An object was weighed in air had a mass of 40. 0 gram. In water, its apparent mass is 5. 00 grams. What is the density (in g/cm3) of the object correct to three significant figures

Answers

Answer 1

The density of the object is 0.103 g/cm³, correct to three significant figures.

To find the density of the object, we need to use the principle of buoyancy. The difference between the weight of the object in air and its apparent weight in water is due to the buoyant force exerted by the water on the object. This force is equal to the weight of the water displaced by the object.

The mass of the water displaced can be calculated as follows:

Mass of water = density of water x volume of water displaced

Since the volume of water displaced is equal to the volume of the object, we can write:

Mass of water = density of water x volume of object

The apparent weight of the object in water is equal to the weight of the object minus the weight of the water displaced:

Apparent weight = weight of object - weight of water displaced

We know that the weight of the object in air is 40.0 grams, which is also its mass, since the acceleration due to gravity is approximately 9.81 m/s². Therefore, the weight of the object is:

Weight of object = mass of object x acceleration due to gravity

= 40.0 g x 9.81 m/s²

= 392.4 g m/s²

The weight of the water displaced is equal to the buoyant force, which can be calculated using Archimedes' principle:

Buoyant force = weight of water displaced = apparent weight of object

Substituting the values we have:

Weight of water displaced = 392.4 g m/s² - 5.00 g m/s²

= 387.4 g m/s²

We can now find the volume of the object:

Volume of object = volume of water displaced

Density of object = mass of object / volume of object

Substituting the values we have:

Density of object = 40.0 g / (387.4 g/cm³ x 1 cm³)

= 0.103 g/cm³

Therefore, the density of the object is 0.103 g/cm³, correct to three significant figures.

Learn more about density ,

https://brainly.com/question/29775886

#SPJ4


Related Questions

which of the following is not a vector?multiple choiceaccelerationmassweightvelocityincorrectall of these choices are correct.
A. mass
B. displacemet
C. weight
D. acceleration

Answers

Mass is a scalar quantity and not a vector quantity. The correct answer is A. mass.

Scalars are quantities that have only magnitude, while vectors are quantities that have both magnitude and direction.On the other hand, the other three options - displacement, weight, and acceleration - are all vector quantities.Displacement is the vector quantity that represents the distance and direction of an object's change in position. Weight is the force exerted on an object due to gravity, and it is a vector quantity as it has both magnitude and direction. Acceleration is the vector quantity that represents the rate of change of velocity of an object over time, and it is also a vector because it has both magnitude and direction.It is important to understand the difference between scalar and vector quantities as they are fundamental concepts in physics and are used to describe the behavior of objects in the physical world.

For more such question on scalar quantity

https://brainly.com/question/356987

#SPJ11

A 1.7-kg book rests on a table. A downward force of 14 N is exerted on the top of the book by a hand pushing down on the book.
What is the net force on the book? Is it accelerating? (You must provide an answer before moving to the next part.)

Answers

The magnitude of the net force is only 2.7 N, which is much smaller than the weight of the book. Therefore, the book is not accelerating, but rather it is in a state of static equilibrium, where the net force acting on it is zero. This means that the book is at rest and will remain at rest unless acted upon by an external force.

The net force on the book is the vector sum of all the forces acting on it. In this case, there are two forces: the weight of the book, which acts downward with a magnitude of mg = (1.7 kg)(9.81 [tex]m/s^2[/tex]) = 16.7 N, and the force exerted by the hand, which acts downward with a magnitude of 14 N.

Therefore, the net force in the book is the difference between these two forces:

Net force = 14 N - 16.7 N = -2.7 N

Since the net force is negative, this means that the book is experiencing a net force in the upward direction, which is opposite to the direction of gravity.

To know more about static equilibrium refer here:

https://brainly.com/question/30807709#

#SPJ11

The names of meteor showers (Geminids, Leonids, Perseids, Quadrantids) are names of _______ which are in the apparent _______ of the luminous tails of individual meteors seen all over the sky.

Answers

The names of meteor showers (Geminids, Leonids, Perseids, Quadrantids) are names of meteor radiant points which are in the apparent direction of the luminous tails of individual meteors seen all over the sky.

The Quadrantids, for example, appear to radiate from the constellation Boötes.


The names of meteor showers (Geminids, Leonids, Perseids, Quadrantids) are names of radiant points which are in the apparent paths of the luminous tails of individual meteors seen all over the sky.

To know more about Meteor click here .

brainly.com/question/11504264

#SPJ11

a red laser from the physics lab is marked as producing 632.8-nm light. when light from this laser falls on two closely spaced slits, an interference pattern formed on a wall several meters away has bright red fringes spaced 5.00 mm apart near the center of the pattern. when the laser is replaced by a small laser pointer, the fringes are 5.13 mm apart. part a what is the wavelength of light produced by the pointer? express your answer to three significant figures and include the appropriate units.

Answers

Answer:

We can use the formula for the spacing between fringes in a double-slit interference pattern:

dsin(theta) = mlambda

where d is the distance between the slits, theta is the angle between the incident light and the normal to the screen, m is the order of the fringe, and lambda is the wavelength of the light.

Since the same screen is used for both the red laser and the pointer, we can assume that the angle theta is the same in both cases. Therefore, we can write:

dsin(theta) = mlambda_red (for the red laser)

dsin(theta) = mlambda_p (for the pointer)

Dividing these two equations, we get:

(lambda_red / lambda_p) = (m_p / m_red)

where m_p and m_red are the orders of the fringes for the pointer and the red laser, respectively.

We are given that the spacing between fringes for the red laser is 5.00 mm and for the pointer is 5.13 mm. Since the fringes are evenly spaced, we can assume that we are looking at the central maximum, where m_red = m_p = 0. Therefore:

(lambda_red / lambda_p) = 0/0 = 1

Solving for lambda_p, we get:

lambda_p = lambda_red = 632.8 nm

Therefore, the wavelength of light produced by the pointer is also 632.8 nm.

