A straight driveway is 87.0 ft long, and the top is 11.0 ft above the bottom. What angle does it make with the horizontal? ( Round to the nearest tenth

Answers

Answer 1

Let us begin by illustrating the problem using a diagram:

Here we have represented the angle that the driveway makes with the horizontal to be x

Step 1: Label the sides as shown:

Step 2: Using the sides given, find the required angle

The formula that relates the angle, opposite side and hypothenuse side is:

[tex]sin\theta\text{ = }\frac{opposite}{hypothenuse}[/tex]

Applying the formula:

[tex]\begin{gathered} sinx\text{ = }\frac{11}{87} \\ sin\text{ x = 0.126437} \\ x\text{ }\approx\text{ 7.3}^0 \end{gathered}[/tex]

Hence, it makes an angle of 7.3 degrees with the horizontal

A Straight Driveway Is 87.0 Ft Long, And The Top Is 11.0 Ft Above The Bottom. What Angle Does It Make
A Straight Driveway Is 87.0 Ft Long, And The Top Is 11.0 Ft Above The Bottom. What Angle Does It Make

Related Questions

In the matrix equation below, what are the values of x and y? 1/2 [4 8 x+3 -4] -3 [1 y+1 -1 -2]= [-1 -5 7 4]​

Answers

Using the matrix equation, the value of x and y are 5 and 2 respectively.

Consider the 2 by 2 matrix equations,

1/2 [ 4  8     ( x + 3 )   - 4 ] - 3[ 1  y+1    -1  - 2 ] = [ - 1  -5   7  4 ]

[ 2   4       (x+3)/2    -2] + [ - 3   -3y -3   +3  + 6] = [ - 1 - 5    7  4]

[ -1  -3y + 1    (x + 9)/2   + 4]  = [ - 1 - 5   7  4]

Therefore,

- 3y + 1 = - 5

Subtracting 1 from each side of the equation,

- 3y + 1 - 1 = - 5 - 1

- 3y = - 6

Dividing each side of the equation by - 3,

y = 2

And;

( x + 9 )/2 = 7

Multiplying each side by 2,

x + 9 = 14

Subtracting 9 from each side of the equation,

x + 9 - 9 = 14 - 9

x = 5

Therefore, the value of x and y is 5 and 2 respectively.

Learn more about matrix here:

brainly.com/question/27929071

#SPJ1

Evaluate each expression for the given value of the variable. #9 and #10

Answers

Part 9

we have

(c+2)(c-2)^2

If c=8

substitute the value of c in the expression

so

(8+2)(8-2)^2

(10)(6)^2

(10(36)

360

Part 10

we have

7(3x-2)^2

If x=4

substitute the value of x in the expression

7(3(4)-2)^2

7(10)^2

7(100)

700

Each face of a pyramid is an isosceles triangle with a 70 degree vertex angle. What are the measures of the base angles?

Answers

We are given that each face of a pyramid is an isosceles triangle and that its vertex angle is 70 degrees. This problem can be exemplified in the following diagram:

Since the triangle is isosceles, its base angles are the same, and the sum of the interior angles must be equal to 180 degrees. Therefore, we have the following relationship:

[tex]70+x+x=180[/tex]

Adding like terms, we get:

[tex]70+2x=180[/tex]

Now we solve for "x", first by subtracting 70 on both sides:

[tex]\begin{gathered} 70-70+2x=180-70 \\ 2x=110 \end{gathered}[/tex]

Now we divide both sides by 2

[tex]x=\frac{110}{2}=55[/tex]

Therefore, the base angles of the pyramid are 55 degrees.

Which theorem proves that the triangles are congruent?a) CPCTC b) SAS c) AAS d) SSS

Answers

Answer:

B. SAS
:)

Step-by-step explanation:

Been out of school for health issues trying to catch up work thanks!!

Answers

DEFINITIONS

The union of two sets contains all the elements contained in either set (or both sets). The union is notated A ⋃ B.

The intersection of two sets contains only the elements that are in both sets. The intersection is notated A ⋂ B.

