings and adjust them accordingly, so that accurate measurements can be obtained.

During calibration, the instrument under test is compared to a known and highly accurate reference standard. This reference standard serves as a benchmark against which the instrument's performance is evaluated. By comparing the instrument's measurements with the reference standard, any discrepancies or deviations can be identified. If any errors are detected, adjustments or corrections can be made to bring the instrument's readings in line with the reference standard.

Calibration is critical in various fields, such as engineering, manufacturing, scientific research, and quality control. It ensures that instruments provide reliable and consistent results, enabling users to make accurate measurements and decisions based on the obtained data.

To learn more about calibration click here

 brainly.com/question/17924315

#SPJ11

     

Find the area of sector TOP

Answers

The area of sector TOP is 70.83 square meters.

Given that r = 3m and arc TP = 297

we can find the central angle θ using the formula:

θ = (arc length / circumference) × 360

The circumference of a circle can be calculated using the formula:

circumference = 2πr

Let's calculate the central angle first:

circumference = 2 × π × 3m

circumference = 6π m

θ = (297 / (6π)) × 360

θ = (49.5 / π) × 360

θ= 49.5×57.3

θ = 2833.35

Now, we can calculate the area of sector TOP:

Area = (θ/360) × π × r²

Area = (2833.35/360) × π × (3m)²

Area = 7.87 × 9

Area = 70.83 m²

To learn more on Area click:

https://brainly.com/question/20693059

#SPJ1

Find
dy/dx and d^2y/dx^2.
x = cos 2t, y = cos t, 0 < t < ?

Answers

Using the chain rule, the values of dy/dx and d^2y/dx^2 are:

dy/dx = sin(t)/(2sin(2t))

d^2y/dx^2 = -[sin(t)(cos(2t) - 2cos^2(t))]/(4sin^3(2t)).

To find dy/dx, we need to use the chain rule:

dy/dt = -sin(t)

dx/dt = -2sin(2t)

So, dy/dx = (dy/dt)/(dx/dt) = -sin(t)/(-2sin(2t)) = sin(t)/(2sin(2t)).

To find d^2y/dx^2, we differentiate dy/dx with respect to t:

(d/dt)(dy/dx) = (d/dt)[sin(t)/(2sin(2t))] = [2cos(2t)sin(t)-sin(2t)cos(t)]/(4sin^2(2t))

Using the identity sin(2t) = 2sin(t)cos(t), we can simplify this to:

(d/dt)(dy/dx) = [2cos(2t)sin(t) - 4sin(t)cos^2(t)]/(4sin^2(2t))

= [sin(t)(cos(2t) - 2cos^2(t))]/(2sin^2(2t))

Now, we can use the chain rule again:

(d^2y/dx^2) = [(d/dt)(dy/dx)]/(dx/dt)

= [sin(t)(cos(2t) - 2cos^2(t))]/(2sin^2(2t) * (-2sin(2t)))

= -[sin(t)(cos(2t) - 2cos^2(t))]/(4sin^3(2t))

Therefore, dy/dx = sin(t)/(2sin(2t)) and

d^2y/dx^2 = -[sin(t)(cos(2t) - 2cos^2(t))]/(4sin^3(2t)).

To know more about chain rule refer here:
https://brainly.com/question/30764359#

#SPJ11

six country music bands and 3 rock bands are signed up to perform at an all-day festival. how many different orders can the bands play in if the following conditions apply?

Answers

There are 6 different orders in which the three rock bands can play.

Assuming that each band performs only once, there are a total of nine bands (six country and three rock) that can perform at the festival. The number of different orders in which the bands can play can be calculated using the permutation formula:
n! / (n-r)!
Where n is the total number of bands (9) and r is the number of bands that will perform in a specific order.
If we want to find the number of different orders in which all nine bands can play, we can set r equal to 9 and use the formula:
9! / (9-9)! = 9! / 0! = 362,880
This means that there are 362,880 different orders in which the bands can play if all nine bands perform.
If we want to find the number of different orders in which only the six country music bands can play, we can set r equal to 6 and use the formula:
6! / (6-6)! = 6! / 0! = 720
This means that there are 720 different orders in which the six country music bands can play.
If we want to find the number of different orders in which only the three rock bands can play, we can set r equal to 3 and use the formula:
3! / (3-3)! = 3! / 0! = 6
This means that there are 6 different orders in which the three rock bands can play.

