At the farmer’s market, Joan bought apples at $1.20 per pound, cherries for $2.00 per pound and pears for $0.80 per pound. She bought a total of 9 pounds of fruit for $11.00. Joan bought twice as many pounds of apples than cherries. Let A be the weight of the apples, C be the weight of the cherries, and P be the weight of the pears. Formulate a system of equations to determine how many pounds of each type of fruit were bought. Do Not Solve.

At The Farmers Market, Joan Bought Apples At $1.20 Per Pound, Cherries For $2.00 Per Pound And Pears

Answers

Answer 1

We have here a case in which we need to translate a problem into algebraic expressions to solve a problem, and we have the following information from the question:

• We have that Joan bought:

0. Apples at $1.20 per pound

,

1. Cherries at $2.00 per pound

,

2. Pears at $0.80 per pound

• We know that she bought a total of 9 pounds of fruit.

,

• We also know that she spent $11.00 for the 9 pounds of fruit.

,

• Joan bought twice as many pounds of apples than cherries.

We need to label weights as follows:

• Weight of apples ---> A

,

• Weight of cherries ---> C

,

• Weight of pears ---> P

Now to find a system of equations to determine the number of pounds of each type of fruit was bought, we can proceed as follows:

1. We know that if we multiply the price of the fruit per pound by the weight in pounds, we will obtain the amount of money Joan spent in total. Then we have:

[tex]1.20a+2.00c+0.80p=11.00\rightarrow\text{ \lparen First equation\rparen}[/tex]

2. We also know that the total weight of the fruits was equal to 9 pounds. Then we can translate it into an algebraic expression as follows:

[tex]a+c+p=9\rightarrow(\text{ Second equation\rparen}[/tex]

3. And we know that Joan bought twice as many pounds of apples than cherries, and we can translate it as follows too:

[tex]\begin{gathered} 2a=c \\ \\ \text{ If we subtract c from both sides of the equation, we have:} \\ \\ 2a-c=c-c \\ \\ 2a-c=0\text{ \lparen Third equation\rparen} \end{gathered}[/tex]

Now we have the following equations:

[tex]\begin{gathered} 1.20a+2.00c+0.80p=11.00 \\ \\ \begin{equation*} a+c+p=9 \end{equation*} \\ \\ \begin{equation*} 2a-c=0 \end{equation*} \end{gathered}[/tex]

Therefore, we have that the correct option is the first option:

• 1.20a + 2.00c + 0.80p = 11.00

• a + c + p = 9

,

• 2a - c = 0

[First option].


Related Questions

Which ordered pair is in the solution set fit the system of inequalities shown below?2x-y<3x+2y>-1A. (-2,-1)B. (0,1)C. (1,-2)D.(6,1)

Answers

Given the System of Inequalities:

[tex]\begin{cases}2x-y<3 \\ x+2y>-1\end{cases}[/tex]

1. Take the first inequality and solve for "y":

[tex]\begin{gathered} -y<2x+3 \\ (-1)(-y)<(-2x+3)(-1) \\ y>2x-3 \\ \end{gathered}[/tex]

Notice that direction of the symbol changes, because you had to multiply both sides of the inequality by a negative number.

Now you can identify that the boundary line is:

[tex]y=2x-3[/tex]

Since it is written in Slope-Intercept Form, you can identify that its slope is:

[tex]m_1=2[/tex]

And its y-intercept is:

[tex]b_1=-3[/tex]

Notice that the symbol of the inequality is:

[tex]>[/tex]

That indicates that the line is dashed and the shaded region is above the line.

Knowing all this information, you can graph the first inequality on the Coordinate Plane.

2. Apply the same procedure to graph the second inequality. Solving for "y", you get:

[tex]\begin{gathered} 2y>-x-1 \\ \\ y>-\frac{1}{2}x-\frac{1}{2} \end{gathered}[/tex]

Notice that the boundary line is:

[tex]y=-\frac{1}{2}x-\frac{1}{2}[/tex]

Where:

[tex]\begin{gathered} m_2=-\frac{1}{2} \\ \\ b_2=-\frac{1}{2} \end{gathered}[/tex]

Since the symbol is:

[tex]>[/tex]

The line is dashed and the shaded region is above the line.

