According to projections through the year 2030, the population y of the given state in year x is approximated byState A: - 5x + y = 11,700State B: - 144x + y = 9,000where x = 0 corresponds to the year 2000 and y is in thousands. In what year do the two states have the same population?The two states will have the same population in the year

According To Projections Through The Year 2030, The Population Y Of The Given State In Year X Is Approximated

Answers

Answer 1

The x variable represents the year in question. The year 2000 is represented by x = 0, 2001 would be repreented by x = 1, and so on.

The year in which both states would have the same population can be determined by the value of x which satisfies both equations.

We would now solve these system of equations as follows;

[tex]\begin{gathered} -5x+y=11700---(1) \\ -144x+y=9000---(2) \\ \text{Subtract equation (2) from equation (1);} \\ -5x-\lbrack-144x\rbrack=11700-9000 \\ -5x+144x=2700 \\ 139x=2700 \\ \text{Divide both sides by 139} \\ x=19.4244 \\ x\approx19\text{ (rounded to the nearest whole number)} \end{gathered}[/tex]

Note that x = 19 represents the year 2019

ANSWER:

The two states will have the same population in the year 2019


Related Questions

A grocer mixed grape juice which costs $1.50 per gallon with cranberry juice whichcosts $2.00 per gallon. How many gallons of each should be used to make 200 gallons of cranberry/grape juice which will cost $1.75 per gallon?

Answers

Let x be the amount of gallons of grape juice we are using to get the mixture we want. Let y be the amount of gallons of cranberry juice used to get the desired mixture.

Since we are told that we want a total of 200 gallons of the new mixture, this amount would be the sum of gallons of each liquid. So we have this equation

[tex]x+y=200[/tex]

To find the values of x and y, we need another equation relating this variables. Note that since we have 200 gallons of the new mixture and the cost per gallon of the new mixture is 1.75, the total cost of the new mixture would be

[tex]1.75\cdot200=350[/tex]

As with quantities, the total cost of the new mixture would be the cost of each liquid. In the case of the grape juice, since we have x gallons and a cost of 1.50 per gallon, the total cost of x gallons of grape juice is

[tex]1.50\cdot x[/tex]

In the same manner, the total cost of the cranberry juice would be

[tex]2\cdot y[/tex]

So, the sum of this two quantites should be the total cost of the new mixture. Then, we get the following equation

[tex]1.50x+2y=350[/tex]

If we multiply this second equation by 2 on both sides, we get

[tex]3x+4y=700[/tex]

Using the first equation, we get

[tex]x=200\text{ -y}[/tex]

Replacing this value in the second equation, we get

[tex]3\cdot(200\text{ -y)+4y=700}[/tex]

Distributing on the left side we get

[tex]600\text{ -3y+4y=700}[/tex]

operating on the left side, we get

[tex]600+y=700[/tex]

Subtracting 600 on both sides, we get

[tex]y=700\text{ -600=100}[/tex]

Now, if we replace this value of y in the equation for x, we get

[tex]x=200\text{ -100=100}[/tex]

Thus we need 100 gallons of each juice to produce the desired mixture.

Hi, the area of a circle is 100 sq. mm. The radius is 5.64 mm. What is the circumference?

Answers

11.28π mm

1) Since the area is 100 mm² we can plug into the Circumference formula to find out the perimeter of that circle

2)

[tex]\begin{gathered} C=2\pi\cdot r \\ C=2\cdot\pi\cdot(5.64)^{} \\ C=11.28\pi \end{gathered}[/tex]

3) Hence, the circumference of that circle is 11.28π mm

Elaina started a savings account
with $3,000. The account earned
$10 each month in interest over a
5-year period. Find the interest
rate.

Answers

Using the simple interest formula, the rate of interest is 0.67%.

In the given question,

Elaina started a savings account with $3,000. The account earned $10 each month in interest over a 5-year period.

We have to find the interest rate.

The money that Elaina have in her account is $3000.

The interest that she earned = $10

The time period is 5 year,

We find the interest rate using he simple interest formula.

The formula of simple interest define by

I = P×R×T/100

where I is the interest.

P is principal amount.

R is rate of interest.

T is time period.

