An RLC series circuit has a 1.00 kΩ resistor, a 130 mH inductor, and a 25.0 nF capacitor.(a)The circuit's impedance at 490 Hz is approximately 1013.53 Ω.(b)The circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.
(a) To find the circuit's impedance at 490 Hz, we can use the formula:
Z = √(R^2 + (XL - XC)^2)
where Z is the impedance, R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.
Given:
R = 1.00 kΩ = 1000 Ω
L = 130 mH = 0.130 H
C = 25.0 nF = 25.0 × 10^(-9) F
f = 490 Hz
First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC):
XL = 2πfL
= 2π × 490 × 0.130
≈ 402.12 Ω
XC = 1 / (2πfC)
= 1 / (2π × 490 × 25.0 × 10^(-9))
≈ 129.01 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √((1000)^2 + (402.12 - 129.01)^2)
≈ √(1000000 + 27325.92)
≈ √1027325.92
≈ 1013.53 Ω
Therefore, the circuit's impedance at 490 Hz is approximately 1013.53 Ω.
(b) To find the circuit's impedance at 7.50 kHz, we can use the same formula as before:
Z = √(R^2 + (XL - XC)^2)
Given:
f = 7.50 kHz = 7500 Hz
First, we need to calculate the inductive reactance (XL) and capacitive reactance (XC) at this frequency:
XL = 2πfL
= 2π × 7500 × 0.130
≈ 6069.08 Ω
XC = 1 / (2πfC)
= 1 / (2π × 7500 × 25.0 × 10^(-9))
≈ 212.13 Ω
Now we can calculate the impedance:
Z = √(R^2 + (XL - XC)^2)
= √((1000)^2 + (6069.08 - 212.13)^2)
≈ √(1000000 + 36622867.96)
≈ √37622867.96
≈ 6137.02 Ω
Therefore, the circuit's impedance at 7.50 kHz is approximately 6137.02 Ω.
To learn more about reactance visit: https://brainly.com/question/31369031
#SPJ11