Given statement solution is:- The coordinates of point B is (3, 50°).
In the given scenario, we have point A with polar coordinates (2, 50°) and the pole O. We need to find point B such that OA is parallel to OB and OB has a length of 3 units.
Since OA and OB are parallel, they have the same angle with the positive x-axis. Therefore, the angle between OB and the positive x-axis would also be 50°.
To find the coordinates of point B, we can use the polar coordinates system, where the distance from the pole is denoted by r and the angle with the positive x-axis is denoted by θ.
Since OB has a length of 3 units, the distance from the pole (r) would be 3. The angle between OB and the positive x-axis is also 50°. Therefore, the coordinates of point B would be (3, 50°).
So, one possible answer for the coordinates of point B is (3, 50°).
For such more questions on polar coordinate
https://brainly.com/question/4522672
#SPJ11
need help can someone help me need it to pass math
The measure of segment HI is given as follows:
HI = 7.
How to obtain the measure of segment HI?The measure of segment HI for this problem are obtained considering the triangle midsegment theorem, which states that the length of the midsegment of the triangle is equals to half the length of the base, hence the base has the length that is twice the midsegment.
The lengths are given as follows:
Midsegment HI = -9x + 70.Base EF = -21 + 5x.Hence the value of x is obtained as follows:
EF = 2HI
-21 + 5x = 2(-9x + 70)
-21 + 5x = -18x + 140
23x = 161
x = 7.
Hence the length HI is given as follows:
HI = -9(7) + 70
HI = 7.
More can be learned about the triangle midsegment theorem at brainly.com/question/7423948
#SPJ1
3(x + 4) pleeeeeeeeeeeeaaaase
Answer:
3x + 12
Step-by-step explanation:
Using the distributive property, multiply 3 by x and get 3x. Then multiply 3 by 4 and get 12. Put it together and get 3x + 12
4. Determine the lateral and total surface area of the rectangular pyramid. 6 cm 8 cm 6 cm Lateral Surface Area Total Surface Area 6.5 cm
The lateral and the total surface area of the rectangular pyramid are 182 square cm and 278 square cm
Determining the lateral and total surface area of the rectangular pyramid.From the question, we have the following parameters that can be used in our computation:
Length = 6 cm
Width = 8 cm
Height = 6.5 cm
The lateral surface area of the rectangular pyramid is calculated as
LA = 2 *(L + W)H
So, we have
LA = 2 *(6 + 8) * 6.5
Evaluate
LA = 182
The total surface area of the rectangular pyramid is calculated as
TA = 2 * (LW + LH + HW)
So, we have
TA = 2 * (8 * 6 + 8 * 6.5 + 6.5 * 6)
Evalaute
TA = 278
Hence, total surface area of the rectangular pyramid is 278 square cm
Read more about surface area at
https://brainly.com/question/26403859
#SPJ1
Which two functions can be used to solve for x?
The expression that should be used is tan 67° = 210/x, tan 23° = x/210.
Given is a figure, we need to find the value of x,
So, the figure is creating a right triangle, the angle of elevation is equal to the angle of depression,
So, the two acute angles in the triangle will be 23° and 67°.
Also, the tangent of an angle is equal to the ratio of the perpendicular side to the base,
Taking 67° as reference angle, we get,
Tan 67° = x / 210
Taking 23° as reference angle, we get,
Tan 23° = 210/x
Hence the expression that should be used is tan 67° = 210/x, tan 23° = x/210.
Learn more about tangent of an angle click;
https://brainly.com/question/18940349
#SPJ1
Drag each number to a box to complete the table. Each number may be used once or not at all
Each number should be dragged to a box to complete the table as follows;
Kilometers Meters
1 1,000
2 2,000
3 3,000
5 5,000
8 8,000
What is a conversion factor?In Science and Mathematics, a conversion factor can be defined as a number that is used to convert a number in one set of units to another, either by dividing or multiplying.