From the question, P = $3000, I = $10, T = 5

Now putting the value

10 = 3000×R×5/10

Simplifying

10 = 300×R×5

10 = 1500×R

Divide by 1500 on both side

10/1500 = 1500×R/1500

0.0067 = R

R = 0.0067

To express in percent we multiply and divide with 100.

R = 0.0067×100/100

R = 0.67%

Hence, the rate of interest is 0.67%.

To learn more about simple interest link is here

https://brainly.com/question/25845758

#SPJ1

If a projectile is fired straight upward from the ground with an initial speed of 224 feet per​ second, then its height h in feet after t seconds is given by the function ​h(t)= -16t^2.+224t Find the maximum height of the projectile.

Answers

The height reached by the projectile is 784 feet.

What is the maximum height of the projectile?

The projectile experiments an uniformly accelerated motion due to gravity, whose height is represented by the quadratic equation:

h(t) = - 16 · t² + 224 · t

Where t is the time, in seconds.

In this problem we need to find the maximum height reached by the projectile, which can be found by finding the vertex form of the quadratic equation:

h(t) = - 16 · (t² - 14 · t)

h(t) - 16 · 49 = - 16 · (t² - 14 · t + 49)

h(t) - 784 = - 16 · (t - 7)²

The maximum height of the projectile is 784 feet.

To learn more on quadratic equations: https://brainly.com/question/1863222

#SPJ1

The sum of three consecutive integers is −387. Find the three integers.​

Answers

Answer:

-130, -129, -128

Step-by-step explanation:

consecutive integers are when one integer is greater than the previous one and so on... so assuming the smallest integer which we start with is "x", the next integer is "x+1", and the next integer is "x+1+1".

Adding all these together will give us the sum of three consecutive integers:

[tex]x+(x+1)+(x+1+1)[/tex]

Simplifying inside the parenthesis gives us

[tex]x+(x+1)+(x+2)[/tex]

Simplifying the entire expression gives us the following:

[tex]3x+3[/tex]

This is equal to -387 as stated in the problem, so let's set it equal to -387

[tex]3x+3=-387[/tex]

Subtract 3

[tex]3x=-390[/tex]

Divide by 3

[tex]x=-130[/tex]

Since the consecutive integers are just +1, then +2, we can define the three consecutive integers as

-130, -130 + 1, -130 + 2

which simplifies to

-130, -129, -128

Using the priority list T1, T6, T2, T7, T8, T5, T4, T3, Tg, schedule the project below with two processors.Tasks that must be completed firstTime Required34TaskT1T2T3T4T5T6T7T8T9423481111T1, T2T2T2, T3T4, T5T5, T6T6Task 6 is done by Select an answer starting at timeTask 8 is done by Select an answer starting at timeThe finishing time for the schedule is

Answers

Firstly, let's make a diagram of prerequisites:

Comment: The number within parenthesis denotes the time required to complete the corresponding task.

Now, let's make our schedule based upon the priority list:

[tex]T_1,T_6,T_2,T_7,T_8,T_5,T_4,T_3,T_9[/tex]

First, we need to know which are the ready tasks (tasks without prerequisites). By the diagram is clear that they are T_1, T_2, and T_3. Then, we need to look at their priority in the priority list. Between them, T_1 has the greatest urgency; this implies that it must be the first in processor 1 (P1). Now, in terms of urgency, T_2 follows T_1; let's assign it to the second processor (P2).

Comment: In the priority list, T_6 is before T_2, but we can't assign it now for it has prerequisites that have not been completed.

After three seconds, the first processor will be free. Let's check the (new) ready tasks having completed T_1. Note that T_1 doesn't unlock any task by itself. Then, the unique ready task now is T_3; let's assign it to the first processor. By similar reasoning, after four seconds the second processor will be free, and we're going to assign T_5 to it... AND SO ON.

I'm going to finish the schedule following these reasonings, and after that, we're going to discuss the answer to the questions.

a mother duck lines her 8 ducklings up behind her. in how many ways can the ducklings line up?

Answers

In position one, we can have any of the 8 ducks

In position two, we can have 7 ducks, since one has to occupy position one

and so on

then, we have:

[tex]8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1=8![/tex]

the factorial of 8 is 40320

Which equation is equivalent to StartRoot x EndRoot + 11 = 15?

