Momentum is defined as mass multiplied by velocity, so the total momentum before the extinguisher is thrown is 70 kg*m/s.
What is Velocity?Velocity is a vector quantity that measures the rate of change of an object's position. It is determined by the displacement of an object over a given period of time, and is usually expressed in terms of distance over time.
The astronaut's resulting velocity will be the same as the fire extinguisher's velocity, 3.5 m/s.
This is because the astronaut and extinguisher have the same mass and momentum must be conserved.
Momentum is defined as mass multiplied by velocity, so the total momentum before the extinguisher is thrown is 75 kg * 0 m/s + 20 kg * 3.5 m/s
= 70 kg*m/s.
To learn more about Velocity
https://brainly.com/question/626479
#SPJ1
a student is 2.50m away from a convex lens while her image is 1.80m from the lens, what is the focal length?
To find the focal length of a convex lens, we can use the formula:
1/f = 1/di + 1/do
Where f is the focal length, di is the distance of the image from the lens, and do is the distance of the object from the lens.
We are given that the student is 2.50m away from the lens, so do = 2.50m. We are also given that the image is 1.80m from the lens, so di = 1.80m.
Plugging these values into the formula, we get:
1/f = 1/1.80 + 1/2.50
Simplifying this equation, we get:
1/f = 0.5556
Multiplying both sides by f, we get:
f = 1.80 / 0.5556
Solving for f, we get:
f ≈ 3.24 meters
Therefore, the focal length of the convex lens is approximately 3.24 meters.
To know more about focal length of a convex lens:
https://brainly.com/question/1031772
#SPJ11
A convex lens is 1.80 meters from a student who is 2.50 meters distant, and its focal length is 1.04 meters.
To solve this problem, we can use the lens equation:
1/f = 1/do + 1/di
where f is the focal length of the lens, do is the object distance (distance of the object from the lens), and di is the image distance (distance of the image from the lens).
In this problem, the object distance is do = 2.50 m and the image distance is di = 1.80 m. We can plug these values into the lens equation and solve for the focal length:
1/f = 1/do + 1/di
1/f = 1/2.50 + 1/1.80
1/f = 0.4 + 0.56
1/f = 0.96
f = 1/0.96
f ≈ 1.04 meters
Therefore, the focal length of the convex lens is approximately 1.04 meters.
To learn more about focal length, refer:-
https://brainly.com/question/29870264
#SPJ11
as per subpart b, a physician who is a member of the research team on a study involving nonviable neonates may assist the treating physicians in determining whether neonates are nonviable. True or false?
True a significant factor in algal blooms and the excessive growth of aquatic vegetation that results in competition for sunlight and congestion.
What exactly is a contest?Job competition is fierce. Computer firms compete fiercely with one another. The two businesses are in opposition to one another.It can also be described more broadly as the either direct or indirect relationship between species that affects fitness when they share a resource.When there is monopolistic competition, several vendors offer differentiated goods—goods with minor differences but similar functions.
An organism is what?Therefore, every animal, plant, mould, protist, organism, or archaeon found on Earth would be considered an organism. There are numerous methods to categorise these species.a single organism that uses its organs to carry out its life's functions
To know more about organism visit:
https://brainly.com/question/13278945
#SPJ1
a pendulum is swinging upward and is halfway toward its highest position, as shown, when the string breaks. which of the paths shown best represents the one that the ball would take after the string breaks?
The option A is best representation of the path that the ball would take after the string breaks.
When the string of a pendulum breaks, the ball's path will follow the laws of motion, specifically the law of conservation of energy. As the ball was halfway to its highest position, it had a certain amount of potential energy.
When the string broke, this potential energy would convert to kinetic energy, causing the ball to move in a straight line tangent to the point where the string broke.
Therefore, the path that the ball would take after the string breaks would be a straight line away from the pivot point of the pendulum, as shown in option A. The other paths shown do not follow the laws of motion and do not account for the conservation of energy. Option (A) is the correct answer.
To learn more about : string
https://brainly.com/question/24994188
#SPJ11
Note the full question is
A pendulum is swinging upward and is halfway toward its highest position, as shown, when the string breaks. which of the paths shown best represents the one that the ball would take after the string breaks?