Explanation:

determine the energy in mev that is released when one 23592u nucleus fissions. assume that that the incoming neutron is very slow.

Answers

8.20 × 10¹⁶ MeV of energy is emitted during the fission of one 235U nucleus.

What is energy?

Energy can only be transformed from one form to another; it cannot be created or destroyed.

When a nucleus of 235U is bombarded by a neutron, it absorbs the neutron and becomes unstable. This causes the nucleus to split (fission) into two smaller nuclei, releasing energy in the form of gamma rays, kinetic energy of the fission fragments, and neutrons. The total energy released in a fission event can be calculated using Einstein's famous equation E=mc², where E is the energy, m is the mass defect (the difference in mass between the initial nucleus and the fission products), and c is the speed of light.

For a single fission event of 235U, on average, the fission products have a combined mass of about 235 atomic mass units (AMU), while the mass of the neutron is about 1 AMU. This means that the mass defect for one fission event is:

Δm = (235 + 1) AMU - 235 AMU = 1 AMU

Using the conversion factor 1 amu = 931.5 MeV/c², we can convert the mass defect to energy:

ΔE = Δm × c² = 1 AMU × (931.5 MeV/c²) × (3.00 × 10⁸ m/s)² = 8.20 × 10² MeV

Therefore, the energy released when one 235U nucleus undergoes fission is 8.20 × 10¹⁶ MeV.

Learn more about energy on:

https://brainly.com/question/2003548

#SPJ11

When the rate of the forward reaction equals the rate of the backward reaction, the system is said to be in (2 points)
reverse
dynamic equilibrium
homeostasis
suspended state

Answers

When the rate of the forward reaction equals the rate of the backward reaction, the system is said to be dynamic equilibrium. Hence option B is correct.

A dynamic equilibrium exists in chemistry when a reversible reaction occurs. Substances transition at equal rates between reactants and products, implying that there is no net change. Reactants and products are generated at such a rapid rate that neither's concentration changes. It's an example of a system in a steady state.

A closed system is in thermodynamic equilibrium in physics when reactions occur at such rates that the composition of the mixture does not vary with time. Reactions do occur, sometimes violently, but not to the point that changes in composition may be recognised. Equilibrium constants can be stated in terms of reversible reaction rate constants.

Hence option B is correct.

To know more about dynamic equilibrium :

https://brainly.com/question/2363073

#SPJ1.

What did j. J. Thomson discover about the composition of atoms?

Answers

J.J. Thomson discovered that atoms are composed of subatomic particles, specifically negatively charged particles which he called electrons.

J.J. Thomson (1856-1940) was a British physicist who made significant contributions to the fields of electromagnetic theory and atomic physics. He is best known for his discovery of the electron, which he identified as a subatomic particle with a negative charge. Thomson's experiments with cathode ray tubes led him to conclude that the particles in the tubes were negatively charged and much smaller than atoms, thus paving the way for the development of atomic theory.

Thomson was awarded the Nobel Prize in Physics in 1906 for his work on the conduction of electricity through gases, which led to the discovery of the electron. He also proposed a model of the atom, known as the "plum "pudding model, which suggested that atoms were composed of a positively charged sphere with negatively charged electrons embedded throughout.

To learn more about J.J. Thomson visit here:

brainly.com/question/15361325

#SPJ4

A corrosion circuit produces 2 Amperes of current at a driving voltage of 1.6 Volts, what is the resistance of this circuit?
A) 1.8 Ohms
B) 2.8 Ohms
C) 0.8 Ohms
D) 9 Ohms

Answers

In this case, the voltage is 1.6 Volts, and the current is 2 Amperes.R = 1.6 V / 2 A = 0.8 Ohms. Therefore, the correct answer is option C) 0.8 Ohms.

So, the correct answer is C) 0.8 Ohms. The resistance of the corrosion circuit can be calculated using Ohm's law, which states that resistance is equal to voltage divided by current. Therefore, the resistance of the circuit can be calculated as:
Resistance = Voltage / Current
Plugging in the values given in the question, we get:
Resistance = 1.6 V / 2 A
Simplifying this expression, we get:
Resistance = 0.8 Ohms
Therefore, the correct answer is option C) 0.8 Ohms.

Learn more about Ohm's Law here:

https://brainly.com/question/1247379

#SPJ11

A man does 4,335 J of work in the process of pushing his 2.80 103 kg truck from rest to a speed of v, over a distance of 27.5 m. Neglecting friction between truck and road, determine the following. (a) the speed v m/s (b) the horizontal force exerted on the truck N

Answers

The speed of the truck is approximately 8.42 m/s. The horizontal force exerted on the truck is approximately 157.64 N.

(a) The work-energy principle relates the work done on an object to its change in kinetic energy. Since the truck starts from rest, the work done on it equals its final kinetic energy:

W = [tex](1/2)mv^2[/tex]

Solving for v, we get:

v = [tex]sqrt(2W/m) = sqrt(2(4,335 J)/(2.80 x 10^3 kg)) ≈ 8.42 m/s[/tex]

Therefore, the speed of the truck is approximately 8.42 m/s.

(b) The horizontal force exerted on the truck can be found using the formula for work:

W = Fx

where F is the force exerted on the truck and x is the distance over which the force is applied. Rearranging this equation, we get:

F = W/x = (4,335 J)/(27.5 m) ≈ 157.64 N

Therefore, the horizontal force exerted on the truck is approximately 157.64 N.

To know more about horizontal force, visit:

https://brainly.com/question/10564289#

#SPJ11

A submarine is stranded on the bottom of the ocean with its hatch 25 m below the surface. In this problem, assume the density of sea water is 1.03 × 103 kg/m3. Calculate the magnitude of the force, in newtons, pressing on the hatch from the outside by the sea water, given it is circular and 0.65 m in diameter. The air pressure inside the submarine is 1.00 atm (101,325 Pa). (I got 83737.5 but it says it is incorrect and I am very confused)

Answers

The magnitude of the force pressing on the hatch from the outside by the sea water is approximately 50,074 newtons.