Answers

Answer:

x+121=225

Step-by-step explanation:

√x+11=15

to find the equivalent let's square both sides

(√x)²+11²=15²

x+121=225

This answer is the only one that matches the question

rate as brainliest

Rationalize the denominator and simplify:
√5a+√5

Answers

answer: the first option

If f(2)= Vwhat is the rule of the inverse?

Answers

[tex]f(x)=\sqrt[]{\frac{x+4}{3}}[/tex]

To find the inverse do these steps

1- Put f(x) = y

2- Switch x and y

3- solve to find the new y

Let us do that

[tex]y=\sqrt[]{\frac{x+4}{3}}[/tex]

Switch x and y

[tex]x=\sqrt[]{\frac{y+4}{3}}[/tex]

Now square the two sides to cancel the root

[tex]x^2=\frac{y+4}{3}[/tex]

Multiply both sides by 3 to cancel the denominator

[tex]3x^2=y+4[/tex]

Subtract 4 from both sides

[tex]3x^2-4=y[/tex]

The rule is the answer D

y=-5x+6y=-3x-2x=y= and the grap

Answers

y = -5x + 6 .................1

y = -3x - 2......................1

first equate the two equations to find x and y

-5x + 6 = -3x - 2

-5x +3x = -2 - 6

-2x = -8

x = -8/-2

x = 4

Next substitute x in equation 1

y = 5(4) + 6

y = 20 + 6

y = 26

Graphically,

y = -5x + 6

for x = 0

y = -5 x 0 + 6

y = 6

for y = 0

0 = -5x + 6

5x = 6

x = 6/5

x = 1.2

fiirst plot the coordinate (0,6) and (1.2,0) on the graph for the first equation to get the first straight line.

y = -3x - 2

x = 0

y = -3 x 0 - 2

y = -2

y = 0

0 = -3x - 2

3x = -2

x = -2/3

x = -0.67

plot the coordinate on the graph

solution for this question is (4,26)

f(x) varies inversely with x and f(x)=−10 when x = 20. What is the inverse variation equation? Responses f(x)=−2x f ( x ) = − 2 x f(x)=−5x f ( x ) = − 5 x f(x)=−200x f ( x ) = − 200 x f(x)=−0.5x f ( x ) = − 0.5 x

Answers

The equation representing the constant of proportionality is k = xf(x) and the constant of proportionality k = -200

What is proportionality?

In mathematics, proportionality indicates that two quantities or variables are related in a linear manner. If one quantity doubles in size, so do the other; if one of the variables diminishes to 1/10 of its former value, so does the other.

Likewise, if the variables are inversely proportional to one another, as one quantity increases, the other quantity decreases by the same proportion or quantity.

We can proceed to substitute the values into the equation above.

k = xf(x)

k = 20 * (-10)

k = -200

Learn more on proportionality here;

https://brainly.com/question/21749206

#SPJ1

-Quadratic Equations- Solve each by factoring, write each equation in standard form first.

Answers

Answer

The solutions to the quadratic equations are

[tex]\begin{gathered} a^2-4a-45 \\ \text{Solution: }a=-5\text{ or }9 \\ \\ 5y^2+4y=0 \\ \text{Solution: }y=0\text{ or }-\frac{4}{5} \end{gathered}[/tex]

SOLUTION

Problem Statement

The question gives us 2 quadratic equations and we are required to solve them by factoring, first writing them in their standard forms.

The quadratic equations given are:

[tex]\begin{gathered} a^2-4a-45=0 \\ 5y^2+4y=0 \end{gathered}[/tex]

Method

To solve the questions, we need to follow these steps:

(We will represent the independent variable as x for this explanation. We know they are "a" and "y" in the questions given)

The steps outlined below are known as the method of Completing the Square.

Step 1: Find the square of the half of the coefficient of x.

Step 2: Add and subtract the result from step 1.

Step 3: Re-write the Equation. This will be the standard form of the equation

Step 4. Solve for x

We will apply these steps to solve both questions.