A) A
B) B
C) C
D) D
E) E
at 2.1 km from the transmitter, the peak electric field of a radio wave is 350 mv/m . what is the peak electric field 10 km from the transmitter?
The peak electric field 10 km from the transmitter is approximately 15.435 mV/m.
To find the peak electric field 10 km from the transmitter, we can use the inverse square law.
This law states that the intensity of a wave (such as the electric field in this case) is inversely proportional to the square of the distance from the source.
Here's a step-by-step explanation:
1. Note the initial distance (d1) and electric field (E1):
d1 = 2.1 km, E1 = 350 mV/m.
2. Convert d1 to meters:
d1 = 2100 m.
3. Note the final distance (d2):
d2 = 10 km.
4. Convert d2 to meters:
d2 = 10,000 m.
5. Use the inverse square law formula:
E2 = E1 * (d1²) / (d2²).
6. Plug in the values:
E2 = 350 * (2100²) / (10,000²).
7. Calculate E2:
E2 ≈ 15.435 mV/m.
Learn more about electric field:
https://brainly.com/question/14372859
#SPJ11
what is the weight of a cubic meter of cork? could you lift it? (use 400 kg/m^3 for the density of cork.)
To lift this weight, you would need a force greater than or equal to 3,920 N (assuming you are lifting it vertically).
weight = [tex]1 m^3 \times 400 kg/m^3 \times9.8 m/s^2[/tex]
weight = 3,920 N
Force is a physical quantity that describes the interaction between objects or systems. The SI unit of force is the Newton (N), which is defined as the amount of force required to accelerate a one kilogram mass at a rate of one meter per second squared.
Force is also responsible for deformations in solid objects, such as stretching or compressing a spring. Nuclear forces are responsible for the interactions between subatomic particles, and frictional forces are the forces that resist motion when two surfaces come into contact. Gravitational force is the force that pulls objects towards each other due to their masses. Electromagnetic force is responsible for the interactions between charged particles, such as in electricity or magnetism.
To learn more about Force visit here:
brainly.com/question/24115409
#SPJ4
A mass of 25. 0 kg is acted upon by two forces: is 15. 0 n due east and is 10. 0 n and due north. The acceleration of the mass is
the acceleration of the mass is 0.7212 m/s^2.
To find the acceleration of the mass, we need to first determine the net force acting on it. We can do this by using vector addition to add the two forces together.
Using the Pythagorean theorem, we can find the magnitude of the diagonal force:
sqrt[[tex](15N)^{2}[/tex] + [tex](10N)^{2}[/tex]] = sqrt[225 + 100] = sqrt(325) = 18.03 N
The direction of this force can be found using the inverse tangent function:
theta =[tex]tan^{-1}(10.0N/15.0N)[/tex] = 33.69 degrees north of east
We can now use vector addition to find the net force on the mass:
F_net = sqrt[[tex](15N)^{2}[/tex] + [tex](10N)^{2}[/tex]] = 18.03 N, at an angle of 33.69 degrees north of east
To find the acceleration of the mass, we can use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration:
F_net = ma
Solving for the acceleration, we get:
a = F_net / m = 18.03 N / 25.0 kg = 0.7212 m/s^2
Therefore, the acceleration of the mass is 0.7212 m/s^2.
Learn more about Vector Addition:
https://brainly.com/question/19420810
question 34 pts how do ambient sounds differ from sound effects?how are foley sounds different from sound effects?
The differences between ambient sounds, sound effects, and Foley sounds.
Ambient sounds, also known as background sounds or atmospheric sounds, are the continuous, subtle noises that help create a sense of atmosphere or location in a scene. They differ from sound effects in that sound effects are distinct, purposeful sounds added to emphasize specific actions or events in a scene.
Foley sounds, on the other hand, are a type of sound effect created manually by a Foley artist to match and enhance the actions happening on-screen. They are different from regular sound effects because they are typically recorded live in a studio using various objects and materials to create realistic, synchronized sounds for actions such as footsteps, clothing rustles, and object handling.
