an alloy contains copper and zinc in the ratio 3:7. find the mass of the metal in 750g of alloy

Answers

Answer 1

Given:

An alloy contains copper and zinc in a ratio of 3:7. The total mass of the alloy is 750g.

Required:

Find the mass of the metal in 750g of alloy.

Explanation:​

Let the mass of the metal is x gm.

The weight of copper = 3x

The weight of zinc= 7x

Total weight

[tex]\begin{gathered} 3x+7x=750 \\ 10x=750 \\ x=\frac{750}{10} \\ x=75\text{ gm} \end{gathered}[/tex]


Related Questions

Question #3 3) The digits of a 2-digit number differ by 5. If the digits are interchanged and the resulting number is added to the original number, we get 99. Find the original number.

Answers

ones number = x

Tens number = y

y>x

Number at the tens place y = (x+5)

original number = 10 (x+5)+x

Interchange digits:= 10x+(x+5)

original number + new number = 99

¨[10(x+5)+x]+ [10x+ (x+5)] =99

Solving for x:

(10x+50+x )+( 10x+x+5) = 99

Combine like terms

(11x+50) + (11x+5) = 99

11x+11x+50+5 =99

22x+55 =99

subtract 55 from both sides

22x +55-55= 99-55

22x = 44

Divide both sides by 22

22x/22= 44/22

x = 2

unit place: 2

tens place = x+5 = 2+5 = 7

original number = 72

si f(x) = x + 5 cuanto es f(2) f(1) f(0) f(-1) f-(-2) f(a)

Answers

f (x)= x+ 5

f(2)

Reemplaza x por 2 y resuelve

f(2)= 2 + 5 = 7

Mismo procedimiento para los demas valores:

f(1) = 1 + 5 = 6

f(0) = 0 + 5 = 5

f(-1)= -1+5 = 4

f(-2)= -2+5 = 3

f(a)= a + 5

If the radius of both of the green circles is 10 cm, find the area of the yellow region (outside of the circles but inside the rectangle)

Answers

The area of the yellow region if the radius of each of the circles is 10 cm is calculated as: 171.7 cm².

How to Find the Area of Circles and Rectangles?

The formula that is used to find the areas of circles and rectangles are given below:

Area of a circle = πr², where r is the radius.Area of a rectangle = length × width.

Given the diagram in the attachment which shows the green circles and the rectangle, we can deduce the following:

Radius of the each of the circles (r) = 10 cm

Length of the rectangle = 4(r) = 4(10) = 40 cm

Width of the rectangle = 2(r) = 2(10) = 20 cm

The area of the yellow region = area of the rectangle - area of the 2 circles

= (length × width) - 2(πr²)

Substitute

The area of the yellow region = (40 × 20) - 2(π × 10²)

= 800 - 628.3

= 800 - 628.3

= 171.7 cm²

Learn more about the area of rectangles and circles on:

https://brainly.com/question/27073300

#SPJ1

Larry purchased a new combine that cost $260,500, minus a rebate of $5,500, a trade-in of $8,500, and a down payment of $7,000. He takes out a loan for the balance at 8% APR over 4 years. Find the annual payment. (Simplify your answer completely. Round your answer to the nearest cent.)

Answers

The annual payment for the loan balance is $72,310.03.

What is the periodic payment?

The periodic payment is the amount that is paid per period (yearly, monthly, quarterly, or weekly) to repay a loan or a debt.

The periodic payment can be computed using an online finance calculator, making the following inputs.

N (# of periods) = 4 years

I/Y (Interest per year) = 8%

PV (Present Value) = $239,500 ($260,500 - $5,500 - $8,500 - $7,000)

FV (Future Value) = $0

Results:

PMT = $72,310.03

Sum of all periodic payments = $289,240.13

Total Interest = $49,740.13

Thus, the annual payment that Larry needs to make is $72,310.03.

Learn more about annual payments at https://brainly.com/question/14290379

#SPJ1

Sarah wanted to lose some weight, so she planned a day of exercising. She spent a total of 4 hours riding her bike and jogging. She biked for 35 miles and jogged for 6 miles. Her rate for jogging was 10 mph less than her biking rate. What was her rate when jogging?