Implementation

Question 1:

[tex]\begin{gathered} a^2-4a-45=0 \\ \text{Step 1: Find the square of the half of the coefficient of }a \\ (-\frac{4}{2})^2=(-2)^2=4 \\ \\ \text{Step 2: Add and subtract 4 to the equation} \\ a^2-4a-45+4-4=0 \\ \\ \text{Step 3: Rewrite the Equation} \\ a^2-4a+4-45-4=0 \\ (a^2-4a+4)-49=0 \\ (a^2-4a+4)=(a-2)^2 \\ \therefore(a-2)^2-49=0 \\ \text{ In standard form, we have:} \\ (a-2)^2=49 \\ \\ \text{Step 4: Solve for }a \\ (a-2)^2=49 \\ \text{ Find the square root of both sides} \\ \sqrt[]{(a-2)^2}=\pm\sqrt[]{49} \\ a-2=\pm7 \\ \text{Add 2 to both sides} \\ \therefore a=2\pm7 \\ \\ \therefore a=-5\text{ or }9 \end{gathered}[/tex]

Question 2:

[tex]\begin{gathered} 5y^2+4y=0 \\ \text{ Before we begin solving, we should factorize out 5} \\ 5(y^2+\frac{4}{5}y)=0 \\ \\ \text{Step 1: Find the square of the coefficient of the half of y} \\ (\frac{4}{5}\times\frac{1}{2})^2=(\frac{2}{5})^2=\frac{4}{25} \\ \\ \text{Step 2: Add and subtract }\frac{4}{25}\text{ to the equation} \\ \\ 5(y^2+\frac{4}{5}y+\frac{4}{25}-\frac{4}{25})=0 \\ \\ \\ \text{Step 3: Rewrite the Equation} \\ 5((y^2+\frac{4}{5}y+\frac{4}{25})-\frac{4}{25})=0 \\ 5(y^2+\frac{4}{5}y+\frac{4}{25})-5(\frac{4}{25})=0 \\ 5(y^2+\frac{4}{5}y+\frac{4}{25})-\frac{4}{5}=0 \\ \\ (y^2+\frac{4}{5}y+\frac{4}{25})=(y+\frac{2}{5})^2 \\ \\ \therefore5(y+\frac{2}{5})^2-\frac{4}{5}=0 \\ \\ \text{ In standard form, the Equation becomes} \\ 5(y+\frac{2}{5})^2=\frac{4}{5} \\ \\ \\ \text{Step 4: Solve for }y \\ 5(y+\frac{2}{5})^2=\frac{4}{5} \\ \text{ Divide both sides by 5} \\ \frac{5}{5}(y+\frac{2}{5})^2=\frac{4}{5}\times\frac{1}{5} \\ (y+\frac{2}{5})^2=\frac{4}{25} \\ \\ \text{ Find the square root of both sides} \\ \sqrt[]{(y+\frac{2}{5})^2}=\pm\sqrt[]{\frac{4}{25}} \\ \\ y+\frac{2}{5}=\pm\frac{2}{5} \\ \\ \text{Subtract }\frac{2}{5}\text{ from both sides} \\ \\ y=-\frac{2}{5}\pm\frac{2}{5} \\ \\ \therefore y=0\text{ or }-\frac{4}{5} \end{gathered}[/tex]

Final Answer

The solutions to the quadratic equations are

[tex]\begin{gathered} a^2-4a-45 \\ \text{Solution: }a=-5\text{ or }9 \\ \\ 5y^2+4y=0 \\ \text{Solution: }y=0\text{ or }-\frac{4}{5} \end{gathered}[/tex]

Is 4b-2c leqslant 12 inequalities or not inequalities[tex] ax+by \leqslant c[/tex]

Answers

First, let's write the expression below:

[tex]4b-2c\leqslant12[/tex]

Since the expression contains the symbol "<=" (that is, "lesser than or equal to") between two terms, the complete expression is an inequality.

In order to solve this inequality for a given variable, we need to rewrite the inequality such as one side of the inequality has only the wanted variable.

For example, solving the inequality for b, we have:

[tex]\begin{gathered} 4b-2c\leqslant12\\ \\ 4b\leq12+2c\\ \\ b\leq\frac{12+2c}{4}\\ \\ b\leq3+0.5c \end{gathered}[/tex]

find the sum.(7-b) + (3) +2 =

Answers

[tex]7-b+3+2=12-b[/tex]

In 2011, an earthquake in Chile measured 8.3 on the Richter scale. How many times more intense was thisearthquake then than the 2011 earthquake in Papa, New Guinea that measured 7.1 on the Richter scale? Roundthe answer to the nearest integer.