To know more about permutation visit:

https://brainly.com/question/29990226

#SPJ11

Need help figuring out this problem!

Answers

i believe you're right with the first option

Determine if figure EFGHIJ is similar to figure KLMNPQ.
A.
Figure EFGHIJ is not similar to figure KLMNPQ because geometric stretch (x,y) to (2x,1.5y) maps figure EFGHIJ to figure KLMNPQ.

B.
Figure EFGHIJ is similar to figure KLMNPQ because dilation (x,y) to (1.5x,1.5y) maps figure EFGHIJ to figure KLMNPQ.

C.
Figure EFGHIJ is not similar to figure KLMNPQ because geometric stretch (x,y) to (1.5x,2y) maps figure EFGHIJ to figure KLMNPQ.

D.
Figure EFGHIJ is similar to figure KLMNPQ because dilation (x,y) to (2x,2y) maps figure EFGHIJ to figure KLMNPQ.

Answers

The figure EFGHIJ is similar to figure KLMNPQ by (b) scale factor of 1.5

Determining whether the figure EFGHIJ is similar to figure KLMNPQ.

From the question, we have the following parameters that can be used in our computation:

The figures

To check if the polygons are similar, we divide corresponding sides and check if the ratios are equal

So, we have

Scale factor = (-3, -6)/(-2, -4)

Evaluate

Scale factor = 1.5

Hence, the polygons are similar by a scale factor of 1.5

Read more about similar shapes at

brainly.com/question/14285697

#SPJ1

Use the Laplace transform to solve the given system of differential equations. dax + x - y = 0 at² dạy + y - x = 0 at² x(0) = 0, x'(0) = -6, y(0) = 0, y'(0) = 1 x(t) = 5 7 t - sint 2 2V2 x 9 - y(t) 7 t + 2 + =sin(21) = 2 2 X

Answers

The solution to the given system of differential equations with the initial conditions x(0) = 0 and y(0) = 8 is:

x(t) = 2[tex]e^{-t}[/tex] - 2[tex]e^{-2t}[/tex]

y(t) = 4[tex]e^{-t}[/tex] + 2[tex]e^{-2t}[/tex]

The given system of differential equations using Laplace transforms, we first take the Laplace transform of both equations. Let L{f(t)} denote the Laplace transform of a function f(t).

Taking the Laplace transform of the first equation:

L{dx/dt} = L{-x + y}

sX(s) - x(0) = -X(s) + Y(s)

sX(s) = -X(s) + Y(s)

Taking the Laplace transform of the second equation:

L{dy/dt} = L{2x}

sY(s) - y(0) = 2X(s)

sY(s) = 2X(s) + y(0)

Using the initial conditions x(0) = 0 and y(0) = 8, we substitute x(0) = 0 and y(0) = 8 into the Laplace transformed equations:

sX(s) = -X(s) + Y(s)

sY(s) = 2X(s) + 8

Now we can solve these equations to find X(s) and Y(s). Rearranging the first equation, we have:

sX(s) + X(s) = Y(s)

(s + 1)X(s) = Y(s)

X(s) = Y(s) / (s + 1)

Substituting this into the second equation, we have:

sY(s) = 2X(s) + 8

sY(s) = 2(Y(s) / (s + 1)) + 8

sY(s) = (2Y(s) + 8(s + 1)) / (s + 1)

Now we can solve for Y(s):

sY(s) = (2Y(s) + 8s + 8) / (s + 1)

sY(s)(s + 1) = 2Y(s) + 8s + 8

s²Y(s) + sY(s) = 2Y(s) + 8s + 8

s²Y(s) - Y(s) = 8s + 8

(Y(s))(s² - 1) = 8s + 8

Y(s) = (8s + 8) / (s² - 1)

Now, we can find X(s) by substituting this expression for Y(s) into X(s) = Y(s) / (s + 1):

X(s) = (8s + 8) / (s(s + 1)(s - 1))

To find the inverse Laplace transform of X(s) and Y(s), we can use partial fraction decomposition and inverse Laplace transform tables. After finding the inverse Laplace transforms, we obtain the solution:

x(t) = 2[tex]e^{-t}[/tex] - 2[tex]e^{-2t}[/tex]

y(t) = 4[tex]e^{-t}[/tex] + 2[tex]e^{-2t}[/tex]

Therefore, the solution to the given system of differential equations with the initial conditions x(0) = 0 and y(0) = 8 is:

x(t) = 2[tex]e^{-t}[/tex] - 2[tex]e^{-2t}[/tex]

y(t) = 4[tex]e^{-t}[/tex] + 2[tex]e^{-2t}[/tex]