Answers

Consider the relation,

[tex]\text{Speed}=\frac{\text{ Distance}}{\text{ Time}}[/tex]

The total time taken by Sarah for biking and jogging is 4 hours.

Given that her speed for biking was 10 mph, the time taken to bike 35 miles is calculated as,

[tex]\begin{gathered} T_b=\frac{35}{10} \\ T_b=3.5\text{ hours} \end{gathered}[/tex]

So, out of the total 4 hours of exercise, Sarah spent 3.5 hours riding her bike.

The remaining 0.5 hour must have been spent on jogging,

[tex]undefined[/tex]

Because of damage, a computer company had 5 tablets returned out of the 80 that were sold. Suppose the number of damaged tablets sold continue at this rate. How many tablets should the company expect to have returned if it sells 400 of them?

Answers

we are told that there 5 damaged tablets out of 80 that are sold. Therefore, the rate of damaged tablets per sold tablets is:

[tex]\frac{5\text{ damaged}}{80\text{ sold}}[/tex]

Multiplying this rate by the 400 sold tablets we get:

[tex]\frac{5\text{ damaged}}{80\text{ sold}}\times40\text{0 sold}[/tex]

Solving we get:

[tex]\frac{5\text{ damaged}}{80\text{ sold}}\times40\text{0 sold}=25\text{ damaged}[/tex]

Therefore, if the rate continues, the company can expect to return 25 tablets.

Kiran is solving 2x-3/x-1=2/x(x-1) for x, and he uses these steps.He checks his answer and finds that it isn’t a solution to the original equation, so he writes “no solutions.” Unfortunately, Kiran made a mistake while solving. Find his error and calculate the actual solution(s).

Answers

Solution:

Given:

[tex]\begin{gathered} To\text{ solve,} \\ \frac{2x-3}{x-1}=\frac{2}{x(x-1)} \end{gathered}[/tex]

Kiran multiplied the left-hand side of the equation by (x-1) and multiplied the right-hand side of the equation by x(x-1).

That was where he made the mistake. He ought to have multiplied both sides with the same quantity (Lowest Common Denominator) so as not to change the actual value of the question.

Multiplying both sides by the same quantity does not change the real magnitude of the question.

The actual solution goes thus,

[tex]\begin{gathered} \frac{2x-3}{x-1}=\frac{2}{x(x-1)} \\ \text{Multiplying both sides of the equation by the LCD,} \\ \text{The LCD is x(x-1)} \\ x(x-1)(\frac{2x-3}{x-1})=x(x-1)(\frac{2}{x(x-1)}) \\ x(2x-3)=2 \\ \text{Expanding the bracket,} \\ 2x^2-3x=2 \\ \text{Collecting all the terms to one side to make it a quadratic equation,} \\ 2x^2-3x-2=0 \end{gathered}[/tex]

Solving the quadratic equation;

[tex]\begin{gathered} 2x^2-3x-2=0 \\ 2x^2-4x+x-2=0 \\ \text{Factorizing the equation,} \\ 2x(x-2)+1(x-2)=0 \\ (2x+1)(x-2)=0 \\ 2x+1=0 \\ 2x=0-1 \\ 2x=-1 \\ \text{Dividing both sides by 2,} \\ x=-\frac{1}{2} \\ \\ \\ OR \\ x-2=0 \\ x=0+2 \\ x=2 \end{gathered}[/tex]

Therefore, the actual solutions to the expression are;

[tex]\begin{gathered} x=-\frac{1}{2} \\ \\ OR \\ \\ x=2 \end{gathered}[/tex]

Which function below has the following domain and range?Domain: {-9, - 5, 2, 6, 10}Range: { -2, 0, 8}

Answers

ANSWER :

A.

EXPLANATION :

From the problem, we have the domain and range :

[tex]\begin{gathered} Domain:\lbrace-9,-5,2,6,10\rbrace \\ Range:\lbrace-2,0,8\rbrace \end{gathered}[/tex]

The x coordinates must only have the values of the domain

and the y coordinates must only have the values of the range.