Generally speaking, there are one (1) kilometer in one thousand (1,000) meters. This ultimately implies that, a proportion or ratio for the conversion of kilometer to meters would be written as follows;
Conversion:
1 kilometer = 1,000 meters
2 kilometer = 2,000 meters
3 kilometer = 3,000 meters
4 kilometer = 4,000 meters
5 kilometer = 5,000 meters
6 kilometer = 6,000 meters
7 kilometer = 7,000 meters
8 kilometer = 8,000 meters
Read more on conversion factor here: brainly.com/question/28308386
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
10-
Next O
Post Test: Linear Equations
10
Select all the correct answers
Which lines in the graph have a slope greater than 1 but less than 27
line 1
line 2
line 3
line 4
line 5
3 4
5
The slope of the straight line in the graph that expresses proportional relationship indicates that the lines in the graph that have a slope greater than 1 but less than 2 are;
Line 3Line 4What is the slope of a graph of a straight line?The slope of the graph of a straight line is the ratio of the rise to the run on the line.
The slope of a graph with a slope of 1 has an increase in the y-value of 1 for each increase in the x-value of 1
Slope = 1 = Δy/Δx
When the slope is greater than 1, we get;
Δy/Δx > 1, therefore Δy is larger than 1 when Δx is 1.
Similarly, the slope of a graph with a slope of 2 has an increase in the y-value of 2 for each increase in the x-value of 1
Slope = 2 = Δy/Δx
When the slope is less than 1, we get;
Δy/Δx < 2, therefore Δy is less than 2 when Δx is
The lines in the graph that have a slope greater than 1 but less than 2 are therefore the graphs with the coordinates;
Line 3; (0, 0), (4, 6); Slope = 6/4 = 3/2, therefore; 1 < slope = 3/2 < 2
Line 4; (0, 0), (5, 6); Slope = 6/5, therefore; 1 < Slope < 2
The line 5 has a slope of 1, and the line 1, has a slope of 3, line 2 has a slope of 2
The correct options are line 3 and line 4Learn more on the slope of a straight line equation here: https://brainly.com/question/31182083
#SPJ1
NO LINKS!! URGENT HELP PLEASE!!!
O is the center of the regular decagon below. Find its perimeter. Round to the nearest tenth if necessary.
Answer:
65 units
Step-by-step explanation:
solution Given:
apothem(a)=10
no of side(n)= 10
First, we need to find the length of one side (s).
We can find the length of one side using the following formula:
[tex]\boxed{\bold{s = 2 * a * tan(\frac{\pi}{n})}}[/tex]
substituting value:
[tex]\bold{s = 2 * 10 * tan(\frac{\pi}{10})=6.498}[/tex] here π is 180°
Now
Perimeter: n*s
substituting value:
Perimeter = 10*6.498= 64.98 in nearest tenth 65 units
Therefore, the Perimeter of a regular decagon is 65 units.
Answer:
65.0 units
Step-by-step explanation:
A regular decagon is a 10-sided polygon with sides of equal length.
To find its perimeter, we first need to find its side length (s).
As we have been given its apothem, we can use the apothem formula to find an expression for side length (s).
[tex]\boxed{\begin{minipage}{5.5cm}\underline{Apothem of a regular polygon}\\\\$a=\dfrac{s}{2 \tan\left(\dfrac{180^{\circ}}{n}\right)}$\\\\where:\\\phantom{ww}$\bullet$ $s$ is the side length.\\ \phantom{ww}$\bullet$ $n$ is the number of sides.\\\end{minipage}}[/tex]
Given the apothem is 10 units and the number of sides is 10, substitute a = 10 and n = 10 into the formula and solve for s:
[tex]10=\dfrac{s}{2 \tan \left(\dfrac{180^{\circ}}{10}\right)}[/tex]
[tex]10=\dfrac{s}{2 \tan \left(18^{\circ}\right)}[/tex]
[tex]s=20 \tan \left(18^{\circ}\right)[/tex]
The perimeter (P) of a regular polygon is the product of its side length and the number of sides. Therefore, the perimeter of the given regular decagon is:
[tex]P=s \cdot n[/tex]
[tex]P=20 \tan \left(18^{\circ}\right) \cdot 10[/tex]
[tex]P=200 \tan \left(18^{\circ}\right)[/tex]
[tex]P=64.9839392...[/tex]
[tex]P=65.0\; \sf units\;(nearest\;tenth)[/tex]
Therefore, the perimeter of a regular decagon with an apothem of 10 units is 65.0 units, to the nearest tenth.