To know more about differential equations click here :

brainly.com/question/31689149

#SPJ4

PLEASE HELP !!!!90!!! Points
consider the shaded squares. Write a sequence showing the perimeter of each square in the sequence
Questions: what is the perimeter of each shaded square?
what is the area of each shaded square?
suppose there are 12 terms in the sequence. What is the perimeter of the 12th square? show how
how can you find the area of the 20th shaded square without having to find all of the ones before it?
at what rate do the different patterns change from term to termHow you know?
How can you determine any terms in any of the patterens?explain

Answers

The answer to all parts is given below:

1. Perimeter of shaded square

Square 1 : 4 x 1/8 = 1/2

Square 2: 4 x 1/4 = 1

Square 3 : 4 x 1/2 = 2

2. Area of each square

Square 1 : 1/8 x 1/8 = 1/64

Square 2: 1/4 x 1/4 = 1/16

Square 3 : 1/2 x 1/2 = 1/4

Now, the sequence can be formed as

1/32 , 1/16, 1/8, 1/4, 1/2 ,....

the common ratio is = 2

So, the Area of 20th square

= 1/32 x (2)¹⁹

= 524288/ 32

= 16384.

Learn more about Sequence here:

https://brainly.com/question/30262438

#SPJ1

Kiyo is creating a table using mosaic tiles chosen and placed randomly. She is picking tiles without looking. How does P(yellow second blue first) compare to P(yellow second yellow first) if the tiles are selected without​ replacement? If the tiles are selected and returned to the pile because Kiyo wants a different​ color?

Answers

if the tiles are selected without replacement, P(yellow second blue first) will be lower than P(yellow second yellow first). If the tiles are selected with replacement, both probabilities will be the same.

How to answer the question

In the case of P(yellow second blue first), the probability depends on the number of tiles of each color and the total number of tiles. After picking a blue tile first, the total number of tiles decreases, as does the number of yellow tiles available for the second pick. Therefore, P(yellow second blue first) is lower than P(yellow second yellow first).

However, if the tiles are selected with replacement, meaning each tile is returned to the pile after being picked, then the probabilities remain the same for each pick. In this case, P(yellow second blue first) would be equal to P(yellow second yellow first) since the probability of picking a yellow tile is independent of the color of the tile picked first.

learn more about probability at https://brainly.com/question/13604758

#SPJ1

Consider the angle 0 3 a. To which quadrant does 0 belong? (Write your answer as a numerical value.) b. Find the reference angle for 0 in radians. c. Find the point where 0 intersects the unit circle.

Answers

Angle 0 is in the 1st quadrant, its reference angle is 0 radians, and it intersects the unit circle at the point (1, 0).

Define Angle ?

In mathematics, an angle is a geometric figure formed by two rays or lines that share a common endpoint, called the vertex.

a. The angle 0 is measured from the positive x-axis in a counterclockwise direction. In the Cartesian coordinate system, the positive x-axis lies on the right side of the coordinate plane. Since the angle 0 starts from this position, it falls within the 1st quadrant. The 1st quadrant is the region where both x and y coordinates are positive.

b. The reference angle is the positive acute angle between the terminal side of an angle and the x-axis. Since the angle 0 lies entirely on the positive x-axis, the terminal side coincides with the x-axis. In this case, the reference angle for 0 radians is 0 radians itself. The reference angle is always positive and its value is less than or equal to π/2 radians (90 degrees).

c. To find the point where 0 intersects the unit circle, we consider the trigonometric functions cosine and sine. The unit circle is a circle with a radius of 1 centered at the origin (0, 0) in the Cartesian coordinate system.

For angle 0, the cosine function gives the x-coordinate on the unit circle, and the sine function gives the y-coordinate. Since 0 lies on the positive x-axis, the x-coordinate is 1 (cos(0) = 1), and the y-coordinate is 0 (sin(0) = 0). Therefore, the point of intersection with the unit circle for angle 0 is (1, 0).

In summary, angle 0 is in the 1st quadrant, its reference angle is 0 radians, and it intersects the unit circle at the point (1, 0).

Learn more about radians :
https://brainly.com/question/28990400

#SPJ4

The graph of the function y= [tex]\frac{k}{x^2}[/tex] goes through A(10,-2.4). For each given point, determine if the graph of the function also goes through the point.