The only option that satisfies this condition is :

[tex]\lbrace(2,0),(-5,-2),(10,8),(6,0),(-9,-2)\rbrace[/tex]

Find the volume of the given solid.Round to the nearest 10th, If necessary. In cubic inches

Answers

ANSWER

33.5 cubic inches

EXPLANATION

This is a cone with radius r = 2 in and height h = 8 in. The volume of a cone is,

[tex]V=\frac{1}{3}\cdot\pi\cdot r^2\cdot h[/tex]

Replace the known values and solve,

[tex]V=\frac{1}{3}\cdot\pi\cdot2^2in^2\cdot8in=\frac{32}{3}\pi\text{ }in^3\approx33.5\text{ }in^3[/tex]

Hence, the volume of the cone is 33.5 in³, rounded to the nearest tenth.

If 1 is divided by a number, the quotient is less than the number.If 1 is divided by -2, the result is (enter your response here), which is (your response) -2. A. greater than B. Less thanC. Equal to

Answers

Let us revise an important note

Positive numbers are increasing from 0 to positive infinity

Negative numbers are increasing from negative infinity to 0

If we divide 1 by 2, then the answer is 1/2 which is less than 2

That means the quotient is less than the divisor

If we divide 1 by -2, then the answer is -1/2 which is greater than -2

That means the quotient is greater than the divisor

Then the answer is

The result is greater than the number

The answer is A

Ethan's income is 4500 per month a list of some of his expenses appear below what percent of Ethan's expenses is insurance

Answers

Ethan's income is given as $4500

she pays $95 in insurance

percentage of Ethan's slary in insurance =

[tex]\begin{gathered} =\frac{95}{4500}\times100 \\ =2.11 \end{gathered}[/tex]

Answer=2.11%

Can I have help with this problem? I don't really understand how to graph this

Answers

Step 1:

The graph of y = -2 is a horizontal line passing through -2.

Step 2

Can you help to solve for number 5. Solving for X.

Answers

We will work at first with the small triangle ADC

[tex]m\angle DAC+m\angle C=m\angle ADB[/tex]

mm[tex]m\angle DAC=55-20=35^{\circ}[/tex]We will use the sine rule

[tex]\frac{65}{\sin35}=\frac{AD}{\sin 20}[/tex]

By using the cross multiplication

[tex]\begin{gathered} AD\times\sin 35=65\times\sin 20 \\ AD=\frac{65\sin 20}{\sin 35} \end{gathered}[/tex]

In triangle ABD

We will use

[tex]\sin 55=\frac{x}{AD}[/tex]

Then

[tex]x=AD\sin 55[/tex]

Substitute AD by its value above

[tex]undefined[/tex]

URGENT!! ILL GIVE
BRAINLIEST! AND 100 POINTS

Answers

Answer:

√70 = 8.3 is between 8 and 9

-√5 = -2.2 is between -3 and -2

√81 = 9 (exactly 9)

-2√4 = -2 × 2 = -4 (exactly -4)

4√8 = 8√2 = 11.3 is between 11 and 12

use the formula Sn to find the sum of the first five terms of the geometric sequence.

Answers

First, find the common ratio r:

-4/9 : 4/3 = -1/3

4/3 : -4 = -1/3

-4:12 = -1/3

r= -1/3

[tex]Sn=\frac{a(r^n-1)}{r-1}[/tex]

Where:

a= first term = 12

n= number of terms = 5

Replacing:

[tex]Sn=\frac{12(-\frac{1^{}}{3}^5-1)}{-\frac{1}{3}-1}[/tex]

Sn= 244/27 = 9 1/27

A survey of 100 high school students provided thisfrequency table on how students get to school:Drive toTake theGradeWalkSchoolbusSophomore2253Junior13202Senior2555Find the probability that a randomly selected studenteither takes the bus or walks.[?P(Take the bus U Walk)

Answers

Let's call the event of a student taking the bus as event A, and the event of a student walking as event B. The theoretical probability is defined as the ratio of the number of favourable outcomes to the number of possible outcomes. We have a total of 100 students, where 50 of them take the bus and 10 of them walk. This gives to us the following informations:

[tex]\begin{gathered} P(A)=\frac{50}{100} \\ P(B)=\frac{10}{100} \end{gathered}[/tex]