Knowing this, you can graph the second inequality.

3. Look at the graph of the System of Inequalities:

Notice that:

-The black line is the boundary line of the first inequality and the green line is the boundary line of the second inequality.

- The solution of the system is the intersection region. It is the region where the shaded region of the first inequality and the shaded region of the second inequality, intersect.

4. Plot the points given in the options on the graph of the Systems:

5. You can identify that this point is in the intersection region:

[tex](0,1)[/tex]

Therefore, it is a solution.

Hence, the answer is: Option B.

If d - 243 = 542, what does d-245 equal? CARA GOIECT CH 1UJAINRIகபட்ட RE Lien Answer: Your answer

Answers

Given the following expression:

[tex]d-243=542[/tex]

if we add 243 on both sides of the equation we get the following:

[tex]\begin{gathered} d-243+243=542+243=785 \\ \Rightarrow d=785 \end{gathered}[/tex]

thus, d = 785

Eight less than a number n is at least 10

Answers

Answer:

n - 8 ≥ 10

n ≥ 18

Step-by-step explanation:

Hello!

8 less than the number n can be represented as n - 8.

To be atleast 10, we can have values greater than 10 and equal to 10, but cannot be less than 10 . We can use the ≥ symbol to represent this.

The inequality would be n - 8 ≥ 10

Solving for n:n - 8 ≥ 10n ≥ 18

n has to be greater than or equal to 18

need help asap look in file attached

Answers

Answer:

length: 21 cm

width: 16 cm


Step-by-step explanation:


. A rectangle has two lengths and two widths, or two sides that are vertical (up and down) and two sides that are horizontal (left and right)


. In order to find the perimeter we must add up all four side lengths.


. You can find the perimeter of a rectangle by adding the length and the width then multiplying by 2, because there are two of each side length.


P = 2(l+w)


In the question the perimeter is given, which is 74.


We can divide 74 by 2 so that we can find the sum of the length and width.


74/2 = 37

l + w = 37


In the question is states that the length is 5 inches longer than the width.


l = (5 + w)


There are two widths and two lengths in a rectangle, the measurement of the two lengths is 5 inches longer than the two widths.


5 + w + w = 37

5 + 2w = 37


Now that we have our equation we can solve for w, or the width.


1. Move the term containing the variable to the left


5 + 2w = 37

2w + 5 = 37


2. Subtract 5 from both sides of the equation, the opposite of adding 5

2w + 5 = 37

2w + 5 - 5 = 37 - 5

2w = 32


3. Divide by 2 in both sides of the equation, the opposite of multiplying 2


2w = 32

2w/2 = 32/2


4. Cancel out the 2s on the left, but leave the x

2w/2 = 32/2

w = 16

So, now that w, or the width = 16, we can find the length:

l = 5 + w

l = 5 + 16

l = 21


You can check your answer by plugging in our values into the original perimeter formula:


P = 2(l+w)

P = 2(21 + 16)

P = 2(37)

P = 74, so my answer is correct, because 74 is the perimeter given in the question.



Someone help me please

Answers

[tex]\begin{gathered} T=\text{ 2}\pi\sqrt[\placeholder{⬚}]{\frac{L}{9.8}} \\ 4.5=\text{ 2}\pi\sqrt[\placeholder{⬚}]{\frac{L}{9.8}} \\ \frac{4.5}{2\pi}=\text{ }\sqrt[]{\frac{L}{9.8}} \\ 0.7162=\text{ }\sqrt[]{\frac{L}{9.8}} \\ (0.7162)^2=\frac{L}{9.8} \\ 0.513(9.8)=L \\ 5.027=L \\ L\approx5.0m \end{gathered}[/tex]

Approximately 5 meters long.