C(-1/5, -6000)

Answers

Answer: Yes

Step-by-step explanation:

If [tex]y=k/x^2[/tex] passes through point (10,-2.4), this means that k/100=-2.4, so k=-240

For y=k/x^2 where x=-1/5, y=-6000, so C is correct

in exercises 7–14, find (ifpossible) a nonsingular matrix such that p 1 ap isdiagonal. verify that p 1 ap is a diagonal matrix withthe eigenvalues on the main diagonal.

Answers

To find a nonsingular matrix P such that P^(-1)AP is diagonal, we need to diagonalize matrix A. We can achieve this by finding the eigenvalues and eigenvectors of A and constructing P accordingly.

1. Calculate the eigenvalues of matrix A by solving the equation |A - λI| = 0, where λ represents the eigenvalues and I is the identity matrix.

2. For each eigenvalue, find its corresponding eigenvector by solving the equation (A - λI)v = 0, where v is the eigenvector.

3. Arrange the eigenvectors as columns to form matrix P.

4. Calculate the inverse of matrix P, denoted as P^(-1).

5. Compute P^(-1)AP by multiplying P^(-1) with A and then with P.

6. If the result is a diagonal matrix, the diagonalization is successful, and P^(-1)AP has the eigenvalues of matrix A on its main diagonal.

Learn more about  matrix  : brainly.com/question/28180105

#SPJ11

In a foreign country, beginning teachers' salaries have a mean of $50,570 with a standard deviation of $3,960. Use the Empirical Rule (68-95-99.7 Rule) to answer the questions below. The percentage of beginning teachers' salaries between $42,650 and $58,490 is %. The percentage of beginning teachers' salaries greater than $38,690 is %. The percentage of beginning teachers' salaries between $50,570 and $54,530 is %. The percentage of beginning teachers' salaries greater than $42,650 is %.

Answers

The percentage of beginning teachers' salaries greater than $42,650 is approximately 32%.

The Empirical Rule, also known as the 68-95-99.7 Rule, allows us to make estimates about the percentage of data that falls within a certain number of standard deviations from the mean in a normal distribution. Let's use this rule to answer the questions regarding beginning teachers' salaries.

The percentage of beginning teachers' salaries between $42,650 and $58,490:

To calculate this percentage, we need to determine the number of standard deviations away from the mean these salaries are. First, we find the z-scores for the lower and upper salary limits:

z1 = (42,650 - 50,570) / 3,960

z2 = (58,490 - 50,570) / 3,960

Using these z-scores, we can consult the Empirical Rule. According to the rule, approximately 68% of the data falls within one standard deviation from the mean. Therefore, the percentage of beginning teachers' salaries between $42,650 and $58,490 is approximately 68%.

The percentage of beginning teachers' salaries greater than $38,690:

To calculate this percentage, we first find the z-score for the given salary limit:

z = (38,690 - 50,570) / 3,960

Using the Empirical Rule, we know that approximately 68% of the data falls within one standard deviation from the mean. Therefore, the percentage of beginning teachers' salaries greater than $38,690 is approximately 68%.

The percentage of beginning teachers' salaries between $50,570 and $54,530:

To calculate this percentage, we need to find the number of standard deviations away from the mean these salaries are. We can find the z-scores for the lower and upper salary limits:

z1 = (50,570 - 50,570) / 3,960

z2 = (54,530 - 50,570) / 3,960

Since the lower and upper limits are the same, the percentage of salaries between these two values is approximately 34%. This is because approximately 34% of the data falls within one-half of a standard deviation from the mean, according to the Empirical Rule.

The percentage of beginning teachers' salaries greater than $42,650:

To calculate this percentage, we need to find the z-score for the given salary limit:

z = (42,650 - 50,570) / 3,960

Using the Empirical Rule, we know that approximately 68% of the data falls within one standard deviation from the mean. Since the given salary is below the mean, we subtract the percentage within one standard deviation (68%) from 100%. Therefore, the percentage of beginning teachers' salaries greater than $42,650 is approximately 32%.

It's important to note that the percentages calculated using the Empirical Rule are approximations based on the assumption of a normal distribution. While the Empirical Rule is a useful tool for estimating percentages in real-world scenarios, it may not be exact in every case.