The additive property of probability tells us that:

[tex]P(A\:or\:B)=P(A)+P(B)-P(A\:and\:B)[/tex]

Since our events are mutually exclusive(the student either walks or takes the bus), we have:

[tex]P(A\:and\:B)=0[/tex]

Then, our probability is:

[tex]P(A\cup B)=\frac{50}{100}+\frac{10}{100}-0=\frac{60}{100}=\frac{3}{5}[/tex]

The answer is:

[tex]P(Take\:the\:bus\cup Walk)=\frac{3}{5}[/tex]

I need help with this practice problem Having a tough time solving properly

Answers

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data:

r = 7 sin (2θ)

Step 02:

polar equation:

r = 7 sin (2θ):

r = a sin nθ

n odd ==> n petals

n even ===> 2n petals

n = 2 ===> 2*2 petals = 4 petals

graph:

length of the petals:

r = 7 sin (2θ)

θ = 45°

r = 7 sin (2*45°) = 4.95

The answer is:

4.95

Describe how to go from 1. The computer store A to the food store B.2. the computer store A, to the hardware store C.3. The hardware store C, to the food store B.Use words like left, right, up, down, north, south, east, and west. Each square on the coordinate plane is a city block.

Answers

Explanation

In the question, we are required to go through the image and describe how to move in the given directions. The solution can be seen below.

Number 1: The computer store A to the food store B.

Answer: In this case, the individual would move down for 6 city blocks

Number 2: The computer store A, to the hardware store C.

Answer: In this case, the individual will move down for one block then move right for 5 blocks

Number 3: The computer store A, to the hardware store C.

Answer: In this case, the individual will move down for five blocks and move left for 5 blocks

After a translation, the image of P(-3, 5) is P'(-4, 3). Identify the image of the point (1, 6) after this same translation.

Answers

The image of the point (1, 6) after the translation is (0, 4).

What is named as translation?In geometry, translation refers to a function that shifts an object a specified distance. The object is not elsewhere altered. It has not been rotated, mirrored, or resized.Every location of the object should be relocated in the same manner and at the same distance during a translation.When performing a translation, this same initial object is referred to as the pre-image, as well as the object that after translation is referred to as the image.

For the given question,

The image of point P(-3, 5) after a translation is P'(-4, 3).

In this, there is a shift of 1 units to the left of x axis and shift of 2 units up on the y axis.

Thus, do the same translation for the point (1, 6).

After translation image will be (0, 4)

Thus, image of the point (1, 6) after the translation is (0, 4).

To know more about the translation, here

https://brainly.com/question/28108706

#SPJ10

100 Points
A rectangle has sides measuring (2x + 5) units and (3x + 7) units.

Part A: What is the expression that represents the area of the rectangle? Show your work.

Part B: What are the degrees and classifications of the expression obtained in Part A?

Part C: How does Part A demonstrate the closure property for the multiplication of polynomials?

Answers

The expression that represents the area of the rectangle is 6x² + 29x + 35. The degree of the expression will be 2. And the closure property of multiplication is also demonstrated.

What is the area of the rectangle?

Let W be the rectangle's width and L its length.

Area of the rectangle = L × W square units

The sides of a rectangle are (2x + 5) units and (3x + 7) units, respectively. Then the area of the rectangle will be given as,

A = (2x + 5)(3x + 7)

A = 2x(3x + 7) + 5(3x + 7)

A = 6x² + 14x + 15x + 35

A = 6x² + 29x + 35

The degree of the expression will be 2. And the closure property of multiplication is also demonstrated.

More about the area of the rectangle link is given below.

https://brainly.com/question/20693059

#SPJ1

Answer:

[tex]\textsf{A.} \quad \textsf{Area}=(2x+5)(3x+7)[/tex]

B.  Degree = 2.

    Classification = Quadratic trinomial.

C.  Part A demonstrates the closure property for the multiplication of polynomials as the multiplication of the two given polynomials (side measures) produces another polynomial (area).

Step-by-step explanation:

Part A

Area of a rectangle

[tex]\boxed{A=lw}[/tex]

where l is the length and w is the width.