Use the associative law of multiplication to write an equivalent expression
(12x)y
Using the associative law of multiplication we get this two solution of the given expression: (12x)y = (12 * x) * y , (12x)y = 12 * (x * y)
The associative law of multiplication states that when multiplying three or more numbers, the product is the same regardless of the order in which the numbers are grouped. In other words, it doesn't matter which numbers we multiply first, the result will be the same.
Using the associative law of multiplication, we can group the factors in any way we like. Therefore, we can write an equivalent expression to (12x)y by changing the grouping of factors.
One way to group the factors is to group the two numerical coefficients (12 and y) together.
Another way to group the factors is to group the variable x and the coefficient y together.
Both of these expressions are equivalent to (12x)y and they all follow the associative law of multiplication.
For such more questions on associative law
https://brainly.com/question/30034923
#SPJ8
Find the product of (3x + 4)(x − 1). 3x2 + 7x − 4 3x2 + 7x − 3 3x2 − x − 4 3x2 + x − 4
Hello !
Answer:
[tex]\boxed{\sf (3x + 4)(x - 1)=3x^2+x-4}[/tex]
Step-by-step explanation:
We will have to use the distributive property to expand this expression.
Let's remember :
[tex]\sf (a+b)(c+d)=ab+ad+bc+bd)[/tex]
Let's apply this property to our expression :
[tex]\sf (3x + 4)(x -1)\\=3x\times x+3x\times(-1)+4\times x+4\times(-1)[/tex]
Now let's calculate and combine like terms :
[tex]\sf 3x^2-3x+4x-4\\\boxed{\sf =3x^2+x-4}[/tex]
Have a nice day ;)
Evaluate f (x)=5/2x-8 when x=4
Answer:
2
Step-by-step explanation:
f(x) = [tex]\frac{5}{2}[/tex] x - 8 ← substitute x = 4 into f(x) , then
f(4) = [tex]\frac{5}{2}[/tex] × 4 - 8 = 5 × 2 - 8 = 10 - 8 = 2
What’s the total liquid measure of the punch
The correct option is B, the total volume is 6 gallons, 2 quarts, and 1 pint.
What’s the total liquid measure of the punch?Here we just need to add all the volumes that are in the question, we have.
1 gallons, 2 quarts, 3 pints of orange juice.1 gallons, 3 quarts, 7 pints of pineapple juice.1 gallons, 3 quarts, 3 pints of ginger ale.So there are:
3 gallons.
8 quarts.
13 pints.
Now let's do the changes of units, we know that:
8 pints = 1 gallon
4 quarts = 1 gallon
1 quart = 2 pints
then:
13 pints = 1 gallon and 5 pints
8 quarts = 2 gallons
5 pints = 2 quarts and 1 pint
Then the total volume is:
6 gallons, 2 quarts, and 1 pint.
LEarn more about adding volume:
https://brainly.com/question/1972490
#SPJ1
find the indicated side of the right triangle. 45 degrees, 45 degrees, 6, y, x, x = ?
3√2 and 3 are the values of x and y respectively from the figure.
Trigonometry identitiesThe given diagram is a right triangle with an acute angle of 45 degrees
We need to determine the values of variables x and y.
Applying the trigonometry identity, we will have:
sin 45 = opposite/hypotenuse
sin45 = 3/x
x = 3/sin45
x = 3/(1/√2)
x = 3√2
Similarly:
tan 45 = opposite/adjacent
tan 45 = 3/y
1 = 3/y
y = 3
Hence the values of x and y from the figure is 3√2 and 3 respectively
Learn more on trigonometry identity here: https://brainly.com/question/7331447
#SPJ1
if f(x)=-2x, g(x)=3x-7, and h(x)=2x^2-10, fill in the following chart
The values of Composite function are:
f(g(-1)) = 20
h[g(4)] = 40
g[f(5)] = -37
f[h(-4)] = -44
g[g(7)] = 35
h[f(1/2)] = -8
We have, f(x) = -2x, g(x) = 3x-7 and h(x)= 2x² -10
f(g(-1)):
First, substitute -1 into g(x): g(-1) = 3(-1) - 7 = -3 - 7 = -10.