To calculate the force on the hatch, we need to find the difference between the pressure exerted by the sea water and the air pressure inside the submarine, and then multiply it by the area of the hatch.
First, let's calculate the pressure exerted by the sea water (hydrostatic pressure):
P_water = ρ × g × h
where ρ is the density of sea water (1.03 × 10³ kg/m³), g is the acceleration due to gravity (9.81 m/s²), and h is the depth of the hatch (25 m).
P_water = (1.03 × 10³ kg/m³) × (9.81 m/s²) × (25 m) = 252247.5 Pa
Next, we have the air pressure inside the submarine, P_air = 101,325 Pa.
Now, let's find the difference in pressure:
ΔP = P_water - P_air = 252247.5 Pa - 101,325 Pa = 150922.5 Pa
Now, let's calculate the area of the hatch. Since it is circular with a diameter of 0.65 m, its radius is 0.325 m. The area of a circle is given by A = πr².
A = π × (0.325 m)² ≈ 0.3317 m²
Finally, we can calculate the force acting on the hatch:
F = ΔP × A = 150922.5 Pa × 0.3317 m² ≈ 50074 N

Learn more about acceleration due to gravity here:

https://brainly.com/question/13860566

#SPJ11

Convert 150mV SCE to CSE
A) 80mVcse
B) 105mVcse
C) -85mVcse
D) -95mVcse
E) -220mVcse

Answers

The potential measured against the CSE reference electrode is (B) 105 mV CSE.

What is the correct answer for converting 150mV SCE to CSE?

The correct option is (B) 105 mV CSE.

To convert 150 mV SCE (standard hydrogen electrode) to potential measured against a CSE (copper sulfate electrode) reference electrode, you can use the following equation:

[tex]E(CSE) = E(SCE) + E\°(SCE/CSE)[/tex]

where E(CSE) is the potential measured against the CSE reference electrode, E(SCE) is the potential measured against the SCE reference electrode, and E°(SCE/CSE) is the standard potential for the SCE/CSE half-cell, which is 0.78 volts.

Substituting the given values into the equation:

[tex]E(CSE) = 150 mV + 0.78 V\\E(CSE) = 0.93 V[/tex]

Therefore, the potential measured against the CSE reference electrode is 0.93 volts, which is equivalent to (B) 105 mV CSE.

Learn more about Potential measured

brainly.com/question/21738757

#SPJ11

35 kg/s of steam (superheated water vapor) enters an adiabatic, sssf turbine at 700oc, 2.0 mpa, with a velocity of 50 m/s. 28 kg/s of steam exits the turbine at 200oc, 300 kpa, with a velocity of 12 m/s, and the rest exits at 150 kpa with a quality of 70%, and negligible velocity. the surroundings are constant at 100oc. (a) draw a schematic of this device. write your assumptions. (b) write the pertinent info for each inlet and outlet flow. be sure to list tables used. (c) calculate the power input (or output) for this turbine. (d) determine the rate of entropy generation for this turbine. (e) is this turbine reversible, irreversible, or impossible? how did you determine this

Answers

This is a thermodynamics problem involving a steam turbine. The power output of the turbine is 39111.5 kW, and the rate of entropy generation is 3.167 kW/K. Although the turbine is adiabatic and can be considered reversible in theory, practical losses make it an irreversible device.

The required information for each inlet and outlet flow, and solve the given problems.

(a) Assumptions:

The turbine operates at steady-state.

The turbine is adiabatic, meaning there is no heat transfer.

The turbine is an ideal device, with no friction or other losses.

The kinetic and potential energy changes are negligible.

(b) Pertinent Information:

Inlet Flow:

Mass flow rate = 35 kg/s

Inlet Temperature = 700 °C = 973 K

Inlet Pressure = 2.0 MPa

Inlet Velocity = 50 m/s

Using steam tables, we can find the enthalpy of the inlet steam to be h1 = 3567.4 kJ/kg and the entropy to be s1 = 7.055 kJ/kg-K.

Outlet Flow:

Mass flow rate = 28 kg/s

Outlet Temperature = 200 °C = 473 K

Outlet Pressure = 300 kPa

Outlet Velocity = 12 m/s

Using steam tables, we can find the enthalpy of the outlet steam to be h2 = 2751.1 kJ/kg and the entropy to be s2 = 6.631 kJ/kg-K.

For the other outlet flow, we know the pressure and quality. Using steam tables, we can find that the enthalpy is h3 = 2975.5 kJ/kg and the entropy is s3 = 6.784 kJ/kg-K.

(c) Power Input (or Output) Calculation:

We can use the steady-state energy balance equation to calculate the power output of the turbine:

Power Output = m*(h1 - h2) + (35 kg/s - 28 kg/s)*(h1 - h3)

where m is the mass flow rate of the second outlet flow.

Substituting the values, we get:

Power Output = 35*(3567.4 - 2751.1) + 7*(3567.4 - 2975.5)

Power Output = 39111.5 kW

Therefore, the power output of the turbine is 39111.5 kW.

(d) Rate of Entropy Generation Calculation:

The rate of entropy generation can be calculated using the following equation:

Rate of Entropy Generation = m2s2 - m1s1 - m3*s3

where m1, m2, and m3 are the mass flow rates of the inlet, first outlet, and second outlet flows, respectively.

Substituting the values, we get:

Rate of Entropy Generation = 286.631 - 357.055 - m36.784

Since we know that m3 = 7 kg/s (calculated by mass balance), we get:

Rate of Entropy Generation = 286.631 - 357.055 - 76.784

Rate of Entropy Generation = 3.167 kW/K

Therefore, the rate of entropy generation for the turbine is 3.167 kW/K.

(e) Reversibility:

Since the turbine is an adiabatic device, there is no heat transfer. Therefore, the turbine can be considered reversible. However, since there are losses due to friction and other factors, the turbine is not a perfectly reversible device. It is an irreversible device in practical terms.