Given that a rectangle has sides measuring (2x + 5) units and (3x + 7) units, the area can be expressed as a product of the two sides:

[tex]\implies \textsf{Area}=(2x+5)(3x+7)[/tex]

Part B

FOIL method

[tex]\boxed{(a + b)(c + d) = ac + ad + bc + bd}[/tex]

Expand the brackets of the equation found in part A by using the FOIL method:

[tex]\implies \textsf{Area}=6x^2+14x+15x+35[/tex]

[tex]\implies \textsf{Area}=6x^2+29x+35[/tex]

The degree of a polynomial is the highest power of a variable in the polynomial equation.  Therefore:

The degree of the function is 2.

A polynomial is classified according to the number of terms and its degree.

The number of terms in the polynomial is three, therefore it is a trinomial.The degree of the function is 2, therefore it is quadratic.

Part C

Closure property under Multiplication

A set is closed under multiplication when we perform that operation on elements of the set and the answer is also in the set.

Therefore, Part A demonstrates the closure property for the multiplication of polynomials as the multiplication of the two given polynomials (side measures) produces another polynomial (area).

**Line m is represented by the equation -2x + 4y = 16. Line m and line k are Blank #1:

Answers

Line m:

[tex]y=\frac{2}{3}x+4[/tex]

line k:

[tex]\begin{gathered} -2x+4y=16 \\ 4y=2x+16 \\ y=\frac{2x+16}{4} \\ y=\frac{x}{2}+4 \end{gathered}[/tex]

so, the lime m and line k are:

D. Neither parallel nor perpendicular

Because:

D. their slopes have no relationship

identify point in region of inequalities

Answers

We want to picture the inequalities

[tex]y<\text{ - x -3}[/tex]

and

[tex]y>\frac{4}{5}x\text{ +5}[/tex]

First, we consider the lines y= -x -3 and and y=(4/5) x +5 . Since the first line has a negative slope, this means that its graph should go downwards as x increases and since the other line has a positive slope, this means that its graph should go upwards as x increases. This leads to the following picture

Now, the expression

[tex]y<\text{ -x -3}[/tex]

means that the y coordinate of the line should be below the red line. Also, the expression

[tex]y>\frac{4}{5}x+5[/tex]

means tha the y coordinate should be above the blue line. If we combine both conditions, we find the following region

so we should look for a point that lies in this region

We are given the points (-1,9), (-6,2), (9,-9) and (-8,-5).

We see that the yellow region is located where the x coordinate is always negative. So, this means that we discard (9,-9).

so we should test the other points. Since -8 is the furthest to the left, let us calculate the value of each line at x=-8.

[tex]\text{ -(-8) -3 = 8 -3 = 5}[/tex]

so, in this case the first expression is accomplished since -5 < 5. And

[tex]\frac{4}{5}\cdot(\text{ -8)+5= =}\frac{\text{ -7}}{5}=\text{ -1.4}[/tex]

However note that -5 < 1.4, and it should be greater than -1.4 to be in the yellow region. So we discard the point (-8,-5) .

We can check , iusing the graph, that the lines cross at the point (-40/9, 13/9) which is about (-4.44, 1.44). This means that for the point to be on the yellow region, it should be on the left of -4.44. Since the only point that we are given that fulfills this condition is (-6, 2), this should be our answer. We check that

[tex]\text{ -(-6)-3=3>2}[/tex]

and

[tex]\frac{4}{5}\cdot(\text{ -6)+5 = }\frac{1}{5}=0.2<2[/tex]

so, the point (-6,2) is in the yellow region

What is the solution to the equation below? 6x= x + 20 O A. x = 4 B. X = 20 C. x = 5 D. No Solutions

Answers

Simplify the equation 6x = x +20 to obtain the value of x.

[tex]\begin{gathered} 6x=x+20 \\ 6x-x=20 \\ 5x=20 \\ x=\frac{20}{5} \\ =4 \end{gathered}[/tex]

So answer is x = 4

Option A is correct.

1) The perimeter of a rectangular garden is 344M. If the width of the garden is 76M, what is its length?
Equation:
Solution:
(I need the equation and solution)

2) The area of a rectangular window is 7315CM^2 (^2 is squared). If the length of the window is 95CM, what is its width?
Equation:
Solution:
(Once again, I need the equation and solution)

3) The perimeter of a rectangular garden is 5/8 mile. If the width of the garden is 3/16 mile, what is its length?