Using a Venn Diagram, the union and intersection of two sets can be seen below:

GIVEN

The sets are given to be:

[tex]\begin{gathered} S=\mleft\lbrace1,2,3,\ldots,18,19,20\mright\rbrace \\ A=\mleft\lbrace3,4,8,9,11,13,14,15,20\mright\rbrace \\ B=\mleft\lbrace4,7,13,14,16,18,19\mright\rbrace \end{gathered}[/tex]

QUESTION

1) (A ∪ B): The terms of the two sets contained in either set or the two sets are

[tex](A\cup B)=\mleft\lbrace3,4,7,8,9,11,13,14,15,16,18,19,20\mright\rbrace[/tex]

2) (A ∩ B): The elements that are in both sets are

[tex](A\cap B)=\mleft\lbrace4,13,14\mright\rbrace[/tex]

A new shopping mall is gaining in popularity. Every day since it opened, the number of shoppers is 20%, percent more than the number of shoppers the day before. The total number of shoppers over the first 4 days is 671.How many shoppers were at the mall on the first day?Round your final answer to the nearest integer.

Answers

if the number of shoppers increases by 20% daily and 671 shoppers had visited over 4 days then let the num ber of shoppers on the first day be x

The numebr of shopperes the next day will be

= x(100 + 20)%

= 1.2x

teh number of shoppers the day after

= 1.2x(100 + 20)%

= 1.44x

the next day, the number

= 1.44x (100 + 20)%

= 1.728x

Given that the total number of people that have shopped after 4 days is 671 then

x + 1.2x + 1.44x + 1.728x = 671

5.368x = 671

x = 671/5.368

= 125

if the number of shoppers increases by 20% daily and 671 shoppers had visited over 4 days then let the num ber of shoppers on the first day be x

The numebr of shopperes the next day will be

= x(100 + 20)%

= 1.2x

teh number of shoppers the day after

= 1.2x(100 + 20)%

= 1.44x

the next day, the number

= 1.44x (100 + 20)%

= 1.728x

Given that the total number of people that have shopped after 4 days is 671 then

x + 1.2x + 1.44x + 1.728x = 671

5.368x = 671

x = 671/5.368

= 125

OB. 1OC.If X = 24 inches, Y = 45 inches, and Z= 51 inches, what is the tangent of ZA?OA. 19715NOD. 1B

Answers

Given that

We have a right-angled triangle and have to find angle A's tangent.

Explanation -

The triangle is shown as

Here we have,

X = 24 inches

Y = 45 inches

Z = 51 inches

Then, the tangent of angle A will be

[tex]\begin{gathered} The\text{ formula for the tangent is } \\ tan=\frac{Perpendicular}{Base} \\ \\ tan=\frac{P}{B} \\ For\text{ angle A thevalues are, P = 45 and B = 24} \\ Then, \\ tanA=\frac{45}{24} \\ \\ tanA=\frac{15}{8} \end{gathered}[/tex]

So the correct option is B.

Final answer -

Therefore the final answer is 15/8

To the right is the graph of f(x) = x^2. The second graph, to the left of f(x) = x^2 is a new function made by stretching f(x) vertically by a factor of 2 and then translating it three units to the left and one unit down. Write the equation of the new function.

Answers

This problem invloves the topic of curved lines in a graph, curved lines or more speccifically curve line which looks like letter C (parabola) all follows a certain standard form of equation, which is;

[tex]y=ax^2+b[/tex]

For example you can see that the equation for the black curve line in our picture is y=x² and notice that this equation can also be written as y = (1)x² + 0. Which simillar to the standard form given above where a is just 1 (a=1) and b is just 0 (b=0).

Since our black curve line follows the same standard form of equation as stated above, we can conclude that the RED curve line follows the same form of equation.

To summarize the steps that we must do in order to find the equation of the RED line we will list them as,

1. Sample two(2) points in the graph to be used as reference points.

2. Use the sampled points in our standar eqation in order to find the variables "a" and "b".

3. When we have the variables "a" and "b", we can just directly substitute it into our standard equation to find the equation of our RED line.

Let's start.

1. Sample 2 points to be used as refernce points. (Note that we will find the easiest points

to determine)

Let us use the points (-3, -1) and (-2, 1) as shown in the picture.

2. Use the points (-3, -1) and (-2, 1) in our standard equation.

[tex]\begin{gathered} y=ax^2+b \\ \text{where (x,y)=(-3, -1)} \\ -1=a(-3)^2+b_{} \\ 9a+b=-1 \end{gathered}[/tex]

for our 1st point we have the equation 9a+b = -1, let us now proceed to our next point.