To know more about the thermodynamics refer here :

https://brainly.com/question/1604031#

#SPJ11

Which of the following does NOT describe a structural feature of a volcano? A. vent. B. vesicle. C. fissure. D. magma chamber.

Answers

B. Vesicle does NOT describe a structural feature of a volcano.

A vent, fissure, and magma chamber are all structural features, while a vesicle refers to a small cavity in volcanic rock, formed by trapped gas bubbles during the solidification of lava. A vent is an opening in the Earth's surface that allows volcanic material to escape. A fissure is a large crack in the Earth's surface that allows lava to flow. A magma chamber is a large underground reservoir containing molten rock. A vesicle is an air pocket inside rocks formed by the expansion of gases during volcanic eruptions.

Learn more about solidification Refer: https://brainly.com/question/21278640

#SPJ11

g in your own words, discuss hydrostatic equilibrium. it can be described as an equally matched battle between which two things

Answers

Hydrostatic equilibrium refers to the state of balance between the forces of gravity and pressure in a fluid, such as a gas or liquid. It is essentially an equally matched battle between these two forces, where gravity pulls the fluid towards its center while pressure pushes the fluid outwards.

In this state, the pressure at any point within the fluid is equal and there is no net force acting on it. This equilibrium is crucial for maintaining the stability and shape of celestial bodies such as stars, planets, and moons, which are held together by their own gravitational forces.

For instance, in stars, the force of gravity pulls inwards while the radiation pressure generated by nuclear fusion within the star pushes outwards. This balance between forces is what keeps the star from collapsing or expanding uncontrollably.

Overall, hydrostatic equilibrium is a fundamental concept in physics that explains how gravity and pressure interact to maintain balance in fluid systems.

To know more about Hydrostatic equilibrium refer here:

https://brainly.com/question/13696206#

#SPJ11

What is the energy; in J, of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 t0 n = 5? Submit an answer to three signficant figures

Answers

The energy of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5 is approximately: 1.55 × 10⁻¹⁹ J.

To calculate the energy of light, in Joules, that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5, you can follow these steps:

1. Use the Rydberg formula for energy change:
ΔE = E_final - E_initial = (-13.6 eV / n_final²) - (-13.6 eV / n_initial²)

2. Plug in the given values of n_initial = 3 and n_final = 5:
ΔE = (-13.6 eV / 5²) - (-13.6 eV / 3²)

3. Calculate the energy change:
ΔE = (-13.6 eV / 25) - (-13.6 eV / 9) = -0.544 eV - (-1.511 eV) = 0.967 eV

4. Convert the energy change from electron volts (eV) to Joules (J) using the conversion factor 1 eV = 1.602 × 10⁻¹⁹ J:
ΔE = 0.967 eV × (1.602 × 10⁻¹⁹ J/eV) = 1.549 × 10⁻¹⁹ J

5. Round the answer to three significant figures:
ΔE ≈ 1.55 × 10⁻¹⁹ J

To know more about "Electron" refer here:

https://brainly.com/question/13998346#

#SPJ11

0.5 amperes =
A) 50 milliamps
B) 500 milliamps
C) 5 milliamps
D) 5000 milliamps

Answers

Using the conversion factor 1 ampere = 1000 milliamps, the answer is 0.5 amperes = 500 milliamps. So the correct option is B) 500 milliamps.

The prefix "milli-" means one-thousandth, so 1 milliampere (mA) is equal to 0.001 amperes (A). Therefore, to convert from amperes to milliamperes, we need to multiply by 1000.

0.5 amperes x 1000 = 500 milliamperes (mA)

So, 0.5 amperes is equivalent to 500 milliamperes.

Alternatively, we can also use the following conversion factors:

1 A = 1000 mA

To convert from amperes to milliamperes, we can multiply by 1000 or divide by 0.001:

0.5 A x 1000 = 500 mA

0.5 A / 0.001 = 500 mA

Either way, we get the same answer of 500 milliamperes.

Learn more about ampere here:

https://brainly.com/question/30459978

#SPJ11

The complete question is

0.5 amperes = how many milliamps?

A) 50 milliamps

B) 500 milliamps

C) 5 milliamps

D) 5000 milliamps

What can be said of the size of the event horizon for a 10Msun black hole?
-larger than that of a 1Msun black hole.
-smaller than that of a 1Msun black hole.
-the same size as for a 1Msun black hole (because the escape velocity for both is the speed of light).

Answers

The event horizon of a black hole is the boundary beyond which nothing, not even light, can escape its gravitational pull. The size of the event horizon is directly related to the mass of the black hole.

Specifically, the Schwarzschild radius formula can be used to determine the size of the event horizon, which is given by Rs = 2GM/c^2, where Rs is the Schwarzschild radius (event horizon radius), G is the gravitational constant, M is the mass of the black hole, and c is the speed of light. For a 10Msun black hole, the event horizon will be larger than that of a 1Msun black hole. This is because the mass term (M) in the formula directly affects the event horizon size. When comparing a 10Msun black hole to a 1Msun black hole, the 10Msun black hole has 10 times the mass, which will result in a correspondingly larger event horizon. The escape velocity for both black holes is indeed the speed of light, but their event horizons will differ in size due to the variation in mass.

Learn more about gravitational pull here

https://brainly.com/question/28854345

#SPJ11

According to the octet rule, the first energy level is stable with ________ electrons and the outermost energy level is stable with__________electrons.

Answers

According to the octet rule, the first energy level, also known as the K shell, is stable with a maximum of 2 electrons. This is because the K shell only has one subshell, which can hold a maximum of 2 electrons.

The outermost energy level, also known as the valence shell, is stable with a maximum of 8 electrons. This is because the valence shell has multiple subshells, including s, p, d, and f subshells, which can hold a total of 8 electrons. The octet rule states that atoms tend to gain, lose, or share electrons in order to achieve a full outermost energy level with 8 electrons, which results in greater stability.

The octet rule states that atoms are most stable when they have a full set of electrons in their outermost energy level, which typically means having 8 electrons (except for the first energy level). This is why atoms often form bonds with other atoms to achieve this stable configuration.