O GRAPHS AND FUNCTIONSIdentifying solutions to a linear equation in two variables

Answers

Given:

Function is:

[tex]9x+2y=13[/tex]

Find-:

Check for solution

Explanation-:

The value of "y" is:

[tex]\begin{gathered} 9x+2y=13 \\ \\ 2y=13-9x \\ \\ y=\frac{13-9x}{2} \end{gathered}[/tex]

For (0,8)

Check value of "y" at x = 0 then,

[tex]\begin{gathered} x=0 \\ \\ y=\frac{13-9x}{2} \\ \\ y=\frac{13-9(0)}{2} \\ \\ y=\frac{13-0}{2} \\ \\ y=\frac{13}{2} \\ \\ y=6.5 \end{gathered}[/tex]

So (0,8) it is not a solution.

Check (3,-7) the value of "x" is 3

[tex]\begin{gathered} x=3 \\ \\ y=\frac{13-9x}{2} \\ \\ y=\frac{13-9(3)}{2} \\ \\ y=\frac{13-27}{2} \\ \\ y=-\frac{14}{2} \\ \\ y=-7 \end{gathered}[/tex]

So (3,-7) is the solution of function.

Check for (1 , 2) value of "x" is 1.

[tex]\begin{gathered} x=1 \\ \\ y=\frac{13-9x}{2} \\ \\ y=\frac{13-9}{2} \\ \\ y=\frac{4}{2} \\ \\ y=2 \end{gathered}[/tex]

So, (1,2) is the solution.

Check for (4,-5) the value of "x" is 4.

[tex]\begin{gathered} x=4 \\ \\ y=\frac{13-9x}{2} \\ \\ y=\frac{13-9(4)}{2} \\ \\ y=\frac{13-36}{2} \\ \\ y=-\frac{23}{2} \\ \\ y=-11.5 \end{gathered}[/tex]

So, (4,-5) is not a solution

Find the value of 4v-8 given that 11v-8 = 3.Simplify your answer as much as possible.

Answers

Given that 11v - 8 = 3

add 8 to both sides

11v = 3 + 8

11v = 11

Divide both sides by 11

v = 1

to simplify 4v - 8

= 4 (1) - 8

= 4 - 8

= -4

Answer:

-4

Explanation

! WHAT IS 3 3/8 - 1 3/4=

Answers

The given expression is

[tex]3\frac{3}{8}-1\frac{3}{4}[/tex][tex]\text{Use a}\frac{b}{c}=\frac{a\times c+b}{c}\text{.}[/tex]

[tex]3\frac{3}{8}-1\frac{3}{4}=\frac{3\times8+4}{8}-\frac{1\times4+3}{4}[/tex]

[tex]=\frac{28}{8}-\frac{7}{4}[/tex]

LCM of 8 and 4 is 8, making the denominator 8.

[tex]=\frac{28}{8}-\frac{7\times2}{4\times2}[/tex]

[tex]=\frac{28}{8}-\frac{14}{8}[/tex]

[tex]=\frac{28-14}{8}[/tex]

[tex]=\frac{14}{8}[/tex]

[tex]=\frac{2\times7}{2\times4}[/tex][tex]=\frac{7}{4}[/tex][tex]=\frac{1\times4+3}{4}[/tex]

[tex]=1\frac{3}{4}[/tex]

Hence the answer is

[tex]3\frac{3}{8}-1\frac{3}{4}=1\frac{3}{4}[/tex]

If a rectangle has a perimeter of 70, a length of x and a width of x-9, find the value of the length of the rectangle040 3113O 22

Answers

The formula for the perimeter of rectangle is,

[tex]P=2(l+w)[/tex]

Substitute 70 for P, x for l and (x - 9) for w in the formula to determine the value of x.

[tex]\begin{gathered} 70=2(x+x-9) \\ 35=2x-9 \\ 2x=35+9 \\ x=\frac{44}{2} \\ =22 \end{gathered}[/tex]

So value of x is 22.

martin earns $23.89 per hour proofreading ads at a local newspaper.His weekly wage w can be describe by the equation w= 23.89h, where h is the number of hours worked (a). write the equation in function notation (b). find f(23) f(35) and f(41)

Answers

SOLUTION

(a) The equation in function notation is

[tex]\begin{gathered} w=23.89h=f(h) \\ w=f(h)=23.89h \end{gathered}[/tex]

Hence the answer is

[tex]w=f(h)=23.89h[/tex]