Next, substitute the result into f(x): f(-10) = -2(-10) = 20.
Therefore, f(g(-1)) = 20.
h[g(4)]:
First, substitute 4 into g(x): g(4) = 3(4) - 7 = 12 - 7 = 5.
Next, substitute the result into h(x): h(5) = 2(5^2) - 10 = 2(25) - 10 = 50 - 10 = 40.
Therefore, h[g(4)] = 40.
g[f(5)]:
First, substitute 5 into f(x): f(5) = -2(5) = -10.
Next, substitute the result into g(x): g(-10) = 3(-10) - 7 = -30 - 7 = -37.
Therefore, g[f(5)] = -37.
f[h(-4)]:
First, substitute -4 into h(x): h(-4) = 2(-4²) - 10 = 2(16) - 10 = 32 - 10 = 22.
Next, substitute the result into f(x): f(22) = -2(22) = -44.
Therefore, f[h(-4)] = -44.
g[g(7)]:
First, substitute 7 into g(x): g(7) = 3(7) - 7 = 21 - 7 = 14.
Next, substitute the result into g(x) again: g(14) = 3(14) - 7 = 42 - 7 = 35.
Therefore, g[g(7)] = 35.
h[f(1/2)]:
First, substitute 1/2 into f(x): f(1/2) = -2(1/2) = -1.
Next, substitute the result into h(x): h(-1) = 2(-1²) - 10 = 2(1) - 10 = 2 - 10 = -8.
Therefore, h[f(1/2)] = -8.
Learn more about Composite function here:
https://brainly.com/question/30660139
#SPJ1
If a wheelchair access ramp has to have an angle of elevation no more than 4.8 degrees and it has to rise 18 inches above the ground, how long must the ramp be?
The wheelchair access ramp must be 216.09 inches long.
To find the length of the wheelchair access ramp, we can use trigonometry.
The tangent function relates the angle of elevation to the ratio of the opposite side (height) to the adjacent side (length of the ramp).
Let's denote the length of the ramp as "x".
The height of the ramp is given as 18 inches.
Using the tangent function:
tan(angle of elevation) = height/length of the ramp
tan(4.8 degrees) = 18/x
To solve for x, we can rearrange the equation:
x = 18 / tan(4.8 degrees)
Using a calculator to evaluate the tangent of 4.8 degrees:
x = 18 / 0.08331
x= 216.09
To learn more on trigonometry click:
https://brainly.com/question/25122835
#SPJ1
the table shows how much Eric earns for pruning trees, write an equation that relates x, the number of trees Eric prunes to y the amount he earns. solve your equation to find how much Eric earns if he prunes 7
trees pruned 2 4 6 8
pay in dollars 30 60 90 80
If Eric prunes 7 trees, he would earn $85.
To write an equation that relates the number of trees pruned (x) to the amount Eric earns (y), we can use the given data points to determine the pattern or relationship.
From the table, we observe that Eric's pay increases as the number of trees pruned increases, except for the case where he prunes 8 trees.
Based on the data, we can construct a piecewise equation:
For x = 2, 4, and 6:
y = 30 * x
For x = 8:
y = 80
However, we need to consider the case when x = 7. Since this data point is missing from the table, we can assume that the pay is proportional to the number of trees pruned. Therefore, we can interpolate using the given data points for x = 6 and x = 8:
Using the formula for linear interpolation:
y = y1 + (y2 - y1) * ((x - x1) / (x2 - x1))
Substituting the values, we have:
y = 90 + (80 - 90) * ((7 - 6) / (8 - 6))
y = 90 + (-10) * (1 / 2)
y = 90 - 5
y = 85
Thus, if Eric prunes 7 trees, he would earn $85.
It's important to note that the equation and solution are based on the given data points and the assumption of a linear relationship.
For more such questions on prunes, click on:
https://brainly.com/question/20341582
#SPJ8
The equation of the hyperbola that has a center at (3, 10), a focus at (8, 10), and a vertex at (6, 10), is
Int he above expression, A = 3 (distance from the vertex to the center)
B = 4
C = 3 (distance from focus to center)
D = 10
How is this so?Since the center of the hyperbola is (3,10), we have C=3 and D=10.