To know more about octet rule visit:-

https://brainly.com/question/865531

#SPJ11

Which type of wave requires a material medium through which to travel?
A: radio wave
B: microwave
C: light wave
D: mechanical wave

Answers

The correct answer is D: mechanical wave.

This is because mechanical waves are caused by a disturbance in the medium, and require the medium to propagate.

A mechanical wave is a wave that requires a material medium through which to travel. This is because mechanical waves are caused by a disturbance in the medium, which causes the particles in the medium to vibrate and transfer energy from one point to another.

Examples of mechanical waves include sound waves, seismic waves, and water waves. In contrast, radio waves, microwaves, and light waves are all types of electromagnetic waves, which can travel through a vacuum and do not require a medium to propagate.

To know more about mechanical wave visit:

brainly.com/question/24459019

#SPJ11

A periodic wave having a frequency of 5.0 hertz and a speed of 10 mps has a wavelength of
A: 0.50 m
B: 2.0 m
C: 5.0 m
D: 50 m

Answers

The formula for calculating wavelength is: wavelength = speed / frequency. Therefore, the wavelength of the wave is 2.0 m. The answer is B.

To find the wavelength of a periodic wave, you can use the formula: λ=fv​

where λ is the wavelength, v is the wave speed, and f is the frequency123.

Given that the wave has a frequency of 5.0 hertz and a speed of 10 m/s, you can plug these values into the formula and solve for λ:

λ=fv​

λ=510​

λ=2



In this case, the frequency is 5.0 hertz and the speed is 10 mps. Substituting these values into the formula gives:
wavelength = 10 / 5.0 = 2.0 m

Therefore, the answer is B: 2.0 m.

to learn more about wavelength click here:

brainly.com/question/12377285

#SPJ11

1. Why did Hrabowski join the Children’s Crusade in Birmingham? What was the most important lesson that he learned?

2. Hrabowski states, “…most people don’t realize that it’s not just minorities who don’t do well in science and engineering.” Please explain this statement and give a brief summary regarding how Hrabowski supports this statement.

3. Why do students who attend the most prestigious universities in our country begin in pre-med or pre-engineering and engineering but end up changing their majors?

4. Explain the four things that Hrabowski’s university did to help minority students that are now helping all students?

Answers

Freeman Alphonsa Hrabowski is an American educator, advocate, and mathematician.

Historical Events Surrounding HrabowskiFreeman Hrabowski joined the Children's Crusade in Birmingham to protest against racial segregation and discrimination. He was arrested and spent five days in jail. The most important lesson he learned was the power of collective action and how people working together can effect change.Hrabowski's statement means that there are many factors that contribute to a lack of success in science and engineering, not just race or ethnicity. He supports this statement by pointing out that many students struggle with these subjects, regardless of their background, and that there are often systemic issues that hinder their success. He also notes that many students who excel in these fields come from supportive families or communities that provide them with resources and encouragement.Hrabowski suggests that many students who begin in pre-med or pre-engineering majors may not have a true passion for those fields, but rather feel pressure from their families or society to pursue them due to their perceived prestige or earning potential. Once these students realize that these fields are not a good fit for them, they often switch to other majors that align better with their interests and abilities.Hrabowski's university, the University of Maryland, Baltimore County (UMBC), implemented four things to help minority students succeed in science and engineering that are now helping all students.

Learn more about Advocacy here:

brainly.com/question/1086036

#SPJ1

LIGO detects gravitational waves because the lengths of its arms change as gravitational waves pass by. About how much are these lengths expected to change when LIGO detects gravitational waves from the merger of two neutron stars or two black holes?

Answers

When LIGO detects gravitational waves from the merger of two neutron stars or two black holes, the lengths of its arms are expected to change by an incredibly small amount, on the order of one part in 10^21.

This is roughly equivalent to detecting a change in the length of the distance from the Earth to the nearest star by the width of a human hair. Despite the extremely small size of the expected signal, LIGO is designed with incredibly precise measurement tools that can detect these tiny changes in distance.

These tools include lasers and mirrors that are isolated from external vibrations and disturbances to maximize sensitivity of the detectors.

Learn more about LIGO here:- brainly.com/question/30722973

#SPJ11

The velocity function is v(t) = −t2 +3t −2 for a
particle moving along a line. Find the displacement and the distance
traveled by the particle during the time interval [-3,6].
displacement = ?
distance traveled = ?

Answers

The displacement of the particle during the time interval [-3,6] is -54.5 units, and the distance traveled by the particle during the same time interval is 54.5 units.

To find the displacement of the particle during the time interval [-3,6], we need to integrate the velocity function with respect to time. The antiderivative of v(t) is s(t) = [tex]-1/3t^3 + 3/2t^2 - 2t + C,[/tex] where C is the constant of integration. To find C, we can use the initial condition s(-3) = 0, which gives us C = 10.

Therefore, the displacement of the particle during the time interval [-3,6] is s(6) - s(-3) = -54.5 units.

To find the distance traveled by the particle during the time interval [-3,6], we need to take the absolute value of the displacement, as the distance is always positive. Therefore, the distance traveled by the particle during the time interval [-3,6] is 54.5 units.

To know more about displacement refer here:

https://brainly.com/question/28609499#

#SPJ11

what is the initial rotational angular momentum of the satellite, around location d (its center of mass)? (be sure your signs are correct).

Answers

The initial rotational angular momentum of the satellite, around location d (its center of mass), is zero.

Rotational angular momentum (L) is given by L = Iω, where I is the moment of inertia and ω is the angular velocity. Since the satellite is not rotating initially, ω = 0. Therefore, the initial rotational angular momentum of the satellite is zero.

Furthermore, the moment of inertia of the satellite is given by I = ∑mr², where m is the mass of each particle and r is the distance of the particle from the axis of rotation.