4) The area of a rectangular window is 8256M^2 (^2 is squared). If the length of the window is 86M, what is its width?

5) The length of a rectangle is six times its width. The perimeter of the rectangle is 98M, find its length and width.

6) The perimeter of the pentagon below is 58 units. Find VW. Write your answer without variables.

Answers

The length of the rectangle is 96 m, the width of the rectangle is 77 cm , the length of the rectangle is 1/8 mile, the length and width of the rectangle is 7 m and 42 m respectively, VW is  11 units.

According to the question,

1) Perimeter of rectangle = 344 M

Width = 76 M

Perimeter of rectangle = 2(length + width)

2(length+76) = 344

length+76 = 172

length = 172-76

Length of the rectangle = 96 M

2) Area of a rectangular window = 7315 [tex]cm^{2}[/tex]

Length of the window is 95 cm.

Area of rectangle = length*width

95*width = 7315

width = 7315/95

Width of the rectangle = 77 cm

3) The perimeter of a rectangular garden is 5/8 mile.

The width of the garden is 3/16 mile.

Perimeter of rectangle = 2(length+width)

2(length+3/16) = 5/8

length+3/16 = 5/(2*8)

length = 5/16-3/16

Length of the rectangle = 2/16 or 1/8 mile

4) The area of a rectangular window is 8256 [tex]m^{2}[/tex].

The length of the window is 86 m.

Area of rectangle = length*width

86*width = 8256

width = 8256/86

Width of the rectangle = 96 m

5)  The length of a rectangle is six times its width. The perimeter of the rectangle is 98 m.

Let's take width of the rectangle to be x m.

Length of rectangle = 6x m

2(length+width) = 98

2(6x+x) = 98

2*7x = 98

14x = 98

x = 98/14

x = 7 m

Width = 7 m

Length = 7*6 m or 42 m

6) The perimeter of the pentagon is 58 units.

3z+10+z+3+2z-1+10 = 58

6z+10+3-1+10 = 58

6z+22 = 58

6z = 58-22

6z = 36

z = 36/6

z = 6 units

VW = 2z-1

VW = 2*6-1

VW = 12-1

VW = 11 units

Hence, the answer to 1 is 96 m , 2 is 77 cm, 3 is 1/8 mile , 4 is 96 m , 5 is 7 m and 42 m and 6 is 11 units.

To know more about rectangle here

https://brainly.com/question/15019502

#SPJ1

Find the slope of the graph of the function at the given point.

Answers

Explanation:

Consider the following function:

[tex]f(x)=\text{ }\tan(x)\text{ cot\lparen x\rparen}[/tex]

First, let's find the derivative of this function. For this, we will apply the product rule for derivatives:

[tex]\frac{df(x)}{dx}=\tan(x)\cdot\frac{d}{dx}\text{ cot\lparen x\rparen + }\frac{d}{dx}\text{ tan\lparen x\rparen }\cdot\text{ cot\lparen x\rparen}[/tex]

this is equivalent to:

[tex]\frac{df(x)}{dx}=\tan(x)\cdot(\text{ - csc}^2\text{\lparen x\rparen})\text{+ \lparen sec}^2(x)\text{\rparen}\cdot\text{ cot\lparen x\rparen}[/tex]

or

[tex]\frac{df(x)}{dx}=\text{ -}\tan(x)\cdot\text{ csc}^2\text{\lparen x\rparen+ sec}^2(x)\cdot\text{ cot\lparen x\rparen}[/tex]

now, this is equivalent to:

[tex]\frac{df(x)}{dx}=\text{ -2 csc \lparen2x\rparen + 2 csc\lparen2x\rparen = 0}[/tex]

thus,

[tex]\frac{df(x)}{dx}=0[/tex]

Now, to find the slope of the function f(x) at the point (x,y) = (1,1), lug the x-coordinate of the given point into the derivative (this is the slope of the function at the point):

[tex]\frac{df(1)}{dx}=0[/tex]