The distance from the center to the vertex is A, so we have A= 6-3
A = 3.
The distance from the center to the focus is given by c, so we have c=8-3=5.
We can use the relationship a² + b² = c² to solve for B:
a = 6 - 3 = 3 (distance from vertex to center)
c = 5 (distance from focus to center)
b = ?
b² = c² - a²
b² = 5² - 3²
b² = 16
b = 4
Therefore, the equation of the hyperbola is
((x-3)²/3²) - ((y-10)²/4²) = 1
Learn more about vertext:
https://brainly.com/question/31625545
#SPJ1
Full Quesitn:
The equation of the hyperbola that has a center at (3, 10), a focus at (8, 10), and a vertex at (6, 10), is
((x-C)²/A²) - ((y-D)²)/B²) = 1
Where A = ?
B = ?
C = ?
D = ?
What are three consecutive multiples of 3 if 2/3
of the sum of the first
two numbers is 1 greater than the third number?
The three consecutive multiples of 3 are 15, 18 and 21
To solve this problem
First, let's determine three successive multiples of 3:
The subsequent two would be "x+3" and "x+6" if we call the initial number "x".
Since we are aware that the third number (x+6) is one more than the first two numbers (x + x+3), we can write the following equation:
2/3(x + x+3) = (x+6) + 1
Simplifying this equation, we get:
2/3(2x+3) = x+7
Multiplying both sides by 3, we get:
2(2x+3) = 3(x+7)
Expanding and simplifying, we get:
4x + 6 = 3x + 21
Subtracting 3x and 6 from both sides, we get:
x = 15
Therefore, the three consecutive multiples of 3 are 15, 18 and 21
Learn more about consecutive multiples here : brainly.com/question/22081489
#SPJ1
Drag each number to a box to complete the table. Each number may be used once or not at all. 8,000533,00021,000 Kilometers Meters 1 2,000 5,000 8
Each number should be dragged to a box to complete the table as follows;
Kilometers Meters
1 1,000
2 2,000
3 3,000
5 5,000
8 8,000
What is a conversion factor?In Science and Mathematics, a conversion factor can be defined as a number that is used to convert a number in one set of units to another, either by dividing or multiplying.
Generally speaking, there are one (1) kilometer in one thousand (1,000) meters. This ultimately implies that, a proportion or ratio for the conversion of kilometer to meters would be written as follows;
Conversion:
1 kilometer = 1,000 meters
2 kilometer = 2,000 meters
3 kilometer = 3,000 meters
4 kilometer = 4,000 meters
5 kilometer = 5,000 meters
6 kilometer = 6,000 meters
7 kilometer = 7,000 meters
8 kilometer = 8,000 meters
Read more on conversion factor here: brainly.com/question/28308386
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
You have one red apple and three green apples in a
bowl. You randomly select one apple to eat now and
another apple for your lunch. Use a sample space to
determine whether randomly selecting a green apple
first and randomly selecting a green apple second are
independent events.
Answer: vvvvv
Step-by-step explanation:
Let R1 and G1 represent the red and green apples available for the first selection, respectively. Similarly, let R2, G2a, and G2b represent the red and two green apples available for the second selection, respectively. Then, the sample space for the two selections is:
{(R1, R2), (R1, G2a), (R1, G2b), (G1, R2), (G1, G2a), (G1, G2b)}
Out of these six outcomes, only two involve selecting a green apple first: (G1, R2) and (G1, G2a). And out of these two outcomes, only one involves selecting a green apple second: (G1, G2a).
Therefore, since the probability of selecting a green apple second changes based on whether a green apple was selected first, the events of selecting a green apple first and selecting a green apple second are dependent.
) Assume that a simple random sample has been selected from a normally distributed population and test the given claim at α = 0.05. State the claim mathematically. Identify the null and alternative hypotheses, test statistic, critical region(s), and the decision regarding the null hypothesis. State the conclusion that addresses the original claim. A local group claims that police issue at least 60 speeding tickets a day in their area. To prove their point, they randomly select two weeks. Their research yields the number of tickets issued for each day. The data are listed below. 70 48 41 68 69 55 70 57 60 83 32 60 72 58
We cannot conclude that there are more than 70,000 defined words in the dictionary.