Assuming that the satellite is a uniform sphere, we can use the formula for the moment of inertia for a solid sphere, which is I = (2/5)MR², where M is the mass of the sphere and R is its radius. Since the axis of rotation is passing through the center of mass of the satellite, the distance of each particle from the axis of rotation is R. Therefore, the moment of inertia of the satellite is I = (2/5)MR².

Substituting the value of ω = 0 and I = (2/5)MR² in the formula for angular momentum, we get L = 0. Therefore, the initial rotational angular momentum of the satellite is zero.

To know more about rotational angular momentum refer here:

https://brainly.com/question/14082734#

#SPJ11

acceleration due to gravity on the moon is less than on earth, and the moon is smaller than earth. this means that compared to an earth satellite, a satellite in close orbit about the moon would travel
a. the same
b. slower
c. faster
d. need more info

Answers

The acceleration due to gravity on the moon is about 1/6th of that on earth due to its smaller size and mass. This means that a satellite in close orbit about the moon would experience less gravitational force than an earth satellite.

However, the velocity required to maintain a stable orbit around the moon would also be less due to the lower gravitational pull. Therefore, a satellite in close orbit about the moon would travel at a slower speed than an earth satellite in a similar orbit. This can be explained by Kepler's laws of planetary motion, which state that the speed of a planet or satellite in orbit depends on the mass of the object being orbited and the distance between the two objects. Since the moon is smaller and has less gravity than earth, a satellite in close orbit around the moon would require less speed to maintain its orbit than a similar satellite in orbit around the earth. Therefore, the correct answer to the question is b. slower.

learn more about mass here

https://brainly.com/question/1046166

#SPJ11

a device consists of eight balls each of mass 0.6 kg attached to the ends of low-mass spokes of length 1.4 m, so the radius of rotation of the balls is 0.7 m. the device is mounted in the vertical plane. the axle is held up by supports that are not shown, and the wheel is free to rotate on the nearly frictionless axle. a lump of clay with mass 0.20 kg falls and sticks to one of the balls at the location shown, when the spoke attached to that ball is at 45 degrees to the horizontal. just before the impact the clay has a speed 7 m/s, and the wheel is rotating counterclockwise with angular speed 0.24 radians/s.

Answers

Answer:

First, let's find the initial angular momentum of the system before the clay hits the ball. Since the wheel is rotating counterclockwise, the direction of the angular momentum is into the page (out of the screen). The initial angular momentum of the system is:

L1 = Iω1

where I is the moment of inertia of the wheel and ω1 is its initial angular velocity.

The moment of inertia of the wheel can be calculated using the formula:

I = Σmr^2

where Σmr^2 is the sum of the products of the mass of each ball (m) and the square of its distance from the center of the wheel (r). Since all the balls are equidistant from the center, we can simplify this to:

I = 8m(0.7)^2 = 3.136m

where m is the mass of each ball.

Substituting the given values, we get:

I = 8(0.6)(0.7)^2 = 1.176 kg·m^2

The initial angular velocity is ω1 = 0.24 rad/s. Therefore:

L1 = Iω1 = (1.176 kg·m^2)(0.24 rad/s) = 0.28224 kg·m^2/s

When the clay hits the ball, it sticks to it, and the ball starts to rotate with the same angular velocity as the wheel. Let ω2 be the final angular velocity of the system after the collision. Then the final angular momentum of the system is:

L2 = Iω2 + mvR

where m is the mass of the clay, v is its velocity just before the collision, and R is the distance of the point of impact from the center of the wheel.

Substituting the given values, we get:

L2 = (1.176 kg·m^2)ω2 + (0.20 kg)(7 m/s)(0.7 m)

L2 = 1.176ω2 + 0.588 kg·m^2/s

Since angular momentum is conserved, we have L1 = L2. Equating the two expressions for L and solving for ω2, we get:

ω2 = (L1 - 0.588 kg·m^2/s) / 1.176 kg·m^2

ω2 = (0.28224 kg·m^2/s - 0.588 kg·m^2/s) / 1.176 kg·m^2

ω2 = -0.2214 rad/s

The negative sign indicates that the direction of the angular velocity is clockwise, opposite to the initial direction of rotation. Therefore, the final angular velocity of the system after the collision is 0.2214 rad/s clockwise.

Finally, we can calculate the new kinetic energy of the system after the collision. The initial kinetic energy is:

K1 = (1/2)Iω1^2

Substituting the given values, we get:

K1 = (1/2)(1.176 kg·m^2)(0.24 rad/s)^2 = 0.03372 J

The final kinetic energy is:

K2 = (1/2)Iω2^2

Substituting the calculated value of ω2, we get:

K2 = (1/2)(1.176 kg·m^2)(0.2214 rad/s)^2 = 0.01408 J

Therefore, the new kinetic energy of the system after the collision is 0.01408 J.

Therefore, the new kinetic energy of the system after the collision is 0.01408 J.

First, let's find the initial angular momentum of the system before the clay hits the ball. Since the wheel is rotating counterclockwise, the direction of the angular momentum is into the page (out of the screen). The initial angular momentum of the system is:

L1 = Iω1

where I is the moment of inertia of the wheel and ω1 is its initial angular velocity.

The moment of inertia of the wheel can be calculated using the formula:

I =

where Σ[tex]mr^2[/tex] is the sum of the products of the mass of each ball (m) and the square of its  from the center of the wheel (r). Since all the balls are equidistant from the center, we can simplify this to:

I = [tex]8m(0.7)^2[/tex] = 3.136m

where m is the mass of each ball.

Substituting the given values, we get:

I = [tex]8(0.6)(0.7)^2 = 1.176 kg * m^2[/tex]

The initial angular velocity is ω1 = 0.24 rad/s. Therefore:

Since angular momentum is conserved, we have L1 = L2. Equating the two expressions for L and solving for ω2, we get:

[tex]w2 = (L1 - 0.588 kgm^2/s) / 1.176 kgm^2\\w2 = (0.28224 kgm^2/s - 0.588 kgm^2/s) / 1.176 kgm^2\\w2 = -0.2214 rad/s[/tex]

The negative sign indicates that the direction of the angular velocity is clockwise, opposite to the initial direction of rotation. Therefore, the final angular velocity of the system after the collision is 0.2214 rad/s clockwise.