In summary:
1. Ambient sounds create a sense of atmosphere or location and are continuous and subtle.
2. Sound effects are distinct, purposeful sounds added to emphasize specific actions or events.
3. Foley sounds are a type of sound effect created manually by a Foley artist to match on-screen actions.
To know more about ambient sounds, sound effects, and Foley sounds:
https://brainly.com/question/16519187
#SPJ11
at what speed do a bicycle and its rider, with a combined mass of 90 kg , have the same momentum as a 1600 kg car traveling at 4.8 m/s ? express your answer to two significant figures and include the appropriate units.
help me please oml 2 one
Color: Both the bromine gas and steak have a brownish color.
What is bromine gas?Bromine gas is a reddish-brown, nonflammable, and highly toxic gas with a very strong, unpleasant odor. It is composed of two heavy, diatomic, halogen molecules, Br2, and is the only nonmetal element that exists as a liquid at room temperature. Bromine gas is denser than air and is soluble in water and organic solvents.
Texture: The bromine gas is a gas and therefore has no texture, while the steak is solid and has a firm texture.
Temperature: The bromine gas is a gas and therefore has a lower temperature than the steak, which is at room temperature.
Bromine Gas and Juice:
Color: The bromine gas is brownish and the juice is a yellowish or orange color.
Texture: The bromine gas is a gas and therefore has no texture, while the juice is a liquid and has a smooth texture.
Temperature: The bromine gas is a gas and therefore has a lower temperature than the juice, which is at room temperature.
To learn more about bromine gas
https://brainly.com/question/1126306
#SPJ1
5. Explain the law of conservation of energy using a relevant example from every day life.
The law of conservation of energy states that energy is neither created nor destroyed but is transformed from one form to another.
What is law of conservation of energy?The law of conservation of energy is the law that states that energy is neither created nor destroyed but is transformed from one form to another.
Examples of activities of everyday life that shows the conservation of energy include the following:
For loudspeaker, electrical energy is converted into sound energy.For a microphone, sound energy is converted into electrical energy.For a generator, mechanical energy is converted into electrical energy.When fuels are burnt, chemical energy is converted into heat and light energyLearn more about energy here:
https://brainly.com/question/25959744
#SPJ1
An example of the law of conservation of energy is a roller coaster.
What is the law of conservation of energy?The law of conservation of energy states that energy cannot be created or destroyed, only transferred or transformed from one form to another. This means that the total amount of energy in a closed system remains constant over time.
A roller coaster car gains kinetic energy as it moves down the track, but it also loses potential energy. At the bottom of the track, the car has the most kinetic energy and the least potential energy, while at the top of the track, it has the most potential energy and the least kinetic energy. However, the total amount of energy in the system remains constant.
Learn about law of conservation of energy here https://brainly.com/question/166559
#SPJ1
if hydrogen is the most common element in the universe, why do we not see the lines of hydrogen in the spectra of the hottest stars?
The reason we do not see the lines of hydrogen in the spectra of the hottest stars is due to the ionization of hydrogen atoms at high temperatures.
In these stars, the temperatures are so high that the electrons in the hydrogen atoms are stripped away, leaving behind only the protons. This ionized hydrogen does not produce the same spectral lines as neutral hydrogen, which is what we typically observe in cooler stars. Instead, the spectra of hot stars are dominated by lines from ionized metals, such as helium, carbon, and oxygen. So while hydrogen is indeed the most common element in the universe, its presence in the spectra of hot stars is not as prominent due to ionization.
More on hydrogen: https://brainly.com/question/30077093
#SPJ11
A train car with a mass of 2000 kg is traveling east at 10 m/s. It is approaching another train car with a mass of 1000 kg also traveling east at 3 m/s. After the trains collide, the more massive train car continues east at 6 m/s. What is the new velocity of the less massive train car?
The new velocity of the less massive train car has a velocity of 10 m/s after the collision.
What is velocity?Velocity is a measure of the rate and direction of an object's motion. It is a vector quantity, meaning it has both magnitude and direction. Velocity is typically represented by the equation v = s/t, where v is the velocity, s is the displacement (or distance travelled), and t is the time taken. Velocity is often confused with speed, which is the measure of the magnitude of an object's motion. Speed is a scalar quantity and is represented by the equation s = t/v.
The total momentum of the two train cars before the collision is calculated by multiplying the mass of each car by its velocity.
The total momentum of the system before the collision is 2000 kg x 10 m/s + 1000 kg x 3 m/s = 23000 kg m/s.
The total momentum of the system after the collision is 2000 kg x 6 m/s + 1000 kg x v, where v is the velocity of the less massive train car after the collision.