(b). f(23) becomes

[tex]\begin{gathered} f(h)=23.89h \\ f(23)=23.89\times23 \\ f(23)=549.47 \end{gathered}[/tex]

f(35) becomes

[tex]\begin{gathered} f(h)=23.89h \\ f(35)=23.89\times35 \\ f(35)=836.15 \end{gathered}[/tex]

f(41) becomes

[tex]\begin{gathered} f(h)=23.89h \\ f(41)=23.89\times41 \\ f(h)=979.49 \end{gathered}[/tex]

8.Find the range,A. (-0,00)B. (-0,0)C. (- 0, 1)D. Cannot be determined4/5

Answers

From the graph, the range of the graph, the y values range from zero down; so the range is given by;

[tex](-\infty,0\rbrack[/tex]

Option

5.Given the sample triangle below and the conditions a=3, c = _51, find:cot(A).

Answers

TrigonometrySTEP 1: naming the sides of the triangle

Depending on the angle we are analyzing on the right triangle, each side of it takes a different name. In this case, we are going to name them depending on the angle A. Then,

a: opposite side (to A)

b: adjacent side

c: hypotenuse

STEP 2: formula for cot(A)

We know that the formula for cot(A) is:

[tex]\cot (A)=\frac{\text{adjacent}}{\text{opposite}}[/tex]

Replacing it with a and b:

[tex]\begin{gathered} \cot (A)=\frac{\text{adjacent}}{\text{opposite}} \\ \downarrow \\ \cot (A)=\frac{b}{a} \end{gathered}[/tex]

Since a = 3:

[tex]\cot (A)=\frac{b}{3}[/tex]STEP 3: finding b

We have an expression for cot(A) but we do not know its exact value yet. First we have to find the value of b to find it out.

We do this using the Pythagorean Theorem. Its formula is given by the equation:

[tex]c^2=a^2+b^2[/tex]

Since

a = 3

and

c = √51

Then,

[tex]\begin{gathered} c^2=a^2+b^2 \\ \downarrow \\ \sqrt[]{51}^2=3^2+b^2 \\ 51=9+b^2 \end{gathered}[/tex]

solving the equation for b:

[tex]\begin{gathered} 51=9+b^2 \\ \downarrow\text{ taking 9 to the left} \\ 51-9=b^2 \\ 42=b^2 \\ \downarrow square\text{ root of both sides} \\ \sqrt{42}=\sqrt{b^2}=b \\ \sqrt[]{42}=b \end{gathered}[/tex]

Then,

b= √42

Therefore, the equation for cot(A) is:

[tex]\begin{gathered} \cot (A)=\frac{b}{3} \\ \downarrow \\ \cot (A)=\frac{\sqrt[]{42}}{3} \end{gathered}[/tex]Answer: D

I'm trying to solve this problem. I went wrong somwhere.

Answers

[tex]\begin{gathered} y^2=15^2+x^2 \\ z^2=6^2+x^2 \\ \\ 21^2=y^2+z^2 \\ \\ 21^2=(15^2+x^2)+(6^2+x^2) \\ 441=225+36+2x^2 \\ 441=261+2x^2 \\ 2x^2=441-261 \\ 2x^2=180 \\ x^2=\frac{180}{2} \\ x^2=90 \\ \\ x=\sqrt[]{90} \\ x=3\sqrt[]{10} \end{gathered}[/tex][tex]\begin{gathered} y^2=15^2+x^2 \\ y^2=225+90 \\ y^2=315 \\ y=3\sqrt[]{35} \\ \\ \\ z^2=6^2+x^2 \\ z^2=36+90 \\ z^2=126 \\ \\ z=\sqrt[]{126} \\ \\ z=3\sqrt[]{14} \end{gathered}[/tex]

use geometric relationship to develop the sequence represented in the table

Answers

The first figure has 3 tiles

The second figure has 8 tiles

The third figure has 15 tiles

The 4th figure has 24 tiles

The 5th figure has 35 tiles

The 6th figure has 48 tiles

Each time we increased row and column

So the rule is

a(n) = n(n + 2)

Let us use the rule to find figure 46

n = 46

[tex]a_{46}=46(46+2)=2208[/tex]

The number of tiles in figure 46 is 2208

i invest $250 in a simple account that earns 10% annually. After 6 years, how much money have i earned? Hint round to the nearest cent.