To test the claim that there are more than 70,000 defined words in the dictionary, we can set up the null and alternative hypotheses as follows:
Null Hypothesis (H0): The mean number of defined words on a page is 48.0 or less.
Alternative Hypothesis (H1): The mean number of defined words on a page is greater than 48.0.
So, sample mean
= (59 + 37 + 56 + 67 + 43 + 49 + 46 + 37 + 41 + 85) / 10
= 510 / 10
= 51.0
and, the sample standard deviation (s)
= √[((59 - 51)² + (37 - 51)² + ... + (85 - 51)²) / (10 - 1)]
≈ 16.23
Next, we calculate the test statistic using the formula:
test statistic = (x - μ) / (s / √n)
In this case, μ = 48.0, s ≈ 16.23, and n = 10.
test statistic = (51.0 - 48.0) / (16.23 / √10) ≈ 1.34
With a significance level of 0.05 and 9 degrees of freedom (n - 1 = 10 - 1 = 9), the critical value is 1.833.
Since the test statistic (1.34) is not greater than the critical value (1.833), we do not have enough evidence to reject the null hypothesis.
Therefore, based on the given data, we cannot conclude that there are more than 70,000 defined words in the dictionary.
Learn more about test statistic here:
https://brainly.com/question/31746962
#SPJ1
In your drawer you have 10 white socks and 14 black socks. You choose one sock from the drawer and then a second sock (without replacement.)
Event A: You choose a black sock.
Event B: You choose a black sock.
Tell whether the events are independent or dependent. Explain your reasoning.
The events A and B are dependent events.
The probability of event B will be different from the initial probability of selecting a black sock (event A).
Two events are considered independent if the outcome of one event does not affect the probability of the other event.
The outcome of event A (choosing a black sock) directly affects the probability of event B (choosing a black sock again).
To explain further, let's consider the initial scenario:
You have 10 white socks and 14 black socks in your drawer.
The total number of socks is 24.
The first sock, there are two possibilities:
Either it is a black sock or a white sock.
If event A occurs and you select a black sock, the total number of black socks in the drawer decreases to 13, while the total number of socks decreases to 23.
If event B to occur (selecting a black sock again), the probability is now influenced by the fact that you have one less black sock and one less sock in the drawer.
The probability of event B will be different from the initial probability of selecting a black sock (event A).
The outcome of event A affects the probability of event B, the two events are dependent.
For similar questions on sock
https://brainly.com/question/30533001
#SPJ11
Part C. Jack also likes to collect buttons. He has 5 bags of button The fewest number of buttons in a bag is 21. The greatest number of buttons in a bag is 29 The mean number of buttons in the bags is 27. There are two modes for the number of buttons in each bag. How many buttons are in each of Jack's five bags?
To find the number of buttons in each of Jack's five bags, we can use the information given to us and solve for the unknowns. Let's start by finding the total number of buttons:
Total number of buttons = Mean number of buttons × Number of bags
Total number of buttons = 27 × 5
Total number of buttons = 135
Since we know the fewest and greatest number of buttons in a bag, we can find the range:
Range = Greatest number of buttons - Fewest number of buttons
Range = 29 - 21
Range = 8
Now, we can set up two equations to find the two modes:
Mode 1 + Mode 2 + 3 × 27 = 135 (sum of all bags)
Mode 2 - Mode 1 = 8 (difference between the two modes)
Solving these equations simultaneously, we get:
Mode 1 = 23
Mode 2 = 31
Therefore, the number of buttons in each of Jack's five bags is:
Bag 1: 21 buttons
Bag 2: 23 buttons
Bag 3: 25 buttons
Bag 4: 27 buttons
Bag 5: 29 buttons
Is 4.1 less than or greater than 4.10 
Answer:
4.1 = 4.10
Step-by-step explanation:
Extra 0 at the end of 4.10 doesn't change the quantity of the number, so 4.1 is equal to 4.10
IS THERE ANOTHER WAY TO SOLVE THIS PROBLEM
My family and I own a little country store. It’s called Coomer’s Trading Post. We sell a little of everything, but we do sell a lot of cheeseburgers, French fries, bottle soda, and candy bars daily.