[tex]\begin{gathered} y=ax^2+b \\ \text{where (x,y)=(-2, 1)} \\ 1=a(-2)^2+b_{}_{} \\ 1=4a+b \\ 4a+b=1 \end{gathered}[/tex]

and for our 2nd point we have the equation 4a+b = 1, and by the process of subtitution and elimination we can now find "a" and "b", because we have two equations with two unknowns.

[tex]\begin{gathered} 9a+b=-1\text{ and} \\ 4a+b=1 \end{gathered}[/tex]

transforming eqatuin number 1 to

[tex]9a+b=-1\text{ is just the same as b = -1 -9a}[/tex]

then substitue b = -1 -9a to the 2nd equation we have.

[tex]\begin{gathered} 4a+b=1\text{ , where b = -1-9a} \\ 4a+(-1-9a)=1 \\ 4a-1-9a=1 \\ -5a=2 \\ a=-\frac{2}{5} \end{gathered}[/tex]

since a = -2/5, we can find b using,

[tex]\begin{gathered} 4a+b=1\text{ , where a=-}\frac{2}{5} \\ 4(-\frac{2}{5})+b=1 \\ b=1+\frac{8}{5} \\ b=\frac{5}{5}+\frac{8}{5} \\ b=\frac{13}{5} \end{gathered}[/tex]

therefore our a and b are;

[tex]a=-\frac{2}{5}\text{ and b = }\frac{13}{5}[/tex]

3. We can now proceed in substituting it in our standard equation;

[tex]\begin{gathered} y=ax^2+b\text{ , where a = -}\frac{2}{5}\text{ and b = }\frac{13}{5} \\ y=(-\frac{2}{5})x^2+(\frac{13}{5}) \\ y=-\frac{2}{5}x^2+\frac{13}{5} \end{gathered}[/tex]

you can also simplify the final equation by multiplying all sides by 5,

[tex]\begin{gathered} 5y=(5)\lbrack-\frac{2}{5}x^2+\frac{13}{5}\rbrack \\ 5y=-2x^2+13 \end{gathered}[/tex]

therefore our final answer can be,

[tex]\begin{gathered} f(x)=-\frac{2}{5}x^2+\frac{13}{5} \\ or \\ 5y=-2x^2+13 \end{gathered}[/tex]

Two airplanes are flying in the air at the same height. Airplane A is flying east at 451 mi/h and airplane B is flying north at 494 mi/h. If they are both heading to the same airport, located 3 miles east of airplane A and 3 miles north of airplane B, at what rate is the distance between the airplanes changing?

Answers

The rate at which the distance between the airplanes is changing is  668.2 mi/h.

In the given question,

Speed of Airplane A:

dA/dt = 451 mi/h

and the Speed of Airplane B:

dB/dt = 494 mi/h

Aircraft A and B will form a right triangle because Aircraft A is flying east and Aircraft B is flying north, and we can use Pythagoras' theorem to calculate their distance from one another.

Let P be the distance.

P² = A² + B²

Differentiating the above equation with respect to t,

2P(dP/dt) = 2A(dA/dt) + 2B(dB/dt)

Dividing each side of the equation by 2,

P( dP/dt ) = A( dA/dt ) + B( dB/dt )                  ..........(1)

Where dP/dt is the rate of change in distance between the two aircraft.

Now,

P² = A² + B²

P = √(A² + B²)

Substituting, A = 3 miles and B = 3miles;

P = √(3² + 3²)

P = √( 9+ 9)

P = √18

P = 3√2 miles

Substituting the value in the equation (i)

3√2 (dP/dt) = (3× 451) + (3× 494)

3√2 (dP/dt) = 2835

4.2426 × dP/dt = 2835

dP/dt = 2835/4.2426

dP/dt = 668.2 mi/h

Therefore, the rate at which the distance between the airplanes is changing is  668.2 mi/h

Learn more about distance here:

brainly.com/question/15172156

#SPJ1

B) Use the quadratic formula to find the roots of each quadratic function.