Answers

We have to use the simple interest formula

[tex]A=P(1+rt)[/tex]

Where P = 250; r = 0.10 (10%); t = 6. Replacing these values, we have

[tex]A=250(1+0.10\cdot6)=250(1+0.6)=250(1.6)=400[/tex]

Hence, after 6 years, you have $400.

If we subtract this amount from the investment, we get the profits.

[tex]400-250=150[/tex]Hence, the earnings are $150.

Find the value of m and n that prove the two triangles are congruent by the HL theorem.

Answers

If both triangles are congruent by the HL theorem, then their hypotenuses are equal and at least one of the corresponding legs is equal too.

Hypothenuses:

[tex]13=4m+1[/tex]

From this expression, you can calculate the value of m

[tex]\begin{gathered} 13=4m+1 \\ 13-1=4m \\ 12=4m \\ \frac{12}{4}=\frac{4m}{4} \\ 3=m \end{gathered}[/tex]

Legs:

[tex]2m+n=8m-2n[/tex]

Replace the expression with the calculated value of m

[tex]\begin{gathered} 2\cdot3+n=8\cdot3-2n \\ 6+n=24-2n \end{gathered}[/tex]

Now pass the n-related term to the left side of the equation and the numbers to the right side:

[tex]\begin{gathered} 6-6+n=24-6-2n \\ n=18-2n \\ n+2n=18-2n+2n \\ 3n=18 \end{gathered}[/tex]

And divide both sides of the expression by 3

[tex]\begin{gathered} \frac{3n}{3}=\frac{18}{3} \\ n=6 \end{gathered}[/tex]

So, for m=3 and n=6 the triangles are congruent by HL

Find the domain. Then use the drop down menu to select the correct symbols to indicate your answer in interval notation. If a number is not an integer then round it to the nearest hundredth. To indicate positive infinifty ( \infty ) type the three letters "inf". To indicate negative infinity(-\infty ) type "-inf" with no spaces between characters. \frac{ \sqrt[]{x-4} }{\sqrt[]{x-6}} AnswerAnswer,AnswerAnswer

Answers

The domain of a function is all values of x the function can have.

Since this function has radicals, and the value inside a radical needs to be positive or zero, and also the denominator of a fraction can't be zero, we have the following conditions:

[tex]\begin{gathered} x-4\ge0 \\ x\ge4 \\ \\ x-6>0 \\ x>6 \end{gathered}[/tex]

Since the first condition contains the second, so the domain set is represented by the second condition:

[tex](6,\text{inf)}[/tex]

Suppose that the balance of a person’s bank account in US is normally distributed with mean $580 and standard deviation $125. Find the amount of money which would guarantee a person has more money in their account than 80% of US residents.I want an answer and explanation.

Answers

Answer:

[tex]\text{ \$685.25}[/tex]

Explanation:

Here, we want to get the amount of money that would guarantee that a person has more money than 80%

That means the probability is greater than 80% or 0.8

Thus, we need to get the z-score that corresponds to this probability

Using a z-score table, we can get this as follows:

[tex]P(x\text{ }>\text{z\rparen= 0.842}[/tex]

We will now get the value from the obtained z-score

Mathematically:

[tex]\begin{gathered} z\text{ = }\frac{x-\mu}{\sigma} \\ \\ \text{ x is the value we want to calculate} \\ \mu\text{ is the mean} \\ \sigma\text{ is the standard deviation} \end{gathered}[/tex]

Substituting the values, we have it that:

[tex]\begin{gathered} 0.842\text{ = }\frac{x-580}{125} \\ \\ \text{ x = 580 + 125\lparen0.842\rparen} \\ x\text{ = \$685.25} \end{gathered}[/tex]

Point M is the midpoint of AB. If AM = b² + 5b and
MB = 3b + 35, what is the length of AM?