Notice that this slope matches the slope found on the graph of the function f(x), because horizontal lines have a slope 0:

We can conclude that the correct answer is:

Answer:

The slope of the graph f(x) at the point (1,1) is

[tex]0[/tex]

Consider the quadratic f(x)=x^2-x-30Determine the following ( enter all numerical answers as integers,fraction or decimals$The smallest (leftmost) x-intercepts is x=The largest (rightmost)x-intercepts is x=The y-intercept is y=The vertex is The line of symmetry has the equation

Answers

ANSWER

Smallest x-intercept: x = -5

Largest x-intercept: x = 6

y-intercept: y = -30

The vertex is (1/2, -121/4)

Line of symmetry x = 1/2

EXPLANATION

Given:

[tex]f(x)\text{ = x}^2\text{ - x - 30}[/tex]

Desired Results:

1. Smallest x-intercept: x =

2. Largest x-intercept: x =

3. y-intercept: y =

4. The vertex is

5. Equation of Line of symmetry

1. Determine the x-intercepts by equating f(x) to zero (0).

[tex]\begin{gathered} 0\text{ = x}^2-x-30 \\ x^2-6x+5x-30\text{ = 0} \\ x(x-6)+5(x-6)=0 \\ (x-6)(x+5)=0 \\ x-6=0,\text{ x+5=0} \\ x\text{ = 6, x = -5} \end{gathered}[/tex]

The smallest and largest x-intercepts are -5 and 6 respectively.

2. Determine the y-intercept by equating x to 0

[tex]\begin{gathered} y\text{ = \lparen0\rparen}^2-0-30 \\ y\text{ = -30} \end{gathered}[/tex]

y-intercept is -30

3a. Determine the x-coordinate of the vertex using the formula

[tex]x\text{ = -}\frac{b}{2a}[/tex]

where:

a = 1

b = -1

Substitute the values

[tex]\begin{gathered} x\text{ = -}\frac{(-1)}{2(1)} \\ x\text{ = }\frac{1}{2} \end{gathered}[/tex]

3b. Determine the y-coordinate of the vertex by substituting x into the equation

[tex]\begin{gathered} y\text{ = \lparen}\frac{1}{2})^2-\frac{1}{2}-30 \\ y\text{ = }\frac{1}{4}-\frac{1}{2}-30 \\ Find\text{ LCM} \\ y\text{ = }\frac{1-2-120}{4} \\ y\text{ = -}\frac{121}{4} \end{gathered}[/tex]

4. Determine the line of symmetry

In standard form the line of symmetry of a quadratic function can be identified using the formula

[tex]\begin{gathered} x\text{ = -}\frac{b}{2a} \\ x\text{ = }\frac{1}{2} \end{gathered}[/tex]

The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.A. 7/12B. 4/7C. 7/11D. 4/11

Answers

We have a reason for 7:4,

i.e. the total probability of winning is 7+4=11

If the horse has a probability of winning of 7 between 11

We can say that the Pw of the horse is as follows

[tex]\frac{7}{11}[/tex]

The answer is the option C

For the diagram below, if < 4 = 4x - 2, and < 6 = 2x + 14, what is the value of x?Select one:a.8b.16c.4d.5

Answers

Answer:

x = 8

Explanations

From the line geometry shown, the line a and b are parallel lines while line "t" is the transversal.

Since the horizontal lines are parallel, hence;

[tex]\angle4=\angle6(alternate\text{ exterior angle})[/tex]

Given the following parameters

[tex]\begin{gathered} \angle4=4x-2 \\ \angle6=2x+14 \end{gathered}[/tex]

Equate both expressions to have:

[tex]\begin{gathered} 4x-2=2x+14 \\ 4x-2x=14+2 \\ 2x=16 \\ x=\frac{16}{2} \\ x=8 \end{gathered}[/tex]

Hence the value of x is 8

Describe the relationship between the number 2 x 10^4 and 4 x 10^6

Answers

2 * 10^4 = 2 * 10000 = 20,000

4 * 10^6 = 4 * 1000000 = 4,000,000

4,000,000/20,000 = 200

Therefore, 4 * 10^6 is 200 times 2 * 10^4

Which points sre vertices of the pre-image, rectangle ABCD?Makes no sense

Answers

Given rectangle A'B'C'D', you know that it was obtained after translating rectangle ABCD using this rule:

[tex]T_{-4,3}(x,y)[/tex]

That indicates that each point of rectangle ABCD was translating 4 units to the left and 3 units up, in order to obtain rectangle A'B'C'D'.