Answers

[tex]\begin{gathered} \text{the roots of a polynomial of the form} \\ ax^2+bx+c=0 \\ \text{are} \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \\ So,\text{ a=3, b = -4, c = 2} \end{gathered}[/tex][tex]\begin{gathered} x=\frac{-(-4)\pm\sqrt[]{(-4)^2-4(3)(2)}}{2(3)} \\ x=\frac{4\pm\sqrt[]{16-24}}{6} \\ x=\frac{4\pm\sqrt[]{-8}}{6} \\ \\ so\text{ the roots are} \\ \\ x=\frac{4+\sqrt[]{8}i}{6} \\ \text{and} \\ x=\frac{4-\sqrt[]{8}i}{6} \end{gathered}[/tex]

Solve the following expression when p = 15 p/3 + 4

Answers

[tex]\frac{p}{3}+\text{ 4= }\frac{15}{3}+4\text{ = 5+4= 9}[/tex]

So, our answer is 9!

A person investigating to employment opportunities. They both have a beginning salary of $42,000 per year. Company A offers an increase of $1000 per year. Company B offers 7% more than during the preceding year. Which company will pay more in the sixth year? what will company A pay? and what will company B pay?

Answers

qANSWER

Company B will pay more

Company A =

EXPLANATION

Both companies start by paying $42,000 per year.

Company A offers an increase of $1000 per year.

This means that after n years, he would have earned:

Earnings = 42000 + 1000n

where n = number of years after the first year

So, after 6 years, he would have worked 5 years after the first, so his earnings would be:

Earnings = 42000 + 1000(5) = 42000 + 5000

Earnings = $47000

Company B offers 7% more than the previous year. That means that his earnings are compounded.

His earnings can then be represented as:

[tex]\text{ Earnings = P(1 + }\frac{r}{100})^t[/tex]

where P = initial salary = $42000

r = interest rate = 7%

t = number of years spent = 6 years

Therefore, his earnings after the 6th year will be:

[tex]\begin{gathered} \text{ Earnings = 42000(1 + }\frac{7}{100})^6 \\ \text{ Earnings = 42000(1 + 0.07)}^6=42000(1.07)^6 \\ \text{ Earnings = }42000\cdot\text{ 1.501} \\ \text{Earnings = \$63042} \end{gathered}[/tex]

He would have earned $63042.

Therefore, Company B will pay more.

qANSWER

Company B will pay more

Company A =

EXPLANATION

Both companies start by paying $42,000 per year.

Company A offers an increase of $1000 per year.

This means that after n years, he would have earned:

Earnings = 42000 + 1000n

where n = number of years after the first year

So, after 6 years, he would have worked 5 years after the first, so his earnings would be:

Earnings = 42000 + 1000(5) = 42000 + 5000

Earnings = $47000

Company B offers 7% more than the previous year. That means that his earnings are compounded.

His earnings can then be represented as:

[tex]\text{ Earnings = P(1 + }\frac{r}{100})^t[/tex]

where P = initial salary = $42000

r = interest rate = 7%

t = number of years spent = 6 years

Therefore, his earnings after the 6th year will be:

[tex]\begin{gathered} \text{ Earnings = 42000(1 + }\frac{7}{100})^6 \\ \text{ Earnings = 42000(1 + 0.07)}^6=42000(1.07)^6 \\ \text{ Earnings = }42000\cdot\text{ 1.501} \\ \text{Earnings = \$63042} \end{gathered}[/tex]

He would have earned $63042.

Therefore, Company B will pay more.

Which of these is a simplified form of the equation 8y + 4 = 6 + 2y + 1y? 5y = 25y = 1011y = 211y = 10

Answers

Explanation:

The equation is given below as

[tex]8y+4=6+2y+1y[/tex]

Step 1:

Collect similar terms, we will have

[tex]\begin{gathered} 8y+4=6+2y+1y \\ 8y+4=6+3y \\ 8y-3y=6-4 \\ 5y=2 \end{gathered}[/tex]

Hence,

The simplified form of the equation will be

[tex]\Rightarrow5y=2[/tex]

For triangle ABC, AB = 3 cm and BC = 5 cm.Which could be the measure of AC?A 2 cmB 4 cmC 8 cmD 15 cm

Answers

ANSWER

2, 4 and 8

EXPLANATION

We have that in a triangle ABC, AB = 3 cm and BC = 5 cm.