Learn more about greater than here

https://brainly.com/question/11418015

#SPJ11

(3) For each of the graphs described below, either draw an example of such a graph or explain why such a graph does not exist. [1] [2] (i) A connected graph with 7 vertices with degrees 5, 5, 4, 4, 3, 1, 1. (ii) A connected graph with 7 vertices and 7 edges that contains a cycle of length 5 but does not contain a path of length 6. (iii) A graph with 8 vertices with degrees 4, 4, 2, 2, 2, 2, 2, 2 that does not have a closed Euler trail. (iv) A graph with 7 vertices with degrees 5, 3, 3, 2, 2, 2, 1 that is bipartite. [An explanation or a picture required fof each part.] [2] [2]

Answers

(i) A connected graph with 7 vertices with degrees 5, 5, 4, 4, 3, 1, 1.The graph described here is a graph with 7 vertices, which is connected.

However, it is not possible to draw an example of such a graph because it contains vertices with odd degrees that are greater than 1, so by the Handshaking Lemma, such a graph is not possible.

(ii) A connected graph with 7 vertices and 7 edges that contains a cycle of length 5 but does not contain a path of length 6.

A graph with 7 vertices and 7 edges that contains a cycle of length 5 but does not contain a path of length 6 is shown below: Here the vertices B and C have degree 3, and all the other vertices have degree 2. So, it is not possible to add an extra edge to create a path of length 6 without creating a cycle of length 5.

(iii) A graph with 8 vertices with degrees 4, 4, 2, 2, 2, 2, 2, 2 that does not have a closed Euler trail.

A graph with 8 vertices with degrees 4, 4, 2, 2, 2, 2, 2, 2 that does not have a closed Euler trail is shown below: In this graph, each vertex has degree 2 except for the vertices A and B, which have degree 4. So, this graph has no Euler trail, let alone a closed Euler trail, because it contains odd vertices.

(iv) A graph with 7 vertices with degrees 5, 3, 3, 2, 2, 2, 1 that is bipartite.

A graph with 7 vertices with degrees 5, 3, 3, 2, 2, 2, 1 that is bipartite is shown below: This graph is bipartite because the vertices can be partitioned into two sets, {A, C, F, G} and {B, D, E}, where each edge connects a vertex in one set to a vertex in the other set.

To know more about graph visit:

https://brainly.com/question/17267403

#SPJ11

a uniform rod of length 4l, mass m, is suspended by two thin strings, lengths l and 2l as shown. what is the tension in the string at the left end of the rod?

Answers

Therefore, the tension in the right string is T_right = mg/4. Hence, the tension in the string at the left end of the rod is 3mg/4.

To determine the tension in the string at the left end of the rod, we need to consider the forces acting on the rod and apply the principles of equilibrium.

Given:

Length of the rod = 4l

Mass of the rod = m

Length of the left string = l

Length of the right string = 2l

Let's assume the tension in the left string is T_left and the tension in the right string is T_right.

Since the rod is in equilibrium, the sum of the forces acting on it in the vertical direction must be zero.

The forces acting on the rod are:

Weight (mg) acting vertically downward at the center of the rod.

Tension in the left string (T_left) acting vertically upward at the left end of the rod.

Tension in the right string (T_right) acting vertically upward at the right end of the rod.

Considering the forces in the vertical direction:

T_left + T_right - mg = 0 (Equation 1)

Now, let's consider the torques acting on the rod about its center. Since the rod is uniform, its center of mass is at the midpoint.

The torques acting on the rod are:

Torque due to the weight (mg) acting at the center of the rod = 0 (as it acts along the center of mass).

Torque due to the tension in the left string (T_left) acting at the left end of the rod = T_left * l

Torque due to the tension in the right string (T_right) acting at the right end of the rod = T_right * (4l - l) = T_right * 3l

Considering the torques:

T_left * l - T_right * 3l = 0 (Equation 2)

Now we have a system of two equations (Equation 1 and Equation 2) that we can solve to find the tensions.

From Equation 2, we can rewrite it as:

T_left = T_right * 3 (Equation 3)

Substituting Equation 3 into Equation 1:

T_right * 3 + T_right - mg = 0

Simplifying the equation:

4T_right = mg

Substituting this value back into Equation 3:

T_left = (mg/4) * 3 = 3mg/4

To know more about tension,

https://brainly.com/question/13929401

#SPJ11

hellp pleasse on this

Answers

The graph that best describes the solution set of the inequality 6x ≤ 18 is given as follows:

First graph.

How to obtain the solution set of the inequality?

The inequality in the context of this problem is defined as follows:

6x ≤ 18.