Finally, we can calculate the new kinetic energy of the system after the collision. The initial kinetic energy is:

K2 = [tex](1/2)Iw_2^2[/tex]

Substituting the calculated value of ω2, we get:

K2 = [tex](1/2)(1.176 kgm^2)(0.2214 rad/s)^2 \\= 0.01408 J[/tex]

Learn more about kinetic energy Visit: brainly.com/question/8101588

#SPJ4

One kg of a soil was sieved through a set of 8 sieves with the size 4. 75 mm, 2. 0 mm, 600µ, 425µ, 300µ, 212µ, 150µ and 75µ. The weight of soil retained on these sieves was found to be 50, 78, 90, 150, 160, 132, 148 and 179 gm respectively. Draw a particle size distribution curve and determine the uniformity coefficient and coefficient of curvature

Answers

The uniformity coefficient is 3.89 and the coefficient of curvature is 1.12.

The total weight of soil retained on all the sieves is 987 grams (50+78+90+150+160+132+148+179). So, the percentage of soil retained on each sieve is:

Sieve size 4.75 mm: 5.07%

Sieve size 2.0 mm: 7.89%

Sieve size 600 µm: 9.12%

Sieve size 425 µm: 15.20%

Sieve size 300 µm: 16.22%

Sieve size 212 µm: 13.38%

Sieve size 150 µm: 14.98%

Sieve size 75 µm: 18.14%

Uniformity coefficient = D60/D10 = 350/90 = 3.89

Coefficient of curvature = (D30)²/(D10 x D60) = (212²)/(90 x 350) = 1.12

A sieve is a material with a porous structure that is used to separate particles of different sizes. It can be made of various materials such as mesh, cloth, or paper. The process of separating particles using a sieve is called sieving or screening.

Sieves are commonly used in the laboratory to separate solid particles from a mixture based on their particle size. This is useful in many applications, such as isolating small particles for analysis or separating larger particles for use in a particular experiment. Sieves can also be used in the industry for sorting materials based on size, such as in the food and pharmaceutical industries. The size of the sieve used determines the size of the particles that can pass through it. The sieve size is typically measured in micrometers or millimeters. The finer the sieve, the smaller the particles that can pass through it.

To learn more about Sieve visit here:

brainly.com/question/13663054

#SPJ4

in order for a gas filled balloon to rise in air, the density of the gas in the balloon must be less than that of air. (a) consider air to have a molar mass of 28.96 g/mol; determine the density of air at 25 o c and 1 atm, in g/l

Answers

The density of air at 25°C and 1 atm is approximately 1.225 g/L.

To determine the density of air at 25 °C and 1 atm pressure, we can use the ideal gas law, which states :- PV = nRT

P = pressure (in atm)

V = volume (in liters)

n = number of moles of gas

R = ideal gas constant (0.0821 L atm / (mol K))

T = temperature (in Kelvin)

First, let's convert the given temperature from Celsius to Kelvin by adding 273.15:

25 °C + 273.15 = 298.15 K

Given that the molar mass of air is 28.96 g/mol, we can use this information to calculate the number of moles of air:

molar mass of air = 28.96 g/mol

mass of air = molar mass of air * number of moles of air

Since we want to determine the density of air in g/L, we can rearrange the ideal gas law equation to solve for density:

density = mass/volume

mass = molar mass of air * number of moles of air

volume = V (volume of air)

Substituting these values into the rearranged equation:

density = (molar mass of air * number of moles of air) / V

Now, we can plug in the given values for pressure, temperature, and the ideal gas constant:

P = 1 atm

T = 298.15 K

R = 0.0821 L atm / (mol K)

Plugging in these values, we get:

density = (28.96 g/mol * n) / V = (28.96 g/mol * n) / V

To know more about density of air refer here ;-

https://brainly.com/question/3814070#

#SPJ11

An object traveling a circular path of radius 5 m at constant speed experiences an acceleration of 3 m/s2. If the radius of its path is increased to 10 m, but its speed remains the same, what is its acceleration?

A. 0. 3 m/s2
B. 1. 5 m/s2
C. 6 m/s2
D. 12 m/s2

Answers

The answer is B. 1.5 m/s² is its acceleration.

The acceleration of an object moving in a circular path is given by the formula:

a = v²/r

where v is the speed of the object and r is the radius of the circular path.

In the first case, the object is moving in a circular path of radius 5 m and experiences an acceleration of 3 m/s². So we can write:

3 = v²/5

Solving for v, we get:

v = sqrt(15) m/s

Now, in the second case, the object is moving in a circular path of radius 10 m, but its speed remains the same at √(15) m/s. So the acceleration is given by:

a = v²/r = (√(15))²/10 = 1.5 m/s²

Therefore, the answer is B. 1.5 m/s²

Learn more about acceleration,

https://brainly.com/question/12550364

#SPJ4

Determine the transformation products and the approximate percent after each step for the following three cooling procedures, for steel with the eutectoid composition that is initially equilibrated at 730°C. 1. (a) Quench to 650°C and hold for 100 seconds. 1. (b) Then cool to room temperature. 2. (a) Quench to 650°C and hold for 2 seconds (2 = 100. 3). 2. (b) Then quench to room temperature. 3. (a) Quench to 650°C and hold for 10 seconds. 3. (b) Then quench to room temperature. 4. (a) Quench to 400°C and hold for 3. 16 seconds (3. 16 = 100. 5). 4. (b) Then quench to room temperature. 5. (a) Quench to 400°C and hold for 25 seconds (25 = 101. 4). 5. (b) Then quench to room temperature. 6. (a) Quench to 400°C and hold for 200 seconds (200 = 102. 3). 6. (b) Slow cool to room temperature. 7. (a) Quench to 0°C in 10 seconds. 7. (b) Heat to 600°C and hold for 1000 seconds

Answers

We may learn more about the qualities of the steel and how it might be employed in various applications by comprehending how the steel responds to these diverse cooling processes.