We expect to make $175 for cheeseburger and fries only.
I plan to sell 105 burgers and fries all together.
X= burger $4
Y= fries $ 2
I4x+2=175 (equation)
SOLVE FOR Y
X+Y=105
-Y -Y
X= 105-Y
4(105-Y) + 2 =175
420-4Y+2=175
-420 -420
-4Y+2Y=245
-2Y=-245
-2 -2
Y=122.50
SOLVE FOR X
4X+2(122.50)= 105
4X+245=105
-245 -245
4x= 140
4 4
X=-35
THIS IS FOR CANDY BARS AND BOTTLE SODAS.
We expect to make $ 120 for the candy bars and bottle soda together.
We plan to sell 75.
X= candy bars 1.85
Y= bottle soda 2.49
Solve for y
1.85x+2.49=120
X+Y=75
-Y -Y
X=75-Y
1.85(75-Y)+2.49=120
138.75-1.8Y+2.49=120
-138.75 -138.75
-1.8Y+2.49Y=-18.75
.64Y=-18.75
.64 .64
Y=-29.29
SOLVE FOR X
1.85X+2.49(-29.29)=120
1.85X + -72.93=120
-72.93 -72.93
1.85X =47.07
1.85 1.85
X= 25.44
The values for the Number of cheeseburgers, fries, candy bars, and bottle sodas seem to be inconsistent.The number of fries (Y) is 122.50.The number of cheeseburgers (X) is -17.50
We can calculate the values of X and Y, representing the number of cheeseburgers and fries respectively, and the number of candy bars and bottle sodas respectively.
For cheeseburgers and fries:
We know that the expected revenue from cheeseburgers and fries is $175.
The equation relating the cost of the cheeseburgers (X) and fries (Y) is given as 4X + 2Y = 175.
We also know that the total number of cheeseburgers and fries to be sold is 105, which can be represented as X + Y = 105.
To solve for Y, we can substitute X = 105 - Y into the first equation:
4(105 - Y) + 2Y = 175
420 - 4Y + 2Y = 175
-2Y = 175 - 420
-2Y = -245
Y = -245 / -2
Y = 122.50
To solve for X, we substitute Y = 122.50 into the equation X + Y = 105:
X + 122.50 = 105
X = 105 - 122.50
X = -17.50
Therefore, the number of cheeseburgers (X) is -17.50. However, since it is not possible to have a negative quantity of cheeseburgers, we can conclude that there might be an error in the calculations or the given information.
Moving on to candy bars and bottle sodas:
We expect to make $120 from the sales of candy bars and bottle sodas.
The equation relating the cost of candy bars (X) and bottle sodas (Y) is given as 1.85X + 2.49Y = 120.
The total number of candy bars and bottle sodas to be sold is 75, which can be represented as X + Y = 75.
To solve for Y, we substitute X = 75 - Y into the first equation:
1.85(75 - Y) + 2.49Y = 120
138.75 - 1.85Y + 2.49Y = 120
0.64Y = 120 - 138.75
0.64Y = -18.75
Y = -18.75 / 0.64
Y = -29.29
Again, we encounter a negative value, which is not possible for the number of bottle sodas. This suggests a mistake in the calculations or the given information.
Similarly, to solve for X, we substitute Y = -29.29 into the equation X + Y = 75:
X - 29.29 = 75
X = 75 + 29.29
X = 104.29
Here, we obtain a non-integer value for the number of candy bars, which may indicate an error in the calculations or the given information.
In conclusion, the calculated values for the number of cheeseburgers, fries, candy bars, and bottle sodas seem to be inconsistent with the given information
To know more about Number .
https://brainly.com/question/26460978
#SPJ8
Need the answer quickly!
(-4,4) is the center and (-2,4) is a point on the circle. What is the equation?
The equation of the circle with center (-4, 4) and passing through (-2, 4) is [tex](x + 4)^2 + (y - 4)^2 = 4.[/tex]
We have,
To determine the equation of a circle, we need the center coordinates and the radius. The center coordinates are given as (-4, 4), and we have a point on the circle as (-2, 4).