Answers

SOLUTION:

Step 1:

In this question, we are given that:

In 2011, an earthquake in Chile measured 8.3 on the Richter scale. How many times more intense was this earthquake then than the 2011 earthquake in Papa, New Guinea that measured 7.1 on the Richter scale?

Round the answer to the nearest integer.

Step 2:

From the question, we are to use this formula:

Now, we have that:

[tex]\begin{gathered} M_2-M_1=\log (\frac{I_2}{I_1}) \\ \text{where M}_2=\text{ 8.3} \\ \text{and} \\ M_1=\text{ 7. 1} \end{gathered}[/tex]

Hence, we have that:

[tex]\begin{gathered} \text{8. 3 - 7. 1 = log ( }\frac{I_2}{I_1}) \\ 1.2=log_{10}\text{ (}\frac{I_2}{I_1}) \\ (\frac{I_2}{I_1})\text{ = }10^{1.2} \end{gathered}[/tex]

CONCLUSION:

The final answer is:

[tex](\frac{I_2}{I_1})=10^{1.\text{ 2}}[/tex]

Cleo can paint a room in 8 hours, while Phil can paint the same room in 6 hours. If they paint theroom together, how long will it take them to paint the room?How many hours and how many minutes?

Answers

According to the given data we have the following:

Cleo can paint a room in 8 hours, so this is=1/8x

Phil can paint the same room in 6 hours=1/6x

In order to calculate how long it take them to paint the room we would solve the following equation:

(1/6)(x)+(1/8)(x)=1

To solve this equation we would first multiply both sides by 24

Hence:

24*(1/6)(x)+24*(1/8)(x)=24

4x+3x=24

7x=24

x=24/7

x= 3 3/7 hours

Therefore It will take them 3 and 3/7 hours to pain the room.

In minutes it will take to them 205 minutes.

A seamstress has three colours of ribbon; the red is 126cm, the blue is 196cm and the green
is 378cm long. She wants to cut them up so they are all the same length, with no ribbon
wasted. What is the greatest length, in cm, that she can make the ribbons?

Answers

Answer:

14cm is the greatest length

Step-by-step explanation:

Hi!

So the question is basically asking for the greatest common factor between each of these numbers (if I understood the question right so here we go) :

The GCF in this case is 14:

126 / 14 = 9

196 / 14 = 14

378 / 14 = 27

Please feel free to ask me any more questions that you may have!

and Have a great day! :)

Find the probability of obtaining exactly seven tails when flipping seven coins. Express your answer as a fraction in lowest terms or a decimal rounded to the nearest millionth.

Answers

Answer:

Concept:

If you flip a coin once, there are

[tex]\text{2 possiblities}[/tex]

Using the binomial probability formula below, we will have

[tex]P(x)=^nC_rp^xq^{x-r}[/tex]

Where

[tex]\begin{gathered} p=probability\text{ of success} \\ q=probability\text{ of failure} \end{gathered}[/tex][tex]\begin{gathered} p=\frac{1}{2} \\ q=\frac{1}{2} \\ n=7 \\ x=7 \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} P(x)=^nC_rp^xq^{x-r} \\ P(x=7)=^7C_7(\frac{1}{2})^7(\frac{1}{2})^{7-7} \\ P(x=7)=(\frac{1}{2})^7 \\ P(x=7)=\frac{1}{128} \end{gathered}[/tex]

Hence,

The final answer is

[tex]\Rightarrow\frac{1}{128}[/tex]

help please A sandwich shop has three kinds of bread, seven types of meat, and four types of cheese. How many different sandwiches can be made using one type of bread, one meat, and one cheese?

Answers

Types of combinations of

Bread, Meat , CHeese

How many combinations of B M CH can be made.

There are 3, 7 and 4 types of food , respectively

Made a tree of possibilities

Then, for every 3 , there are 7 possibilities. Multiply both

3 x 7 = 21

And for every 7 , there are 4 possibilities . Multiply then

3x 7 x 4 = 84 possible type of sandwiches

A chemist needs to strengthen a 34% alcohol solution with a 50% solution to obtain a 44% solution. How much of the 50% solution should be added to 285 millilitres of the 34% solution? Round your final answer to 1 decimal place.