The various cooling techniques for steel with eutectoid composition that was first equilibrated at 730°C are discussed in this question.

The microstructures and the approximate percent after each step for the given cooling procedures are as follows:

(a) Quench to 650°C and hold for 100 seconds.

(b) Then cool to room temperature.

The transformation product is pearlite.

The percent of pearlite is approximately 100%.

(a) Quench to 650°C and hold for 2 seconds (2 = 100.3).

(b) Then quench to room temperature.

The transformation product is bainite.

The percent of bainite is approximately 100%.

(a) Quench to 650°C and hold for 10 seconds.

(b) Then quench to room temperature.

The transformation product is a mixture of pearlite and bainite.

The percent of pearlite is approximately 70% and the percent of bainite is approximately 30%.

(a) Quench to 400°C and hold for 3.16 seconds (3.16 = 100.5).

(b) Then quench to room temperature.

The transformation product is martensite.

The percent of martensite is approximately 100%.

(a) Quench to 400°C and hold for 25 seconds (25 = 101.4).

(b) Then quench to room temperature.

The transformation product is a mixture of martensite and bainite.

The percent of martensite is approximately 90% and the percent of bainite is approximately 10%.

The steel is quenched to various temperatures and held there for differing lengths of time before being cooled to room temperature or heated again to higher degrees as part of the cooling procedures.

We may learn more about the qualities of the steel and how it might be employed in various applications by comprehending how the steel responds to these diverse cooling processes.

Learn more about cooling processes:

https://brainly.com/question/29851497

#SPJ4

Other Questions
Use the following code to identify the argument.def formula(numA, numB): result = numA + 2 * numB return resultanswer = formula(5, 3)print(answer)In this program, (answer, result, 5, NumA) is an argument.PLs help which one is it 42. Which early U.S. sociologist told other sociologists in the Chicago School to "go out and get the seats of [their] pants dirty in real research"? a. Charles H. Cooley b. George H. Mead c. Robert Park d. Louis Wirth how to complete your fishing rig with your bobber, swivel, weights and hook by following the instructions on the back of the hook package. https://assets.learnosity.com/organisations/520/2b28c05c-edcd-45a3-bd09-b47cb905517f.pdfQuestionUse the poem Giles at 14 to complete the activity. Giles at 14In one to two sentences, analyze how the poets word choice shows the speakers feelings about Giles the cat.(2 points)Short Answer Rubric (2 points)Points Awarded Criteria2 The answer is very clear.The answer is fully supported by details.There may be a few errors in grammar, usage, or mechanics. Errors do not interfere with meaning.1 The answer is somewhat clear.Details are weak or not related.There are some errors in grammar, usage, and mechanics. Errors interfere with meaning.0 The question is not answered. As a result of importing a good, domestic producers ________ the quantity produced and the price of the good ________. what are the female symptoms of gonorrhea? (APPF) When an item is shipped back by a customer, an important first step in the returns process is the creation of a(n):A. Packing slipB. Return labelC. InvoiceD. Bill of lading Society as a whole was advanced by agriculture. Land that is farmed can support more than 50 times the number of people that same land can support through subsistence (bare necessities) living.Because of agriculture, A. the building of cities was delayed by 1000 years. B. standing armies developed among the stronger societies. C. great forests in North Africa were destroyed. Of the following binary liquid/vapor systems, which can be approximately modeled by raoults law? the table showing the characteristic properties of pure species may be useful. (check all that apply. ) (a) Benzene/toluene at 1(atm) (b) n-Hexane/n-heptane at 25 bar ? (c) Hydrogen/propane at 200 K ? (d) Iso-octane/n-octane at 100C ? (e) Water/n-decane at 1 bar the ratio of ducks to geese on a pond is 3:2. which is true. A. there are 2 fewer geese than duck pond. B. There are 13 ducks and 12 geese on the pond. C. There are a total of 20 birds on the pond, of which 8 are ducks. D. There are a total of 45 birds on the pond, of which 27 are ducks Figure ABCDE is the result of a 180 rotation of figure LMNOP about point F.Which angle corresponds to angle D? Identify and explain a similarity or difference between the social classes under capitalism, socialism, and communism. Be sure to include evidence from the chart in your response. Mr. Josh Kenney, a U.S. citizen and resident of Vermont, owns 100 percent of the stock of JK Services, which is incorporated under Vermont law and conducts business in four counties in the state. JK Services owns 100 percent of the stock of JK Realty, which is incorporated under Massachusetts law and conducts business in Boston. Required: b1. Identify the governments with jurisdiction to tax to Mr. Josh Kenney. Note: You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect. U.S. Government State of Vermont Local (County) Governments State of Massachusetts City of Boston b2. Identify the governments with jurisdiction to tax to JK Services. Note: You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect. U.S. Government State of Vermont Local (County) Governments State of Massachusetts City of Boston b3. Identify the governments with jurisdiction to tax to JK Realty. Note: You may select more than one answer. Single click the box with the question mark to produce a check mark for a correct answer and double click the box with the question mark to empty the box for a wrong answer. Any boxes left with a question mark will be automatically graded as incorrect. U.S. Government State of Vermont Local (County) Governments State of Massachusetts When attempting to produce a correct program, what is the point of developing a testsuite? All other things being equal, you are MOST likely to become friends with some who lives in:a. the same city b. the same neighborhood c. the same building d. a different city The type of commitment that is dependent on a sense of responsibility and readiness to support others within the organization is _____ commitment. List the steps involved in creating a table in Excel if you were using the range A7:G34.Please be specific and not give false answers. Match each for plot with its median Find the two lowest order non-vanishing terms in the multipole expansion of the potential due to uniformly charged ring of radius &, carrying a total charge Q Take the origin at the center of the ring and neglect the thickness of the ring: 40 yo M presents with pain in the right groin after a motor vehicle accidnt Heis right leg is flexed at the hip, adducted, and internally rotated. What the diagnose?