To find the possible length of AC, we can apply the triangle inequality theorem.

It states that in any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side.

This means that:

[tex]\begin{gathered} AB\text{ + AC }\ge\text{ BC} \\ \text{and } \\ AB\text{ + BC }\ge\text{ AC} \\ \text{and} \\ AC\text{ + BC }\ge\text{ AB} \end{gathered}[/tex]

So, we have that:

[tex]\begin{gathered} 3\text{ + AC }\ge\text{ 5 }\Rightarrow\text{ AC }\ge\text{ 2} \\ 3\text{ + 5 }\ge\text{ AC }\Rightarrow\text{ AC }\leq\text{ 8} \\ AC\text{ + 5 }\ge3\Rightarrow\text{ AC }\ge\text{ -2} \end{gathered}[/tex]

We have to disregard the third line, since the length of a triangle side can only be positive.

So, using the first 2 lines, we see that:

[tex]2\text{ }\leq\text{ AC }\leq\text{ 8}[/tex]

This means that from the options, the measure of AC can either be 2, 4 or 8.

AMNP ~ AQRP N x + 8 28 M 24 P 3x - 9 R Create a proportion and find the length of side PR*

Answers

Using thales theorem:

[tex]\begin{gathered} \frac{24}{28}=\frac{x+8}{3x-9} \\ 24(3x-9)=28(x+8) \\ 72x-216=28x+224 \\ 44x=440 \\ x=\frac{440}{44} \\ x=10 \\ PR=3(10)-9=21 \end{gathered}[/tex]

Given that DE is the midsegment of the scalene AABC, answer theprompts to the right.

Answers

Answers:

Part A.

C. AD = AE

Part B.

BC = 26

Explanation:

Part A.

If DE is a midsegment of triangle ABC, D is a point that divides AB into two equal segments, so option A. 1/2 AB = AD is true.

Additionally, if DE is a midsegment of triangle ABC, its length is equal to half the length of the side that the segment doesn't cross. So:

[tex]\begin{gathered} DE=\frac{1}{2}BC \\ 2DE=2\times\frac{1}{2}BC \\ 2DE=BC \end{gathered}[/tex]

Therefore, option B is also true.

Triangle ABC is scalene, it means that all their sides have different length, it means that AD is not equal to AE and option C is not true.

Finally, segments AE and EC form AB, so:

AC = AE + EC

AC - AE = AE + EC - AE

AC - AE = EC

So, option D is also true.

Therefore, the answer for part A is C. AD = AE

Part B.

We know that 2DE = BC, so replacing the expression for each segment, we get:

[tex]\begin{gathered} 2DE=BC \\ 2(2x+1)=5x-4 \end{gathered}[/tex]

Solving for x:

[tex]\begin{gathered} 2(2x)+2(1)=5x-4 \\ 4x+2=5x-4 \\ 4x+2-4x=5x-4-4x \\ 2=x-4 \\ 2+4=x-4+4 \\ x=6 \end{gathered}[/tex]

Now, with the value of x, we get that BC is equal to:

BC = 5x - 4

BC = 5(6) - 4

BC = 30 - 4

BC = 26

So, the answer for part B is 26.

Factor the common factor out of each expression (GCF).-32m^5n - 36m^6n - 24m^5n^2________________________

Answers

In order to find the greatest common factor (GCF) of the terms, first let's factor the numeric values in their prime factors:

[tex]\begin{gathered} 32=2\cdot2\cdot2\cdot2\cdot2\\ \\ 36=2\cdot2\cdot3\cdot3\\ \\ 24=2\cdot2\cdot2\cdot3 \end{gathered}[/tex]

The common factor between these three numbers is the product of the common prime factors, that is, 2 * 2 = 4.

Now, to find the common factor of the variables, we choose for each variable the one with the smaller exponent:

[tex]\begin{gathered} m^5,m^6,m^5\rightarrow m^5\\ \\ n,n,n^2\rightarrow n\\ \\ \\ GCF=m^5n \end{gathered}[/tex]

Therefore the common factor is -4(m^5)n.

(we can put the negative signal as well, since all terms are negative).

1+1=? Need Help! Asap

Answers

By definition, Addition is a mathematical operation.

In this case, you have the following Addition given in the exercise:

[tex]1+1[/tex]

Your answer would be 2.