Therefore, we can set up the equation 23000 = 12000 + 1000v and solve for v.
v = 10 m/s.
To learn more about velocity
https://brainly.com/question/24445340
#SPJ1
A rock thrown horizontally from the roof edge of a 12.4 m-high building hits the ground below, a horizontal distance of 17.8 m from the building. What is the overall speed of the rock when it hits the ground?
The overall speed of the rock when it hits the ground is 24.4 m/s.
We can solve this problem using kinematic equations of motion. Since the rock is thrown horizontally, its initial vertical velocity is zero.
Let's use the following kinematic equation to find the final velocity of the rock (v):
v² = u² + 2as
where u is the initial velocity (in this case, u = 0), a is the acceleration due to gravity (-9.81 m/s²), and s is the vertical distance the rock falls (12.4 m). Solving for v, we get:
v = sqrt(2as) = sqrt(2 x (-9.81 m/s²) x 12.4 m) = 17.26 m/s
Now that we have found the final vertical velocity, we can use it to find the time it takes for the rock to fall to the ground.
The time (t) can be found using the following kinematic equation:
s = ut + (1/2)at²
where s is the horizontal distance the rock travels (17.8 m), u is the horizontal velocity of the rock (which is constant), and a is the horizontal acceleration (which is zero). Since the initial horizontal velocity is equal to the final horizontal velocity, we can use the following equation to find u:
v = u
u = v = 17.26 m/s
Now we can plug in the known values to find t:
17.8 m = 17.26 m/s x t
t = 1.03 s
Finally, we can use the horizontal distance and time to find the horizontal velocity (v_h) using the equation:
v_h = s/t = 17.8 m / 1.03 s = 17.28 m/s
Therefore, the overall speed of the rock when it hits the ground is the vector sum of the horizontal and vertical velocities:
v_overall = sqrt(v_h² + v²) = sqrt((17.28 m/s)² + (17.26 m/s)²) = 24.4 m/s
So the overall speed of the rock when it hits the ground is 24.4 m/s.
To know more about vertical velocity, visit:
https://brainly.com/question/11679227
#SPJ1
The majority of Venus's surface is:
A. volcanic plains with flowing lava.
B large, flat mesas with tiny valleys.
C. thick, soupy clouds of hydrogen.
D. frozen dunes of dust and sand.
Answer:
C.
Explanation:
When Venus surface get bit cold when weather hits the planet gets soupy clouds and etc.
The surface of which jovian moon most resembles the pack ice of the Arctic Ocean? A) Amalthea B) Io C) Europa D) Ganymede E) Callisto.
what does the technique of interferometry allow?what does the technique of interferometry allow?it allows two or more telescopes to obtain a total light-collecting area much larger than the total light-collecting area of the individual telescopes.it allows us to determine the chemical composition of stars.it allows two or more telescopes to obtain the angular resolution of a single telescope much larger than any of the individual telescopes.it allows the same telescope to make images with both radio waves and visible light.it allows astronomers to make astronomical observations without interference from light pollution.
The technique of interferometry allows two or more telescopes to obtain the angular resolution of a single telescope much larger than any of the individual telescopes.
This is achieved by combining the signals received by the telescopes to create a single image with a higher resolution. Interferometry is especially useful for studying objects with small angular sizes, such as stars and planets.
Additionally, interferometry allows astronomers to make astronomical observations without interference from light pollution, as it can separate the signals from the object being observed from the background light.
However, interferometry does not directly determine the chemical composition of stars, although it can provide information about their temperature and other physical properties.
Learn more about interferometry:
https://brainly.com/question/30054443
#SPJ11
. for schrodinger's equation of the h2 molecule, the kinetic energy has contributions from a. electrons only b. nuclei only c. both electrons and nuclei d. only one electron and one nucleus
The kinetic energy in Schrödinger's equation for the H2 molecule includes contributions from both electrons and nuclei. Thus the correct option is C.
The kinetic energy term in Schrödinger's equation for the H2 molecule refers to the energy involved in the motion of the particles. The H2 molecule comprises two hydrogen nuclei and two electrons, therefore the electrons and the nuclei both contribute to the kinetic energy.