The solution to the inequality is obtained similarly to an equality, isolating the desired variable, hence:

x ≤ 18/6

x ≤ 3.

Due to the equal sign, at x = 3 we have a closed circle, and the graph is composed by the points to the left of the closed circle at x = 3, hence the first graph is the solution to the inequality.

More can be learned about inequalities at brainly.com/question/25275758

#SPJ1

when we take the observed values of x to estimate corresponding y values, the process is called _____.

Answers

The process of taking the observed values of x to estimate corresponding y values is called interpolation.

In interpolation, we use the known values of x to estimate or approximate the values of y that correspond to those x values. This is done by assuming that there is a functional relationship between x and y and using mathematical techniques to fill in the gaps between the observed data points.

Interpolation is commonly used in various fields such as statistics, mathematics, computer science, and engineering. It allows us to make predictions or obtain estimates for y values at specific x values within the range of the observed data.

There are different methods of interpolation, including linear interpolation, polynomial interpolation, and spline interpolation. These methods vary in complexity and accuracy depending on the nature of the data and the desired level of precision. The choice of interpolation method depends on the specific requirements of the problem at hand.

To learn more about interpolation click here: brainly.com/question/18768845

#SPJ11

If $10,000 is invested at an interest rate of 4% per year, compounded semiannually find the value of the investment after the given number of years. (Round your answers to the nearest cent.) (a) 6 years (b) 12 years (c) 18 years

Answers

The value of the investment after a certain number of years can be calculated using the compound interest formula:


A = P(1 + r/n)^(nt),

where A is the final amount, P is the principal amount (initial investment), r is the interest rate, n is the number of times interest is compounded per year, and t is the number of years.

For part (a), after 6 years, the investment would grow to A = $10,000(1 + 0.04/2)^(2*6) = $12,167.88.

For part (b), after 12 years, the investment would grow to A = $10,000(1 + 0.04/2)^(2*12) = $14,851.39.

For part (c), after 18 years, the investment would grow to A = $10,000(1 + 0.04/2)^(2*18) = $18,061.13.

In these calculations, the interest rate of 4% per year is divided by 2 because interest is compounded semiannually. The exponent nt represents the total number of compounding periods over the given number of years. By substituting the values into the formula, we can find the value of the investment after each specified time period.

To learn more about compound interest formula click here: brainly.com/question/30287096


#SPJ11

Based on the graph, which statement is correct about the solution to the system of equations for lines A and B? (4 points) a (1, 2) is the solution to both lines A and B. b (−1, 0) is the solution to line A but not to line B. c (3, −2) is the solution to line A but not to line B. d (2, 1) is the solution to both lines A and B.

Answers

The correct statement about the solution to the system of equations for lines A and B is ⇒ (1, 2) is the solution to line A but not to line B.

What are Coordinates?

The term "coordinates" refers to a set of two numerical values that precisely determine the location of a point on a Cartesian plane. These values correspond to the point's position along the horizontal and vertical axes of the plane.

Given that;

The graph shows two lines, A and B.

Now,

From graph of two lines A and B;

Lines A and B intersect at the point (1, 2).

Hence, (1, 2) is the solution to line A but not to line B.

Thus, The correct statement about the solution to the system of equations for lines A and B is,

⇒ (1, 2) is the solution to line A but not to line B.

Read more about graphs here:

https://brainly.com/question/19040584

#SPJ1

Find the midpoint of the line segment joining the points P₁ and P2. P₁ = (2,-5); P₂=(4, 5) The midpoint of the line segment joining the points P₁ and P₂ is ___

Answers

The midpoint of the line segment joining the points P₁ and P₂, where P₁ = (2,-5) and P₂ = (4, 5), can be found. To find the midpoint of a line segment joining two points, P₁ and P₂, we can use the midpoint formula.

To find the midpoint of a line segment, we use the midpoint formula. The midpoint formula states that the coordinates of the midpoint (M) between two points (P₁ and P₂) can be calculated by taking the average of the corresponding x-coordinates and the average of the corresponding y-coordinates.

Given that P₁ = (2,-5) and P₂ = (4, 5), we can calculate the midpoint as follows:

The x-coordinate of the midpoint (Mx) = (x-coordinate of P₁ + x-coordinate of P₂) / 2

Mx = (2 + 4) / 2 = 6 / 2 = 3

The y-coordinate of the midpoint (My) = (y-coordinate of P₁ + y-coordinate of P₂) / 2

My = (-5 + 5) / 2 = 0 / 2 = 0

In geometric terms, the midpoint is the point that lies exactly halfway between P₁ and P₂ along the line segment. It can be visualized as the point that divides the line segment into two equal halves. The x-coordinate of the midpoint, 3, represents the average position of the x-coordinates of P₁ and P₂, while the y-coordinate of the midpoint, 0, represents the average position of the y-coordinates of P₁ and P₂.