Answers

Step-by-step explanation:

since M is the midpoint, it means that AM = MB.

so,

b² + 5b = 3b + 35

b² + 2b - 35 = 0

the general solution to such a quadratic equation

ax² + bx + c = 0

is

x = (-b ± sqrt(b² - 4ac))/(2a)

in our case (x is called b, don't get confused, as this is not the factor of x) this gives us

b = (-2 ± sqrt(2² - 4×1×-35))/(2×1) =

= (-2 ± sqrt(4 + 140))/2 = (-2 ± sqrt(144))/2 =

= (-2 ± 12)/2 = -1 ± 6

b1 = -1 + 6 = 5

b2 = -1 - 6 = -7

therefore, we have 2 solutions

b = 5

AM = 5² + 5×5 = 25 + 25 = 50

b = -7

AM = (-7)² + 5×-7 = 49 - 35 = 14

control, as AM = MB

MB = 3×5 + 35 = 15 + 35 = 50

or

MB = 3×-7 + 35 = -21 + 35 = 14

AM = MB in both cases, so, all is correct.

Translate each English phrase in the following problem into an algebraic expression and set up the related equation. Let z be the unknown number. The sum of a number and -41 is equal to the quotient of the number and 11. Step 2 of 3: Translate "the quotient of the number and 11". Answer​

Answers

An algebraic expression which represents the translation of "The sum of a number and -41 is equal to the quotient of the number and 11" is z - 1 = z/11.

How to translate an English phrase into an algebraic expression?

In order to translate a word problem into an algebraic expression, we would have to assign a variable to the unknown number:

Let z represent the unknown number.

The sum of a number and -41 is given by:

z + (-1) = z - 1   ....equation 1.

The quotient of the number and 11 is given by:

z/11  .....equation 2.

Next, we would equate equation 1 and equation 2 as follows:

Translation; z - 1 = z/11

Read more on algebraic expression here: https://brainly.com/question/4344214

#SPJ1

is it a function? X (-2, -1, 0, 1, 2 ) Y (-7, -2, 1, -2, -7 )

Answers

To be a function, it is nesessary that the values of x correspond to a unique value of y (a value of x cannot correspond to 2 different values of y). The same value of y can correspond to two or more values of x

As in the given data each value of x has just one value of y. Then, it is a function.

Find the 52nd term.16, 36, 56, 76,…

Answers

Answer:

[tex]\text{ a}_{52}\text{ = 1,036}[/tex]

Explanation:

Here, we want to find the 52nd term of the sequence

What we have to do here is to check if the sequence is geometric or arithmetic

We can see that:

[tex]\text{ 36-16 = 56-36=76-56 = 20}[/tex]

Since the difference between the terms is constant, we can say that the terms have a common difference and that makes the sequence arithmetic

The nth term of an arithmetic sequence can be written as:

[tex]\text{ a}_n\text{ = a +(n-1)d}[/tex]

where a is the first term which is given as 16 and d is the common difference which is 20 from the calculation above. n is the term number

We proceed to substitute these values into the formula above

Mathematically, we have this as:

[tex]\begin{gathered} a_{52}\text{ = 16 +(52-1)20} \\ a_{52}\text{ = 16 + (51}\times20) \\ a_{52}\text{ = 16 + 1020 = 1,036} \end{gathered}[/tex]

the value of y is directly proportional to the value of x. if y = 45 when x = 180 what is the value of y = 90

Answers

We have a direct proportionality between y and x.

If "k" is the constant of proportionality, the equation for this situation is:

[tex]y=kx[/tex]

To find the constant of proportionality, we solve that equation for k:

[tex]k=\frac{y}{x}[/tex]

And since when y=45, x=180, substituting these values to find k:

[tex]\begin{gathered} k=\frac{45}{180} \\ k=0.25 \end{gathered}[/tex]

Now, we substitute the value of k into the equation of proportionality:

[tex]y=0.25x[/tex]

And in this equation, we can substitute any value of the variables, and find the value of the other variable.

In this case, we have y=90, so we substitute that value and solve for x:

[tex]\begin{gathered} 90=0.25x \\ \frac{90}{0.25}=x \\ 360=x \end{gathered}[/tex]

Answer: when y=90, x=360

What is the slope of the line in the graph?A. 1 B. 2C. 0 D. -2

Answers

Always remember that the slope is the number of units on the Y-axis in relation to the X movement.