The distance between the center (-4, 4) and the point on the circle (-2, 4) represents the radius of the circle.
Using the distance formula.
[tex]radius = √[(x_2 - x_1)^2 + (y_2 - y_1)^2]\\= \sqrt{(-2 - (-4))^2 + (4 - 4)^2}\\= \sqrt{2^2 + 0^2}\\= \sqrt{4}\\= 2[/tex]
Now that we have the center coordinates (-4, 4) and the radius 2, we can write the equation of the circle in standard form:
[tex](x - h)^2 + (y - k)^2 = r^2[/tex]
Substituting the values:
[tex](x - (-4))^2 + (y - 4)^2 = 2^2\\(x + 4)^2 + (y - 4)^2 = 4[/tex]
Therefore,
The equation of the circle with center (-4, 4) and passing through (-2, 4) is [tex](x + 4)^2 + (y - 4)^2 = 4.[/tex]
Learn more about equations here:
https://brainly.com/question/17194269
#SPJ1
Write the equation of a parabola whose directrix is x = -2 and has a focus at (8,-8).
The equation of the parabola is (x - 3)² = 20(y - k)
Given data ,
To write the equation of a parabola given its directrix and focus, we can use the standard form for a parabola with a vertical axis of symmetry:
(x - h)² = 4p(y - k)
where (h, k) represents the vertex of the parabola, and the distance between the vertex and the focus is equal to the distance between the vertex and the directrix.
In this case, the directrix is x = -2 and the focus is located at (8, -8). Since the directrix is a vertical line, the parabola has a horizontal axis of symmetry.
And , the vertex lies on the axis of symmetry, which is the line equidistant between the directrix and the focus. In this case, the axis of symmetry is the vertical line x = (8 + (-2)) / 2 = 3.
So, the vertex of the parabola is (3, k), where k is yet to be determined
Next, we need to find the value of p, which represents the distance between the vertex and the focus. Since the focus is at (8, -8), and the vertex is at (3, k), the distance between them is given by
p = 8 - 3 = 5
Now, substituting the values into the standard form equation, we have:
(x - 3)² = 4(5)(y - k)
Simplifying further:
(x - 3)² = 20(y - k)
Hence , the equation of the parabola is (x - 3)^2 = 20(y - k), where k is the y-coordinate of the vertex
To learn more about parabola click :
https://brainly.com/question/24042022
#SPJ1
Given l ∥ m ∥ n, find the value of x.
Answer:
-x = 17
Step-by-step explanation:
Given m||n we can write the following equation:
(5x - 23)° + (7x - 1)° = 180° because the these angles are supplementary angles.
Add like terms.(12x - 24)° = 180°
Add 24 to both sides.(12x)° = 204°
Divide both sides with 12.x = 17
I need help!!!!!!!!!
Answer:
its b4 + 7b3 + 4b2 + b5 + 7b4+ 4b3= b5+8b4+11b3+4b2
Answer:
When multiplying, add the exponents, (example) remember if there is "7b" the exponent is one.
Multiply b^2 * b^3 = b^5 (add the exponent 2 + 3 = 5)
Multiply 7b * b^3 = 7b^4 (the exponent of 7b is one, add 1 + 3 for the exponent to become 4)
Multiply 4 * b^3 = 4b^3 (4 doesn't have a variable, the exponent will be 3)
b^2 * b*2 = b^4 (add exponents)
7b * b^2 = 7b^3 (add the exponents 1 + 2)
4 * b^2 = 4b^2
b^2 + 7b + 4
b^3 b^5 + 7b^4 + 4b^3
+
b^2 b^4 + 7b^3 + 4b^2
b^5 + 7b^4 + 4b^3 + b^4 + 7b^3 + 4b^2
[tex]b^5 + 7b^4 + 4b^3 + b^4 + 7b^3 + 4b^2[/tex]
b^5 + 8b^4 + 11b^3 + 4b^2sin( 3pi/4 ) =
O A. 1/2
OB. -√2/2
O C. √3/2
O D. √2/2
Answer:
D
Step-by-step explanation:
sin ( 3pi / 4 )
= sin ( pi - pi / 4 )
= sin ( pi / 4 )
= 1/root(2)
= root(2) / 2