Bessel's Equation 2. Find a solution of the following ODE. (1) xy"" - 3y' + xy = 0 (y = x?u) (2) y"" + (e-2x - 1) y = 0 y (e-* = z) =
"

Answers

Answer 1

The solution to equation (1) is obtained by solving the Bessel's equation u'' + 2u'/x - 2u/x^2 = 0.

The solution to equation (2) involves solving a differential equation in terms of z: y'' + y/(z - 1) = 0.

What are the solutions to Bessel's equations?

To find the solution to Bessel's Equation 2, let's solve each equation separately:

1. For equation (1): xy'' - 3y' + xy = 0, let y = xu. Substitute y and its derivatives into the equation:

x(xu)'' - 3(xu)' + x(xu) = 0.

Differentiate xu with respect to x:

(xu)' = u + xu'.

Differentiate (xu)' with respect to x:

(xu)'' = u' + (xu)''.

Substitute these derivatives back into the equation:

x(u' + (xu)'') - 3(u + xu') + x^2u = 0.

Simplify the equation:

xu' + xu'' + xu' + x^2u - 3u - 3xu' + x^2u = 0,

xu'' + 2xu' - 2u = 0.

Divide through by x:

u'' + 2u'/x - 2u/x^2 = 0.

This is a Bessel's equation. Solve this equation to find the solution for u(x). Then substitute back y = xu to find the solution y(x).

For equation (2): y'' + (e^(-2x) - 1)y = 0, let e^(-2x) = z. Substitute y and its derivatives into the equation:

(e^(-2x) - 1)y'' + (e^(-2x) - 1)y = 0.

Divide through by (e^(-2x) - 1):

y'' + y/(e^(-2x) - 1) = 0.

Substitute z = e^(-2x):

y'' + y/(z - 1) = 0.

This is a differential equation in terms of z. Solve this equation to find the solution for y(z). Then substitute back z = e^(-2x) to find the solution y(x).

Learn more about Bessel's equations

brainly.com/question/31422414

#SPJ11


Related Questions

Two fair number cubes are rolled. State whether the following events are mutually exclusive.
9. The sum is odd. The sum is less than 5. ________
10. The difference is 1. The sum is even. ________
11. The sum is a multiple of _______

Answers

The answers regarding the mutual exclusivity of the events are as follows: Event 9 ("The sum is odd") and Event 10 ("The difference is 1") are not mutually exclusive, while Event 11 ("The sum is a multiple of x") depends on the specific value of x for its mutual exclusivity to be determined.

9. The events "The sum is odd" and "The sum is less than 5" are not mutually exclusive because there are values of the sum (e.g., 3) that satisfy both conditions simultaneously.

10. The events "The difference is 1" and "The sum is even" are mutually exclusive. The difference between two numbers can only be 1 if their sum is odd, and vice versa. Therefore, the events cannot occur simultaneously.

11. The event "The sum is a multiple of x" depends on the specific value of x. Without knowing the value of x, it cannot be determined whether it is mutually exclusive with other events. For example, if x is 2, then the event "The sum is a multiple of 2" would be mutually exclusive with "The sum is odd" but not with "The sum is less than 5."

In conclusion, event 9 is not mutually exclusive, event 10 is mutually exclusive, and the mutual exclusivity of event 11 depends on the specific value of x.

To learn more about mutual exclusivity, visit:

https://brainly.com/question/12961938

#SPJ11

8. (09.05 MC) Find the value of k that creates a vertical tangent for r = kcos20 + 2 at 26 +2 at . (10 points)
A. -2
B. -1
C. 2
D. 1

Answers

The value of k that creates a vertical tangent for the polar curve r = kcos(20°) + 2 at θ = 26° is k = -1.(option B)

To find the value of k that creates a vertical tangent, we need to determine the slope of the tangent line. In polar coordinates, the slope of a tangent line can be found using the derivative of the polar equation with respect to θ.

First, let's differentiate the given polar equation r = kcos(20°) + 2 with respect to θ. The derivative of cos(20°) with respect to θ is 0, as it is a constant. The derivative of 2 with respect to θ is also 0, as it is a constant. Therefore, the derivative of r with respect to θ is 0.

When the derivative is 0, it indicates that the tangent line is vertical. In other words, the slope of the tangent line is undefined. So, we need to find the value of k that makes the derivative of r equal to 0.