The nuclei contribute to the kinetic energy by their mobility, whereas the electrons do so through their wave-like behaviour. The H2 molecule's kinetic energy term in Schrödinger's equation includes contributions from both electrons and nuclei, making option C the right response.
Learn more about kinetic energy:
https://brainly.com/question/30285686
#SPJ4
The kinetic energy in Schrödinger's equation for the H2 molecule includes contributions from both electrons and nuclei. Thus the correct option is C
explanation - For Schrödinger's equation of the H2 molecule, the kinetic energy has contributions from both electrons and nuclei. This is because the kinetic energy term in the equation accounts for the motion of all particles in the system, which in this case includes both the electrons and nuclei of the H2 molecule. Therefore, options a, b, and d are incorrect.
To know more about the schrodinger equation, click on this -
brainly.com/question/31441754
#SPJ11
Calculating Average Speed
If you know the total distance an object travels over a certain period of time, you can
calculate the average speed of the object.
To do so, you use the formula ____________________________________________.
catching a wave, a 73.2-kg surfer starts with a speed of 1.44 m/s, drops through a height of 1.84 m, and ends with a speed of 8.89 m/s. how much nonconservative work was done on the surfer?
The nonconservative work done on the surfer is 2845.5 J.
We can use the work-energy theorem to solve this problem. The work-energy theorem states that the net work done on an object is equal to its change in kinetic energy. In this case, we can calculate the initial and final kinetic energies of the surfer and find the difference, which will give us the net work done.
The initial kinetic energy of the surfer is:
[tex]K_i = (1/2) * m * v_i^2[/tex]
[tex]K_i = (1/2) * 73.2 kg * (1.44 m/s)^2[/tex]
K_i = 75.7 J
The final kinetic energy of the surfer is:
[tex]K_f = (1/2) * m * v_f^2[/tex]
[tex]K_f = (1/2) * 73.2 kg * (8.89 m/s)^2[/tex]
K_f = 2921.2 J
The change in kinetic energy is:
ΔK = K_f - K_i
ΔK = 2921.2 J - 75.7 J
ΔK = 2845.5 J
According to the work-energy theorem, this change in kinetic energy must be equal to the net work done on the surfer. Therefore, the nonconservative work done on the surfer is:
W_nc = ΔK
W_nc = 2845.5 J
So, the nonconservative work done on the surfer is 2845.5 J.
Learn more about nonconservative work
https://brainly.com/question/28588859
#SPJ4
Power supplies are rated for efficiency based on. drawn to supply sufficient power to the PC. a. volts b. watts c. amperes d. ohms. Study These Flashcards.
B. Power supplies are rated for efficiency based on watts. The efficiency of a power supply is determined by the ratio of its output power (in watts) to its input power (also in watts).
The lesser the effectiveness, the lower power is wasted as heat and the lesser the power given to the computer's factors. In addition to effectiveness, power inventories are rated for maximum affair power, which is generally expressed in watts. This standing represents the loftiest quantum of power that the power force can deliver to the computer's factors.
Other conditions, similar as voltage and amperage conditions for their different affair connections, may be assigned to power inventories. The maximum voltage and current that the power force can produce on each connection are indicated by these conditions. Ohms, on the other hand, are a resistance unit that's infrequently used to grade power force.
Learn more about power at
https://brainly.com/question/30562600
#SPJ4
The melting of methane hydrates on the seafloor can lead to a sharp rise in global temperatures because methane is a powerful greenhouse gas (true or false)
The melting of methane hydrates on the seafloor can lead to a sharp rise in global temperatures because methane is a powerful greenhouse gas. The statement is true.
Methane is a powerful greenhouse gas, with a global warming potential that is estimated to be about 25 times greater than that of carbon dioxide over a 100-year time horizon. Methane hydrates are solid, crystalline compounds that contain a large amount of methane gas trapped within water molecules. These hydrates are stable under certain temperature and pressure conditions, but if they become destabilized, they can release large amounts of methane into the atmosphere.
The melting of methane hydrates on the seafloor is a concern because it has the potential to release vast amounts of methane into the atmosphere, which could significantly contribute to global warming and climate change. This process could be triggered by rising ocean temperatures, changes in ocean currents, or other factors that alter the stability of the hydrates. While the exact extent and impact of this phenomenon are still uncertain, it is an area of active research and concern among climate scientists.