Notice that the coordinates of the vertices of rectangle A'B'C'D' are:

[tex]\begin{gathered} A^{\prime}(-5,4) \\ B^{\prime}(3,4) \\ C^{\prime}(3,1) \\ D^{\prime}(-5,1) \end{gathered}[/tex]

Therefore, in order to find the coordinates of ABCD, you can add 4 units to the x-coordinate of each point and subtract 3 units to each y-coordinate of each point. You get:

[tex]\begin{gathered} A=(-5+4,4-3)=(-1,1) \\ B=^(3+4,4-3)=(7,1) \\ C=(3+4,1-3)=(7,-2) \\ D=(-5+4,1-3)=(-1,-2) \end{gathered}[/tex]

Hence, the answers are:

- First option.

- Second option.

- Fourth option.

- Fifth option.

Other Questions
What is the equation of the line that passes through the point (7,6) and has a slope of 0 Diane is on her way home in her car. Her drive is 18 miles long. She has finished two-thirds of the drive so far. How far has she driven? magine that instead of hiring each assistant right away in the hiring assistant problem, we wait until the end to hire the best one. what are the best- , worst-, and average-case costs in this case? explain The tire tread wears out in at least 60,000 miles. the tire company bought 48 tires and found out the average mile usage for 48 tires is 59,500. what hypothesis do we test to find out if the manufacturer claim is too optimistic and tires wear out before 60,000 miles? A coffee shop is having a sale on prepackaged coffee and tea. Yesterday they sold 11packages of coffee and 50 packages of tea, for which customers paid a total of $288. The daybefore, 12 packages of coffee and 38 packages of tea was sold, which brought in a total of$248. How much does each package cost? Is the exoplanet like earth in terms of its distance from its star? Explain your answer Cuanto es 25 dividido en 386,4 Which of these is NOT something that was traded during the Columbian Exchange? a university has decided to set aside 100 slots a year for minority applicants. which supreme court case ruling deemed such a policy unconstitutional? regents of the university of california v. bakke dowell v. oklahoma city mendez v. westminster plessy v. ferguson Mrs. Navarro has 36 students in her class, 16 boys and 20 girls.Select all ratios below that correctly describe the ratio of boys to girls in Mrs.Navarros's class. f(x) = 3x - 5x+20Find f(-8) there are no real boundaries for natural systems. explain how this applies to systems in the human body. explain why scientists establish boundaries for natural systems. In the following diagram, we know that line AB is congruent to line BC and angle 1 is congruent to angle 2. Which of the three theorems (ASA, SAS, or SSS) would be used to justify that triangle ABC congruent triangle CDA? those with schizophrenia who are unable to recognize other people's needs and emotions and who also distance themselves from reality are displaying: a. loss of volition. b. social withdrawal. c. blunted or flat affect. d. poverty of speech. railroad accidents a researcher wishes to study railroad accidents. he wishes to select 4 railroads from 15 class i railroads, 2 railroads from 8 class ii railroads, and 1 railroad from 7 class iii railroads. how many different possibilities are there for his study? the platonic theory that holds that things in the material world are manifestations of an independent realm of unchanging, immaterial ideas of forms is called... Solve the given equation:x = -8y + 9 Solve the inequality: 3x + 4 5Answer in interval notation. the amount of iron in an iron ore can be quantitatively determined by titrating a solution of the unknown with a standard solution of dichromate. the net ionic equation is: redox titration.gif the titration of 25.0 ml of an iron(ii) solution required 18.0 ml of a 0.150 m solution of dichromate (cr2o72-) to reach the equivalence point. what is the molarity of the iron(ii) solution? a group of 90 students is to be split at random into 3 classes of equal size. all partitions are equally likely. joe and jane are members of the 90-student group. find the probability that joe and jane end up in the same class.