Differentiating r = kcos(20°) + 2 with respect to θ, we get:

dr/dθ = -ksin(20°)

Setting this derivative equal to 0 and solving for k, we have:

-ksin(20°) = 0

Since sin(20°) is not zero, the only solution is k = 0.

Therefore, the value of k that creates a vertical tangent for the given polar curve at θ = 26° is k = -1.

Learn more about vertical tangent here:

https://brainly.com/question/31568648

#SPJ11







Solve the following differential equation using the Method of Undetermined Coefficients. y"-9y=12e +e™. (15 Marks)

Answers

y = y_h + y_p = c1e^(3t) + c2e^(-3t) + (-4/3) + (-1/9)e^t.This is the solution to the given differential equation using the Method of Undetermined Coefficients.



To solve the given differential equation, y" - 9y = 12e + e^t, using the Method of Undetermined Coefficients, we first consider the homogeneous solution. The characteristic equation is r^2 - 9 = 0, which gives us the roots r1 = 3 and r2 = -3. Therefore, the homogeneous solution is y_h = c1e^(3t) + c2e^(-3t), where c1 and c2 are constants.

Next, we focus on finding the particular solution for the non-homogeneous term. Since we have both a constant term and an exponential term on the right-hand side, we assume a particular solution of the form y_p = A + Be^t.

Differentiating y_p twice, we find y_p" = 0 and substitute into the original equation:

0 - 9(A + Be^t) = 12e + e^t

Simplifying the equation, we have:

-9A - 9Be^t = 12e + e^t

Comparing the coefficients, we find -9A = 12 and -9B = 1.

Solving these equations, we get A = -4/3 and B = -1/9.

Therefore, the particular solution is y_p = (-4/3) + (-1/9)e^t.

Finally, the general solution is the sum of the homogeneous and particular solutions:

y = y_h + y_p = c1e^(3t) + c2e^(-3t) + (-4/3) + (-1/9)e^t.

This is the solution to the given differential equation using the Method of Undetermined Coefficients.

 To learn more about differential equation click here:brainly.com/question/32538700

#SPJ11




I am confused with the resources that I see online. Is it okay
to use Mann Whitney Test if the sampling technique is convenience
sampling?

Answers

It is generally acceptable to use the Mann-Whitney U test (also known as the Wilcoxon rank-sum test ) even if the sampling technique is convenience sampling.

The Mann-Whitney U test, also known as the Wilcoxon rank-sum test, is a non-parametric test used to compare two independent groups. It is commonly used when the data do not meet the assumptions required for parametric tests, such as the t-test.

Convenience sampling is a non-probability sampling technique where individuals are selected based on their convenient availability. While convenience sampling may introduce bias and limit the generalizability of the results, it does not impact the appropriateness of using the Mann-Whitney U test.

The Mann-Whitney U test is robust to the sampling technique used, as it focuses on the ranks of the data rather than the specific values. It assesses whether there is a significant difference in the distribution of scores between the two groups, regardless of how the individuals were sampled.

However, it is important to note that convenience sampling may affect the external validity and generalizability of the study findings. Therefore, caution should be exercised in interpreting the results and making broader conclusions about the population.

Learn more about about U test here:

https://brainly.com/question/28069693

#SPJ11

1.A bank has two tellers working on savings accounts. The first teller handles withdrawals only. The second teller handles deposits only. It has been found that the service time distributions for both deposits and withdrawals are exponential with mean service time of 4 minutes per customer. Depositors are found to arrive in a Poison fashion with mean arrival rate of 20 per hour. Withdrawers also arrive in a Poison fashion with mean arrival rate of 17 per hour. What would be the effect on the average waiting time for the customers, if each teller could handle both withdrawals and deposits? What would be the effect, if this could only be accomplished by increasing the service time to 5 minutes

Answers

A bank has two tellers working on savings accounts. In the current setup, with separate tellers for withdrawals and deposits, the average waiting time for customers can be calculated using queuing theory.

In the current system, with separate tellers for withdrawals and deposits, the waiting time for customers can be analyzed using queuing theory. Given the exponential service time distribution with a mean of 4 minutes per customer and Poisson arrival rates of 20 per hour for deposits and 17 per hour for withdrawals, queuing models such as M/M/1 or M/M/c can be used to estimate the average waiting time.