To learn more about temperature, refer:-
https://brainly.com/question/2662380
#SPJ11
A loose spiral spring carrying no current is hung from a ceiling. When a switch is thrown so that a current exists in the spring, do the coils move closer together move farther apart not move at all
The coils in the spring will move farther apart when a current is passed through it because of the solenoid effect.
The solenoid effect describes the way a loose spiral spring expands when a current is fed through it. An electric current flows through a coil of wire to create a solenoid, a type of electromagnet. A magnetic field is produced when current passes through the coil, and the magnetic field lines are parallel to the axis of the coil. The amount of current flowing through the coil and the number of wire turns within the coil determines how strong the magnetic field is.
Because a loose spiral spring behaves like a coil of wire, the solenoid effect is seen in this situation. The magnetic field that is created around a spring when a current is sent through it has lines that are parallel to the spring's axis. The interaction between the magnetic field and the spring's current produces a force that pushes the coils apart.
To learn more about solenoids, refer to:
https://brainly.com/question/4340558
#SPJ4
Green laser pointers emit light with a wavelength of 532 nm. Do research on the type of laser used in this type of pointer and describe its operation. Indicate whether the laser is pulsed or continuous.
Pulsed lasers are used in specific applications where short bursts of laser light are needed, such as in laser ranging, lidar, or certain medical procedures.
What is Wavelength?
Wavelength is a term used in physics to describe the distance between two consecutive points of a wave that are in phase, or the distance over which a wave completes one cycle. It is commonly denoted by the Greek letter lambda (λ) and is usually measured in units such as meters (m), nanometers (nm), or angstroms (Å).
Green laser pointers typically use a type of laser known as a diode-pumped solid-state (DPSS) laser to generate laser light at a wavelength of 532 nm, which corresponds to green light in the visible spectrum. DPSS lasers are a type of laser that uses a solid-state crystal or material as the gain medium, which is pumped by a diode laser to achieve laser emission.
Learn more about Wavelength from the given link
https://brainly.com/question/10750459
#SPJ1
if interstellar dust makes an rr lyrae variable star look 5 magnitudes fainter than the star should, by how much will you over- or underestimate its distance?
The distance to the RR Lyrae variable star will be underestimated by a factor of 10 due to the effect of interstellar dust.
The distance to an astronomical object can be determined using the inverse square law, which states that the apparent brightness of an object decreases as the square of the distance increases.
The apparent magnitude of an object is a measure of its brightness as seen from Earth. The lower the magnitude, the brighter the object.
If interstellar dust makes an RR Lyrae variable star look 5 magnitudes fainter than it should, then the apparent magnitude of the star as observed from Earth is 5 magnitudes greater than its true apparent magnitude.
Using the inverse square law, we can write:
Apparent brightness ~ 1 / (distance[tex])^2[/tex]
If the apparent brightness is 5 magnitudes fainter than it should be, we can express the distance to the star as:
distance = sqrt(100^(0.4 * 5)) x true distance
where 0.4 is the conversion factor from magnitudes to brightness ratios, and 100 is the ratio of the brightness of the star as observed from Earth to its true brightness.
Simplifying this expression, we get:
distance = 100^(0.5) x true distance
distance = 10 x true distance
Therefore, the distance to the RR Lyrae variable star will be underestimated by a factor of 10 due to the effect of interstellar dust.
Learn more about interstellar dust.
https://brainly.com/question/13034266
#SPJ4
A bow is drawn so that it has 40 J of potential energy. When fired, the arrow will have a kinetic energy of: Select one: O a. 80) o b. 20) O 0.60) O d. 40)
When a bow is drawn and has 40 J of potential energy, the arrow's kinetic energy when fired will be:
Your answer: d. 40 J
Explanation:
Potential energy is the energy that an object possesses due to its position, configuration, or state of being. It is stored energy that has the potential to do work in the future. The amount of potential energy that an object has depends on its position or configuration relative to other objects or systems. For example, a bow that is pulled back has potential energy that can be released as kinetic energy when it is released.
Kinetic energy, on the other hand, is the energy that an object possesses due to its motion. It is the energy that an object possesses because it is in motion and is able to do work by causing a change in another object's motion or position. The amount of kinetic energy that an object has depends on its mass and its velocity. For example, a moving car has kinetic energy that can be transferred to another object if it collides with it.