Convert 7 liters into gallons using measurement conversion 1 liter= 1.0567 quarts. Round to two decimals

Answers

Convert 7 liters into gallons

We have the measurement conversion 1 liter= 1.0567 quarts

and the gallons = 4 quarts

So, 7 liters = 7 * 1.0567 quarts = 7.3969 quarts

We will convert from the quarts to gallons as follows:

1 gallons = 4 quarts

x gallons = 7.3969 quarts

so, the value of x will be:

[tex]x=\frac{7.3969}{4}=1.849225[/tex]

Round to two decimals

so, the answer will be 1.85 gallons

Based on the graph of f(x) shown here what is f^-1(8).

Answers

Answer

2

Explanation:

f⁻¹(8) is equal to the value of x that makes f(x) = 8. So, taking into account the graph, we get:

Therefore, f⁻¹(8) = 2. So the answer is 2

There are 152 students at a small school and 45 of them are freshmen. What fraction of the students are freshmen? Use "/" for the
fraction bar. Do not use spaces in your answer.

Answers

45/152 is fraction of the students are freshmen.

What are fraction?

Any number of equal parts is represented by a fraction, which also represents a portion of a whole. A fraction is a portion of a whole and is used to represent how many pieces of a particular size there are while speaking in ordinary English, for example, one-half, eight-fifths, and three-quarters. The number is represented mathematically as a quotient, where the numerator and denominator are split. Both are integers in a simple fraction. There is a proportion there in numerator or denominator of a complicated fraction. There are three main categories of fractions in mathematics. Proper fractions, incorrect fractions, and mixed fractions are these three types. The expressions with a numerator and a denominator are called fractions.

Total students = 152

Freshman = 45

Fraction = 45/152

This is the simplest form .

To know more about fractions , visit:

brainly.com/question/10354322

#SPJ13

We have a box with a circular base (diameter 20 cm) and height 4 cm.Calculate the volume.

Answers

We can calculate the volume as the product of the area of the base and the height.

The area of the base is function of the square of the diameter, so we can write:

[tex]\begin{gathered} V=A_b\cdot h \\ V=\frac{\pi D^2}{4}\cdot h \\ V\approx\frac{3.14\cdot(20\operatorname{cm})^2}{4}\cdot4\operatorname{cm} \\ V\approx\frac{3.14\cdot400\operatorname{cm}\cdot4\operatorname{cm}}{4} \\ V\approx1256\operatorname{cm}^3 \end{gathered}[/tex]

Answer: the volume of the box is 1256 cm^2.

-21 < f (x) < 0 , where f (x) = - 2x- 5

Answers

We can solve this using the next property:

If a

Replace f (x) = - 2x- 5 ​, then:

-21 < f (x) < 0

-21 < -2x-5 < 0

Solve -21 < -2x-5 and -2x-5 < 0

Therefore:

-21 < -2x-5

Add both sides 5

-21+5 < -2x-5 +5

-16 < -2x

(-1)-16 < (-1)(-2x)

16>2x

x<16/2

x<8

and

-2x-5 < 0

Add both sides 5

-2x-5 +5 < 0+5

-2x<5

(-1)-2x < (-1)5

2x > -5

x > -5/2

Hence, the resulting interval is:

-5/2 < x < 8

Braden goes to the store to buy earmuffs. The sign says they were originally $13.50 but they are on sale for 15% off. What is the cost of the earmuffs now

Answers

Answer:

$11.48

Step-by-step explanation:

Change 15% to 0.15. then you multiply 13.50 by 0.15

13.50 x 0.15 = 2.025

Then you round 2.025

by rounding 2.025 you should get 2.03

with that you should subtract $13.50 by 2.03

13.50 - 2.03 = 11.48

I hope this helps :)

Writing the equation of a quadratic function given its graph

Answers

Answer:

[tex]y=-(x-1)^2+2[/tex]

Step-by-step explanation:

A quadratic function in vertex form is represented as:

[tex]\begin{gathered} y=a(x-h)^2+k \\ \text{where,} \\ (h,k)\text{ is the vertex} \end{gathered}[/tex]

Given the vertex (1,2) substitute it into the function:

[tex]y=a(x-1)^2+2[/tex]

As you can see, we still do not know the value for ''a'', use the point given (4,-7) substitute it (x,y) and solve for ''a'':

[tex]\begin{gathered} -7=a(4-1)^2+2 \\ -7=a(3)^2+2 \\ -7=9a+2 \\ 9a=-7-2 \\ a=-\frac{9}{9} \\ a=-1 \end{gathered}[/tex]

Hence, the equation of the function would be:

[tex]y=-(x-1)^2+2[/tex]

Four plumbers estimated the length of the length of the radius of a cylindrial pipe. The estimates made by the plumbers are listed • 3/5 • 3/11 • 9/100 • 3.14/24 ? : . .