A horizontal line always has a slope of 0. (it is not increasing in the Y-axis)

7. Flora has a square fountain. It is a square fountain and she wants to place a walkway around it. The square fountain measures 4 meters on each side. The walkway will be one meter wide around the fountain.. a. Find the area of the walkway. b. One bag of colored stones covers 1 square meter, how many bags of stones will be needed to cover the entire walkway around the fountain? C. A bag of colored stones cost $24.99. How much will it cost to fill in he walkway with colored stones?

Answers

Answer:

[tex]\begin{gathered} a)20m^2 \\ b)\text{ 20 bags of colored stones} \\ c)\text{ \$499.8} \end{gathered}[/tex]

Step-by-step explanation:

Since the square fountain measures 4 meters on each side and the walkway will be one meter wide, let's make a diagram to see the situation:

Then, to calculate the area of the walkway (green shaded region)

[tex]\begin{gathered} A_{total}=b\cdot h \\ A_{total}=6\cdot6=36m^2 \\ A_{founta\in}=4\cdot4=16m^2 \end{gathered}[/tex][tex]\begin{gathered} A_{walkway}=A_{total}-A_{fountain} \\ A_{walkway}=36-16=20m^2 \end{gathered}[/tex]

Now, how many colored stones will be needed if one bag covers 1 square meter:

There are 20 square meters on the walkway, then will be needed 20 bags of colored stones.

A bag of colored stones costs $24.99, then multiply 20 by $24.99:

[tex]20\cdot24.99=\text{ \$499.8}[/tex]

[tex]4(3w-2)=8(2w+3)[/tex]

Answers

The most appropriate choice for linear equation will be given by -

w = -8 is the required answer

What is linear equation?

At first it is important to know about equation

Equation shows the equality between two algebraic expressions by connecting the two algerbraic expressions by an equal to sign.

A one degree equation is known as linear equation.

Here

[tex]4(3w - 2) = 8(2w+3)\\12w - 8 = 16w+24\\16w - 12w = -8-24\\4w = -32\\w = -\frac{32}{4}\\w = -8[/tex]

To learn more about linear equation, refer to the link:

https://brainly.com/question/2030026

#SPJ9

Find the surface area of a right cone with diameter 30 in. and slant height 8 in.Your answerEXTRA CREDIT: Find the surface area of the figure below. Round to the nearesttenth, if necessary.10 in?

Answers

Answer:

Surface area = 1084 in²

Step-by-step explanation:

To find the surface area of a right cone, we can use the following formula:

[tex]\boxed{{Area = \pi r^2 + \pi rl}}[/tex],

where:

• r = radius

• l = slant height.

In the question, we are told that the diameter of the cone is 30 in. Therefore its radius is (30 ÷ 2 = ) 15 in. We are also told that its height is 8 in.

Using this information and the formula above, we can calculate the surface area of the cone:

Surface area = [tex]\pi \times (15)^2 + \pi \times 15 \times 8[/tex]

                     = [tex]345 \pi[/tex]

                     [tex]\approx[/tex] 1084 in²

I am trying to solve this equation using Synthetic Division. I got the answer wrong, I would like to see where I made a mistake.

Answers

Answer:

The result for the division is:

[tex]2x^2+43x+865+\frac{17309}{x-20}[/tex]

Explanation:

Step 1: Write the coefficients of the numerator on the right-hand side, and the opposite of the constant term in the denominator on the left-hand side.

20..............2 || 3 || 5 || 9

..................2

Step 2: Multiply 20 by 2 and add the result to 3

20..............2.......................|| 3 || 5 || 9

..................2*20 = 40

....................2 || 3 + 40 = 43

Step 3: Multiply 43 by 20, and add the result to 5

20..............2 || 3 .........................|| 5 || 9

...................... 40.......20*43 = 860

....................2||43 .......5+860=865

Step 4: Multiply 865 by 20, and add the result to 9

20..............2 || 3 || 5 ..........................|| 9

...................... 40 ||860......20*865=17300

....................2||43||865...9 + 17300=17309

The coefficients are 2, 43, 865, 17309

The quotient is:

[tex]2x^2+43x+865[/tex]

and the remainder is 17309

So, we can write:

[tex]2x^2+43x+865+\frac{17309}{x-20}[/tex]

Problem solving.When two expressions are not equivalent, you can use an inequality symbol to show their relationship. Do you ever use an inequality symbol when two expressions are equivalent? Use an example in your explanation.