Answers

Answer: 475 ml of 50% solution is needed

Explanation:

Let x represent the volume of the 50% solution needed.

From the information given,

volume of 34% alcohol solution = 285

Volume of the mixture of 34% solution and 50% solution = x + 285

Concentration of 44% mixture = 44/100 * (x + 285) = 0.44(x + 285)

Concentration of 34% alcohol solution = 34/100 * 285 = 96.9

Concentration of 50% solution = 50/100 * x = 0.5x

Thus,

96.9 + 0.5x = 0.44(x + 285)

By multiplying the terms inside the parentheses with the term outside, we have

96.9 + 0.5x = 0.44x + 125.4

0.5x - 0.44x = 125.4 - 96.9

0.06x = 28.5

x = 28.5/0.06

x = 475

What was the initial population at time t=0?Find the size of the bacterial population after 4 hours.

Answers

Answer;

[tex]\begin{gathered} a)\text{ 195 bacteria} \\ b)\text{ 3,291,055,916 bacteria} \end{gathered}[/tex]

Explanation;

a) We want to get the initial population of the bacteria

We start by writing a formula that links the initial bacteria population to a later bacteria population after time t

[tex]A(t)=I(1+r)^t[/tex]

where A(t) is the bacteria population at time t

I is the initial bacteria population

r is the rate of increase in population

t is time

Now, let us find r

At t = 10; we know that A(t) = 2I

Thus, we have it that;

[tex]\begin{gathered} 2I=I(1+r)^{10} \\ (1+r)^{10}\text{ = 2} \\ 1+r\text{ = 1.0718} \\ r\text{ = 1.0718-1} \\ r\text{ = 0.0718} \end{gathered}[/tex]

Now, let us find I, since we have r. But we have to make use of t= 80 and A(t) = 50,000

Thus, we have;

[tex]\begin{gathered} 50,000=I(1+0.0718)^{80} \\ I\text{ = }\frac{50,000}{(1+0.0718)^{80}} \\ I\text{ = 195} \end{gathered}[/tex]

The initial population is 195 bacteria

b) For after 4 hours, we have to convert to minutes

We know that there are 60 minutes in an hour

So, in 4 hours, we have 4 * 60 = 240 minutes

Now, we proceed to use the formula above with I = 195 and t = 240

We have that as;

[tex]\begin{gathered} A(240)=195(1+0.0718)^{240} \\ A(240)\text{ = 3,291,055,916 bacteria} \end{gathered}[/tex]

Find a degree 3 polynomial that has zeros -2,3 and 6 and in which the coefficient of x^2 is -14. The polynomial is: _____

Answers

Given:

The zeros of degree 3 polynomial are -2, 3 , 6.

The coefficient of x² is -14.

Let the degree 3 polynomial be,

[tex]\begin{gathered} p(x)=(x-x_1)(x-x_2)(x-x_3) \\ =(x-(-2))(x-3)(x-6) \\ =\mleft(x+2\mright)\mleft(x-3\mright)\mleft(x-6\mright) \\ =\mleft(x^2-x-6\mright)\mleft(x-6\mright) \\ =x^3-x^2-6x-6x^2+6x+36 \\ =x^3-7x^2+36 \end{gathered}[/tex]

But given that, coefficient of x² is -14 so, multiply the above polynomial by 2.

[tex]\begin{gathered} p(x)=x^3-7x^2+36 \\ 2p(x)=2(x^3-7x^2+36) \\ =2x^3-14x^2+72 \end{gathered}[/tex]

Answer: The polynomial is,

[tex]p(x)=2x^3-14x^2+72[/tex]

If the correlation coefficient is 1, then the relation is a __________________.perfect positive correlationperfect negative correlationweak negative correlationweak positive correlation

Answers

Given:

The correlation coefficient is 1.

Required:

What type of correlation is it?

Explanation:

A coefficient of -1.0 indicates a perfect negative correlation, and a correlation of 1.0 indicates a perfect positive correlation.