To learn more about midpoint - brainly.com/question/13109886

#SPJ11

Find the midpoint of the line segment joining the points P₁ and P₂. P₁ = (2,-5); P₂=(4, 5) The midpoint of the line segment joining the points P₁ and P₂ is ___.

Rob invests $5,830 in a savings account
with a fixed annual interest rate of 4%
compounded continuously. What will the
account balance be after 8 years?

Answers

After 8 years, the account balance will be approximately $7,953.19.

Using continuous compounding, we can apply the following method to determine the account amount after 8 years:

[tex]A = P \times e^{(rt)[/tex]

Where:

A is the final account balance,

P is the initial investment (principal),

The natural logarithm's base, e, is about 2.71828.

r is the interest rate per period (in this case, 4% or 0.04),

and t is the time in years.

Plugging in the values, we have:

P = $5,830

r = 0.04

t = 8

Substituting these values into the formula:

A = $5,830 × [tex]e^{(0.04 \times 8)[/tex]

To calculate this, we need the value of e raised to the power of 0.04 multiplied by 8.

Using a calculator or software, we find that [tex]e^{(0.04 \times 8)[/tex] ≈ 1.36881.

We can now reenter this value into the formula as follows:

A = $5,830 × 1.36881

Calculating this, we find that:

A ≈ $7,953.19

Therefore, after 8 years, the account balance will be approximately $7,953.19.