Answers

Explanation

When two expressions are not equivalent, you can use an inequality symbol

[tex]\begin{gathered} \leq\Rightarrow less\text{ or equal } \\ \ge\Rightarrow greater\text{ or equal } \\ >\Rightarrow greater\text{ than } \\ <\Rightarrow smaller\text{ than} \end{gathered}[/tex]

now, when comparing two expressions that are equivalent , WE CAN NOT USE an inequality simbol, instead of we need to use The equals sign or equal sign formerly known as the equality sign

[tex]=[/tex]

for example

[tex]3x+19x=30x-8x[/tex]

the = symbold indicates that both sides have the same value ( rigth and left)

I hope this helps you

URGENT!! ILL GIVE
BRAINLIEST! AND 100 POINTS

Answers

Answer:

Option is the the. correct answer A

Other Questions
statements explains the impact that the Russian Revolution had on World War I? when opening a regular checking or share draft account, which is the most important consideration for most people? what incentives are provided for you to open an account? what is the current interest rate paid on funds left in the account? what are the terms and interest rates on their certificates of deposit? what types of fees are charged for maintaining and using the account? dane company budgets total overhead cost of $7,200,000. the company allocates overhead cost based on 100,000 budgeted direct labor hours. the single plantwide overhead rate is:multiple choice$36 per mh.$36 per dlh.$72 per mh.$72 per dlh.none of the above. An x-ray with a wavelength of 3.5 10^-9 m travels with a speed of 3.0 10^8 m/s. What is the frequency of this electromagnetic wave? A.9.52 10^-1 Hz B.8.57 10^16 Hz C.1.17 10^-17 Hz D.1.05 Hz There is a 40% chance that it will be cloudy tomorrow.If it is cloudy, there is a 79% chance that it will rain.What is the probability that it will rain? a paragraph on how events from American history have affected women in the work force 6. Find the domain and range of V(x) in this context.7. Think of V(x) as a general function without the constraint of modeling the volume of a box. What would be the domain and range of V(x)?8. Use correct notation to describe the end behavior of V(x) as a function without context. -20 greater than or equal to 5v Which of the following is not a systematic process of controlling?Select one:A.Establishing standards and methods of measuring performance.B.Measuring both quantity and qualityC.Measuring performanceD.Determining whether performance matches the standards Find the center, vertices, foci, endpoints of the latera recta and equations of the directrices. Then sketch the graph of the ellipse. Jelani filled an aquarium with blocks that were each one cubic foot in size. He filled the bottom layer of the aquarium with 21 blocks. He then stacked three more blocks on top of the bottom layer. The partially filled aquarium is shown below. What is the total volume, in cubic feet, of the aquarium? investment a costs $10,000 today and pays back $11,500 two years from now. investment b costs $8000 today and pays back $4500 each year for two years. if an interest rate of 5% is used, which alternative is superior? Graph of this line using intercepts. I need some help some assistance would be nice becoming fully human, associated with the evidence of symbolic thought and artistic creativity, may have occurred as much as 200,000 years ago or only 45,000 years ago. what is the term used by anthropologists for these abilities what does does the language-comprehension component of the Reading Rope emphasize? If f(x) =5x2 - 3x + 1, calculate the following The sum of two numbers is 164. The second number is 24 less than three times the first number. Find the numbers. Can someone help me with this geometry question? I will provide more information. For circle H, JN = x, NK = 8, LN = 4, and NM = 20.Solve for x. Solve the equation. f(x)=g(x) by graphing. f(x) = l x +5 l g(x) = 2x + 2 Select all possible solutions: No Solutions x=3 x=0 X=-1