Answer:

Hence, correlation coefficient is 1 then relation is perfect positive correlation.

q(v)= int 0 ^ v^ prime sqrt 4+w^ 5 dw ther; q^ prime (v)=

Answers

ANSWER

[tex]q^{\prime}(v)=\sqrt{4+(v^7)^5}[/tex]

EXPLANATION

We want to find the derivative of the given function:

[tex]q(v)=\int_0^{v7}\sqrt{4+w^5}dw[/tex]

When the lower limit of an integral is a constant and the upper limit of the integral is a variable, the derivative of this is the function inside the integral in terms of the upper limit of the integral.

In other words, the derivative of the given integral function is:

[tex]q^{\prime}(v)=\sqrt{4+(v^7)^5}[/tex]

That is the answer.

which is an incorrect rounding for 53.864a) 50b) 54c) 53.9d) 53.87

Answers

Answer:

The incorrect rounding is 53.87

Explanations:

The given number is 53.864

If the number is approximated to 2 decimal places

53.864 = 53.86

If the number is approximated to 1 decimal place

53.864 = 53.9

If the number is approximated to the nearest unit

53.864 = 54

If the number is approximated to the nearest tens:

53.864 = 50

Note: 53.864 cannot be approximated to 53.87 because the third decimal place (4) is not up to 5

Determine the measure of ∠BFE.Question options:1) 112°2) 111°3) 69°4) 224°

Answers

[tex]x\text{ = 5 (option 3)}[/tex]

Explanation:

We apply tangent-tangent theorem:

[tex]\begin{gathered} one\text{ tangeht = 9} \\ 2nd\text{ tangent = 2x - 1} \end{gathered}[/tex]

The tangent segement from the same external points are congruent:

[tex]9\text{ = 2x - 1}[/tex][tex]\begin{gathered} Add\text{ 1 to both sides:} \\ 9\text{ + 1 = 2x} \\ 10\text{ = 2x} \\ \text{divide both sides by 2:} \\ \frac{10}{2}\text{ = }\frac{2x}{2} \\ x\text{ = 5} \end{gathered}[/tex]

Growth Models 19515. In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wagewas $2.30 per hour. Assume the minimum wage grows according to an exponentialmodel where n represents the time in years after 1960.a. Find an explicit formula for the minimum wage.b. What does the model predict for the minimum wage in 1960?c. If the minimum wage was $5.15 in 1996, is this above, below or equal to whatthe model predicts?

Answers

In general, the exponential growth function is given by the formula below

[tex]f(x)=a(1+r)^x[/tex]

Where a and r are constants, and x is the number of time intervals.

In our case, n=0 for 1960; therefore, 1968 is n=8,

[tex]\begin{gathered} f(8)=a(1+r)^8 \\ \text{and} \\ f(8)=1.6 \\ \Rightarrow1.6=a(1+r)^8 \end{gathered}[/tex]

And 1976 is n=16

[tex]\begin{gathered} f(16)=a(1+r)^{16} \\ \text{and} \\ f(16)=2.3 \\ \Rightarrow2.3=a(1+r)^{16} \end{gathered}[/tex]

Solve the two equations simultaneously, as shown below

[tex]\begin{gathered} \frac{1.6}{(1+r)^8}=a \\ \Rightarrow2.3=\frac{1.6}{(1+r)^8}(1+r)^{16} \\ \Rightarrow2.3=1.6(1+r)^8 \\ \Rightarrow\frac{2.3}{1.6}=(1+r)^8 \\ \Rightarrow(\frac{2.3}{1.6})^{\frac{1}{8}}=(1+r)^{}^{} \\ \Rightarrow r=(\frac{2.3}{1.6})^{\frac{1}{8}}-1 \\ \Rightarrow r=0.0464078 \end{gathered}[/tex]

Solving for a,

[tex]\begin{gathered} r=0.0464078 \\ \Rightarrow a=\frac{1.6}{(1+0.0464078)^8}=1.113043\ldots \end{gathered}[/tex]

a) Thus, the equation is

[tex]\Rightarrow f(n)=1.113043\ldots(1+0.0464078\ldots)^n[/tex]

b) 1960 is n=0; thus,

[tex]f(0)=1.113043\ldots(1+0.0464078\ldots)^0=1.113043\ldots[/tex]

The answer to part b) is $1.113043... per hour

c)1996 is n=36

[tex]\begin{gathered} f(36)=1.113043\ldots(1+0.0464078\ldots)^{36} \\ \Rightarrow f(36)=5.6983\ldots \end{gathered}[/tex]

The model prediction is above $5.15 by $0.55 approximately. The answer is 'below'

Find all the factors of 99.