Answers

Different estimates:

The length of the radius of a cylindrical pipe:

Plumber W:

Radius had a length: 3/5 inches.

Plumber X:

Radius had a length: sqrt(3/11) inches.

Plumber Y:

Radius had a length of 9/100 inches.

Plumber Z:

Radius had a length of 3/14/24 inches.

Turn them into decimals:

We can turn each length into decimal:

Plumber W: 3/5 = 0.6.

Plumber X: sqrt(3/11) = 0.522222..

Plumber Y: 9/100 = 0.09

Plumber Z: 3.14/24 = 0.13083

The list from the greatest to least:

We can order this list taking into account the following reasoning: when the number is near to zero, this number is less than the other in the list. Examples: 0.001, 0.0002, 0.00004 are very near to zero.

Additionally, when a number is near 1 (the unit), this number is greater than the other less near to 1.

Examples: 0.69, 0.73, 0.888, 0.99 are near to zero.

The numbers we got in the list are decimals numbers coming from fractions and the square root was taken to the estimation of plumber X. Therefore:

From list 0.6, 0.52222..., 0.09, 0.13083

The number nearest to zero is 0.09. Then, 0.13083 is greater than 0.09 but less than the others. The following number is 0.5222..., and the greatest is 0.6.

The list that shows these lengths in order from the greatest to least is:

{0.6, 0.5222..., 0.13083, 0.09}.

Which is equivalent to:

{3/5, sqrt(3/11), 3.14/24, 9/100}.

Look at this set of ordered pairs: (-8, 19) (11, 1) (0, 15. Is this relation a function?

Answers

Answer:

Yes, the set of ordered pairs is a function.

Explanation:

To test whether a given set of ordered pairs represents a function, we have to make sure that it satisfies the definition.

By definition, a function cannot have two outputs for one input. For example, the set of ordered pairs (3, 10 ) and (4, 5) represents a function whereas (3, 10) and (3, 13) does not.

With this in mind, looking at the given set we see that every input gives a unique output; therefore, the set represents a function.

In a right triangle, one of the acute angles measures of degrees. What is the measure of the other acute angle?
A. 90-d
B. 90 d
C. 180-d
D. 180+d

Answers

The correct answer is  A. 90 - d

Since the sum of all the angles in a triangle is 180° and one of the angle is 90° because the triangle is a right triangle. So the sum of the remaining angles is 90°.

And to find the other acute angle we use 90° - d.

To learn more about angles in a triangle visit : brainly.com/question/27682397

If log a=4 log b= -16 and log c=19 find value of log a^2c (——-) /—— / B

Answers

We have the following

[tex]\begin{gathered} \log a=4 \\ \log b=-16 \\ \log c=19 \\ \log (\frac{a^2\cdot c}{\sqrt[]{b}}) \end{gathered}[/tex]

Let's find a, b and c in order to solve the problem

a.

[tex]\begin{gathered} \log a=4 \\ a=10^4=10000 \end{gathered}[/tex]

a = 10,000

b.

[tex]\begin{gathered} \log b=-16 \\ b=10^{-16}=\frac{1}{10^{16}} \end{gathered}[/tex]

b=1.0E-16

c.