for such more question on account balance

https://brainly.com/question/1113933

#SPJ11

Other Questions
if you have a 12 inch diameter basketball to represent the earth, about how far away the earth basketball should you place a model of the sun? Receptor tyrosine kinase proteins contain all of the following structural features EXCEPT a. an extracellular ligand binding domain b. binding sites for "adaptor" proteins, or proteins that help generate an intracellular signal c. a cytoplasmic kinase domain (domain is a region of the protein) d. a cytoplasmic phosphatase domain (domain is a region of the protein) Match the following properties of telescopes (lettered) with the corresponding definitions (numbered).a. apertureb. resolutionc. focal lengthd. chromatic aberratione. diffractionf. interferometerg. adaptive optics(1) several telescopes connected to act as one(2) distance from lens to focal plane(3) diameter(4) ability to distinguish objects that appear close together in the sky(5) computer-controlled active focusing(6) rainbow-making effect(7) smearing effect due to sharp edge If a balloon is filled with 10. 0L of gas at 300K, what would the volume be if the temperature increased to 300k provided pressure remains constant Write the implementation file, priority_queue. C, for the interface in the given header file, priority_queue. H. Turn in your priority_queue. C file and a suitable main program, main. C, that tests the opaque object. Priority_queue. H is attached as a file to this assignment but is also listed here for your convenience. Your implementation file should implement the priority queue using a heap data structure. Submissions that implement the priority queue without using a heap will not receive any credit. #ifndef PRIORITY_QUEUE_H#define PRIORITY_QUEUE_Henum status { FAILURE, SUCCESS };typedef enum status Status;enum boolean { FALSE, TRUE };typedef enum boolean Boolean;typedef void* PRIORITY_QUEUE;//Precondition: Creates an empty priority queue that can store integer data items // with different integer priority. Higher// integer values indicate higher priority in the queue. For example, consider the // priority and the data value to be key-value pairs where the priority is the key// and the data is the value. The queue could hold 21,10 and 35, 5 so that the// first item to be removed from the queue would be the data value 5 because // it has higher priority (35) than the data value 10 which only has (21). //Postcondition: Returns the handle to an empty priority queue. PRIORITY_QUEUE priority_queue_init_default(void);//Precondition: hQueue is a handle to a valid priority queue opaque object. // Higher priority_level values indicate higher priority in the queue. // data_item is simply a value we are storing in the queue. //Postcondition: returns SUCCESS if the item was successfully added to the queue// and FAILURE otherwise. Status priority_queue_insert(PRIORITY_QUEUE hQueue, int priority_level, int data_item);//Precondition: hQueue is a handle to a valid priority queue opaque object. //Postcondition: returns SUCCESS if the highest priority item was removed from the queue // and FAILURE if the queue was empty. Status priority_queue_service(PRIORITY_QUEUE hQueue);//Precondition: hQueue is a handle to a valid priority queue opaque object. //Postcondition: returns a copy of the data value for the// highest priority item in the queue. Sets the variable at the address // referred to in pStatus to SUCCESS if there is// at least one item in the queue and FAILURE otherwise. If pStatus is// passed in as NULL then the status value is ignored for this run of the// function. int priority_queue_front(PRIORITY_QUEUE hQueue, Status* pStatus);//Precondition: hQueue is a handle to a valid priority queue opaque object. //Postcondition: returns TRUE if the priority_queue is empty and FALSE otherwise. Boolean priority_queue_is_empty(PRIORITY_QUEUE hQueue);//Precondition: phQueue is a pointer to the handle of a valid priority queue opaque object. //Postcondition: The opaque object will be free'd from memory and the handle pointed to// by phQueue will be set to NULL. void priority_queue_destroy(PRIORITY_QUEUE* phQueue);#endif why is public speaking said to have incredible power? a is an nn matrix. determine whether the statement below is true or false. justify the answer. a number c is an eigenvalue of a if and only if the equation (a-ci)x=0 has a nontrivial solution. If you wanted to study the components of transcription and translation, you should extract molecules from cells in what part of the cell cycle to get the MOST abundant yield?A. S phaseB. interphaseC. mitosisD. anaphase the priniting company charges a fixed amunt for creating artwork then charges an additonal amount based on number Revenue bills can be proposed only bythe Housethe Senatethe Speakerthe President Find the derivative of the function at Po in the direction of A. f(x,y,z) = -2 e^x cos(yz). Po(0,0,0). A= - 3i+2j+k (DA)(0,0,0) = ___ (Type an exact answer, using radicals as needed.)" how many moles of co2 gas are present in a 9.1 l container at 25 c and 1.35 atm? Which statement provides the best explanation for the difference in heat energy required to melt and to boil water? Osheat is added, the molecules start to move faster and eventually break apart into the elements hydrogen and oxygen. The process begins in melting but is completed during boiling; therefore, boiling requires more energy than melting. O Molecules in liquid water are less tightly held than in the solid phase, while in the gas phase, no attractions exist between molecules. When changing from solid to liquid, the chemical bonds must weaken, but when changing from liquid to gas, these chemical bonds must be completely broken. Therefore, more energy is required to break the bonds completely and change i g of liquid water to 1 g of gaseous water Melting occurs at a lower temperature than boiling because in melting, solid water molecules become liquid water molecules, requiring less energy. However, in boiling, liquid water molecules break apart into hydrogen and coxygen gases, which requires significantly more energy O Molecules in liquid water are less tightly held than in the solid phase, while in the gas phase, no attractions exist between molecules. When changing from solid to liquid, the intermolecular forces must weaken, but when changing from liquid to gas, these intermolecular forces must be completely broken. Therefore, more energy is required to break the intermolecular forces completely and change 18 of liquid water to 1 g of gaseous water. A temperature rise of 3.30 0.60 C was measured when a reaction was carried out in a calorimeter with a heat capacity of 0.862 0.012 kJ C -1 .The enthalpy change ( H ) was worked out as -2.84 kJ by using the equation:Enthalpy change ( H ) = heat capacity ( c ) temperature change ( T )What is the root-squared error (in kJ) for H ? The drug heparin acts in hemostasis by which processes? Select one: a. Enhancing the activity of antithrombin III (AT-III) b. Preventing the conversion of prothrombin to thrombin c. Shortening the fibrin strands to retract the blood clot d. Degrading the fibrin within blood clots Which of the following are the three primary areas of an enterprise mobility management strategy?Check All That Applya.mobile device managementb.mobile tablet securityc.mobile application managementd.personal and business technology devicese.personal and business technology devices and applicationsf.mobile information management what is the solution to the system of equations y=2x^2-4 and y=4 Give a short discription/characteristics if theater forms in the timeline What is another name for an optimal amount of stress?A) DistressB) AdaptationC) HomeostasisD) Resistance 1) Total SSE is the sum of the SSE for each separate attribute. (25) a. What does it mean if the SSE for one variable is low for all clusters? b. Low for just one cluster? c. High for all clusters? d. High for just one cluster? e. How could you use the per variable SSE information to improve your clustering?