When the bow is drawn, it stores potential energy. When fired, this potential energy is converted into kinetic energy for the arrow. In an ideal situation with no energy loss, the arrow's kinetic energy will be equal to the bow's potential energy. Therefore, the arrow will have a kinetic energy of 40 J.
To learn more about Potential Energy and Kinetic Energy. Please Visit:
https://brainly.com/question/30176483
#SPJ11
when does a star become a main-sequence star? when the rate of hydrogen fusion within the star's core is high enough to maintain gravitational equilibrium when hydrogen fusion is occurring throughout a star's interior when the protostar assembles from a molecular cloud when a star becomes luminous enough to emit thermal radiation the instant when hydrogen fusion first begins in the star's core
Answer: hope it helps
Explanation:
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
ten 7.0-w christmas tree lights are connected in series to each other and to a 120-v source. what is the resistance of each bulb?
The resistance of each bulb which are connected in series is 20.571 Ω.
Let's find the resistance of each bulb using the given terms:
1. Voltage of source (V_source) = 120 V
2. Number of bulbs (n) = 10
3. Power of each bulb (P) = 7.0 W
We'll use the formula P = V²/R to find the resistance of each bulb.
1: Find the total power of the series.
Total power (P_total) = n * P = 10 * 7.0 W = 70 W
2: Find the total resistance of the series.
Using the formula P_total = V_source^2 / R_total, we can find R_total:
R_total = V_source² / P_total = (120 V)² / 70 W = 14400 / 70 = 205.71 Ω
3: Find the resistance of each bulb.
Since the bulbs are connected in series, the total resistance is the sum of the individual resistances. Therefore, we can find the resistance of each bulb (R_bulb) as follows:
R_bulb = R_total / n = 205.71 Ω / 10 = 20.571 Ω
So, the resistance of each bulb is approximately 20.571 Ω.
Learn more about resistance:
https://brainly.com/question/24858512
#SPJ11
What happens when thermal energy is applied to a substance q
When thermal energy is applied to a substance, the particles in the substance start to vibrate more rapidly, and the average kinetic energy of the particles increases.
What happens when thermal energy is applies to a substanceAs a result, the temperature of the substance increases. The amount of thermal energy required to increase the temperature of the substance by a certain amount is called the specific heat capacity of the substance.
The way the substance responds to the applied thermal energy also depends on its physical properties, such as its mass, density, and thermal conductivity. For example, a substance with a high thermal conductivity will transfer heat more rapidly to its surroundings, while a substance with a low thermal conductivity will retain heat more effectively.
If the applied thermal energy is sufficient, the substance may undergo a phase change, such as melting or boiling, as the increased kinetic energy overcomes the intermolecular forces holding the particles together.
Learn more about thermal energy at
https://brainly.com/question/19666326
#SPJ1
the amplitude of the electric field of an electromagnetic wave is 196. v/m. what is the amplitude of the magnetic field of the electromagnetic wave?
The amplitude of the magnetic field of the electromagnetic wave is 6.53 x 10^-7 T.
To find the amplitude of the magnetic field of an electromagnetic wave, we need to use the relationship between the electric and magnetic fields in an electromagnetic wave.
According to this relationship, the amplitude of the magnetic field is equal to the amplitude of the electric field divided by the speed of light (c). Therefore, if the amplitude of the electric field of an electromagnetic wave is 196 V/m, the amplitude of the magnetic field can be calculated as follows:
Amplitude of magnetic field = Amplitude of electric field / Speed of light
Amplitude of magnetic field = 196 V/m / 3 x 10^8 m/s
Amplitude of magnetic field = 6.53 x 10^-7 T
It is important to note that the amplitude of the magnetic field and the electric field of an electromagnetic wave are perpendicular to each other and are responsible for the wave's propagation through space.
To learn more about : electromagnetic
https://brainly.com/question/13874687
#SPJ11
if the wavelength of a wave in a particular medium is tripled, what will happen to the frequency of the wave?
Answer:
V = λ * ν speed of wave in medium
We know the speed of a particular wave in a medium is constant.
ν = V / λ
If λ is increased by 3 then the frequency ν will be reduced by a factor of three to keep the speed constant.
ν' = ν / 3