[tex]\begin{gathered} \log c=19 \\ c=10^{19} \end{gathered}[/tex]

c=1.0E19

Thus, the value of log [ a^2c/sqrt(c) ] is :

replace:

[tex]\log (\frac{a^2\cdot c}{\sqrt[]{b}})=\log _{10}\mleft(\frac{\left(10^4\right)^2\cdot\:10^{19}}{\sqrt{10^{-16}}}\mright)[/tex]

simplify:

[tex]\begin{gathered} \frac{\left(10^4\right)^2\cdot\:10^{19}}{\sqrt{10^{-16}}}=\frac{10^8\cdot10^{19}}{10^{-8}}=10^8\cdot10^8\cdot10^{19}=10^{8+8+19}=10^{35} \\ \Rightarrow\log 10^{35}=35 \end{gathered}[/tex]

Therefore, the answer is 35

sean earns $300 in a regular work week. A regular work week for sean consists of 5 work days with 8 hours a day. How much money does sean earn each hour

Answers

Solution:

According to the problem, a regular work week consists of 5 work days with 8 hours a day. This is equivalent to say:

5 x 8 hours every regular work week.

That is:

40 hours every regular work week

then, the money earned per hour is:

[tex]\frac{300\text{ }dollars}{40\text{ hours}}\text{ = 7.5 dollars per hour}[/tex]

then we can conclude that the correct answer is:

$7.5

Other Questions
solve the following system of inequalities graphically on the set of axes below?witch of the coordinates points would be in the solution set My name is nessalovetrillo i am prepping and studying to test out of my algebra class this is for a study guide Please see attached picture Using a graphing calculator to find local extrema of a polynomial function Josh Alcazar, CFO of 888 Corp is analyzing two investments Investment A and Investment B. Fastyear, the investment & had a market value of $130,000, and Investment 8 of $180,000. During theyear investment A generated actual income of $6,000 and Investment 8 of $8,500. Today, the actuallmarket values for the investments are, respectively, for A, $130,000 and for B, $182,000.A. Calculate the expected rate of return on investments A and B for the year. (6 pts.) 4. You have 500 grams of MgF2. If a 3 M solution is desired, how many Liters must be present? According to Debt.org the average household has $7,281 in credit card debt. Estimate how much interest the average household accumulates over the course of 1 year. We are going to assume the APR is 16.99%. What type of blood vessels can you find in most mammals?A) tendons, ligaments, and capillariesB) nerves and veinsC) aorta and ventricleD) arteries, capillaries, veins 1. Identify the vertex (locator point) of the above parabola2 po(1,2)(3,0)(3,0)(2,1)2. Identify the vertex from the quadratic function y=-5(x-6) 2+82 point Frown, and you frown alone.Smile, and the whole world smiles with you.Do you think this saying is true? Why and why not? what is a colony forming unit and how is it used to infer microbial numbers in a sample? 1. a. What is work? Write its SI unit and the factors affecting work Technician A says that water fade changes the coefficient of friction between the brake linings and drums until they dry out. Technician B says that hydraulic fade is caused by brake caliper seals leaking fluid onto the rotors. Who is correct? What is the value of x? A pair of intersecting lines is shown. The angle above the point of intersection is labeled left parenthesis 7 x minus 8 right parenthesis degrees. The angle directly opposite below the point of intersection is labeled left parenthesis 6 x plus 11 right parenthesis degrees. (1 point) A 19 B 125 C 19 D 55 overbooking flights is a common practice of most airlines. a particular airline, believing that 4% of passengers fail to show for flights, overbooks (sells more tickets than there are seats). suppose that for a particular flight involving a jumbo-jet with 267 seats, the airline sells 278 tickets. question 1. what is the expected number of ticket holders that will fail to show for the flight? (use 2 decimal place in your answer.) question 2. what is the probability that the airline will not have enough seats for all the ticket holders who show for the flight? (use 3 decimal places.) Christina is doing an obstacle course in gym class. First, she runs 100 feet and jumps over a hurdle. Then, she crawls through a 20-foot tunnel. Finally, she dribbles a soccer ball 60 feet to the finish line. How many yards long is the obstacle course? If M is between G and T, MG = 2x + 1, MT = 3x + 3, and GT = 19, Then X = ___.MG = ___.MT = __. 8.1 km to miles and feet can some one clarify this question, i think ik the answer but i need some elses opinion Find m pkr inc. is launching its new product in the market. the managers at pkr want to price the product in a way that would enable the company to recover the investments made toward developing the product. which pricing strategy would be most effective for pkr inc.? Hibernation is an adaptation that helps animals to _______. a. survive high elevations b. survive cold winters c. survive droughts d. evade predators please select the best answer from the choices provided a b c d