Answers

The factors of 99 are: 1, 3, 9, 11, 33 and 99.

Louis borrowed $500 from his bank. His bank will charge Louis 8% simple interest per year to loan him the money. If he paid back the total amount he owed the bank, including interest, in 6 months, how much should he have paid?​

Answers

The amount that he owed the bank and paid is $520.

What will the interest be?

The simple interest is calculated as:

= Principal × Rate × Time / 100

Principal = $500

Rate = 8%

Time = 6 months = 6/12 = 0.5 years

The interest will be:

= PRT / 100

= (500 × 8 × 0.5)/100

= 2000/100

= $20

The amount paid back will be:

= Principal + Interest

= $500 + $20

= $520

Learn more about interest on:

brainly.com/question/25793394

#SPJ1

Other Questions
which of the following is an advantage of making a product correctly from the outset? multiple choice it allows the company to pinpoint quality problems in the production system. it allows employees to make better use of their time and materials. it gives the company more time to rework defective products. it eliminates the need to make other products. it makes the transformation process slower and more deliberate. A________ is a notable feature or quality (like eye color) that has different forms in a population.O fertilizationO traitO gameteO pedigree Find the coordinates of the other endpoint of the segment, given its midpoint and one endpointand y.)midpoint (-7.-21), endpoint (-13.-15) Vulcan, inc. , has 7 percent coupon bonds on the market that have 13 years left to maturity. The bonds make annual payments and have a par value of $1,000. If the ytm on these bonds is 8. 4 percent, what is the current bond price?. HELP ME NOW PLEASEEEEEEEEE!THANK YOU! In a lab experiment, 7.97 g of phosphorus reacts with bromine to form 69.65 g of phosphorus tribromide. How much phosphorus tribromide would be formed if 12.05 g of phosphorus reacted with 61.68 g of bromine? answer:______gi put what i got in the image and it is wrong sorry karen was at the checkout at the grocery store and remembered that she was out of chewing gum that she normally likes to keep in her purse. without much thought, she grabbed two packages of the gum she likes. what type of consumer decision does this illustration? elmo makes sandwiches for a fundraiser. for each sandwich he uses globs of peanut butter at per glob and blobs of jam at per blob. the cost of the peanut butter and jam to make all the sandwiches is . assume that , , and are positive integers with . what is the cost of the jam elmo uses to make the sandwiches? The period of a simple harmonic oscillator is the time it takes for one complete cycle of oscillation to be completed. Is this true or false? According to the text, Pericles depicted Athens mainly as a assume the mpc is 0.70. if government were to impose $20 billion of new taxes on household income, consumption spending would initially decrease by multiple choice $20 billion. $14 billion. $6 billion. $60 billion. Either by striding 80cm or by striding 70cm Anne takes an exact number of steps to cross the road find the least width of the road in meters how should you describe the innovation process? question 10 options: irregular and unpredictable straight and narrow defined and renowned nice and easy slow and stead Brickhouse is expected to pay a dividend of $2. 50 and $2. 20 over the next two years, respectively. After that, the company is expected to increase its annual dividend at 2. 6 percent. What is the stock price today if the required return is 10 percent?. Which equation represents a line which is perpendicular to the line y=-5/4x-4?A. 4y5x=4B. 5x+4y=8C. 4x5y=15D.4x+5y=40 for each of the following polynomial functions, write the equation of a different polynomial function that has the same key characteristic. explain your thinking. How long will it take until the diver enters the water? How do you know? what type of government system reduces the influence of political parties and ensures that the day-to-day operations of a city are run by an experienced professional? In science class, the students were asked to create a container to hold an egg they would then drop this container from a window that is 25 feet above the ground if the equation of the containers pathway can be modelled by the equation: H =-16t+25Find is the maximum height of the container? which department reviews a sample of clinical trials being conducted in each department and provides education, tools, and corrective and preventative action plans, when needed?