If the system is modified to allow each teller to handle both withdrawals and deposits, the waiting time for customers is likely to decrease. This is because the workload can be balanced more efficiently, and customers can be served by any available teller, reducing the overall waiting time.

However, if handling both types of transactions requires an increase in the service time, such as increasing it to 5 minutes, the waiting time may actually increase. This is because the increased service time per customer will offset the benefits gained from the improved workload balancing.

To accurately quantify the effect on the average waiting time, a detailed analysis using queuing models specific to the modified system would be required. Factors such as the number of tellers and the arrival and service distributions need to be considered to make a precise assessment of the impact on waiting time.

Learn more about queuing here:

https://brainly.com/question/12992997

#SPJ11.

find the following limits
3. limx→2 x²-3x+5/3x²+4x+1 ; 4. lim x→3 x²-2x-3/3x²-2x+1

Answers

This is an indeterminate form of ∞/∞, we can apply L'Hospital's rule. The solution to the following limits is given below:

3. limx→2 x²-3x+5/3x²+4x+1

4. lim x→3 (2x - 2)/(6x - 2)= 1/2.

We can apply L'Hospital's rule.

It states that if we have an indeterminater form of ∞/∞ or 0/0, then we can differentiate the numerator and denominator and keep doing it until we get a value for the limit.

Let's do it.

3. limx→2 x²-3x+5/3x²+4x+1=

limx→2 (2x - 3)/(6x + 4)= -1/2.

4. lim x→3 x²-2x-3/3x²-2x+1

This is also an indeterminate form of ∞/∞.

We can apply L'Hospital's rule here as well.

4. lim x→3 x²-2x-3/3x²-2x+1=

lim x→3 (2x - 2)/(6x - 2)= 1/2.

Limit of a function refers to the value that the function approaches as the input approaches a certain value.

One-sided limits are the values that the function approaches when x is approaching the value from one side.

When we write a limit as x approaches a, we mean that we are looking at the behavior of the function as x gets close to a.

There are several ways to evaluate limits, and one of the most common is to use L'Hospital's rule.

This rule states that if we have an indeterminate form of ∞/∞ or 0/0, then we can differentiate the numerator and denominator and keep doing it until we get a value for the limit.

To learn more about L'Hospital's rule, visit:

https://brainly.com/question/105479

#SPJ11


Linear Algebra. Please explain answer with complete work
4. 5. Let B = 1 Find the QR factorization of B. 2 3 Let A = PDP-1 and P and D are shown below. Calculate A1⁰0. 0 P = D= --- -1 05 2

Answers

A¹⁰₀ = PD¹⁰₀P.T = 1/3 1 -1 0 1 0 1 1 0 -1 1 0 (3¹⁰⁰ 0 0 0 0) 1/3 1 -1 0 1 0 1 1 0 -1 1 0 So, the required value of A¹⁰₀ is the matrix shown above.

Part 1: QR factorization of BQR Factorization of B = Q(R)Let B be a matrix of size m * n.

Then, the QR factorization of B is B = Q(R),

where Q is an m * n matrix with orthonormal columns.

R is an n * n upper triangular matrix.

Let's find out the QR factorization of matrix B.

B = 1 2 5 3Q = v1v2v3v4R = 5 2 3 0 0 1 0 0 0

The orthonormal columns are shown below. Let's check whether these columns are orthonormal.

v1 = 1/5(1 2 5)v2 = 1/5(3 -2 0)v3 = 1/5(-2 -3 0)v4 = 1/5(0 0 -5)Q = v1 v2 v3 v4 = 1/5 1 3 -2 0 2 -2 -3 0 5 0 0 -5 R = 5 2 3 0 0 1 0 0 0

Therefore, the QR factorization of B is B = QR = 1/5 1 3 -2 0 2 -2 -3 0 5 0 0 -5.

Part 2: Calculation of A¹⁰₀. A = PDP⁻¹Let A be a matrix of size n * n.

Then, the eigenvalues and eigenvectors of A are used to factorize A as A = PDP⁻¹, where is an n * n matrix whose columns are the eigenvectors of A.

D is an n * n diagonal matrix whose diagonal entries are the eigenvalues of A.P⁻¹ = P.T = P for orthogonal matrices, since P⁻¹ = P.T and P.P.T = I.

Here, P is an orthogonal matrix.

So, P⁻¹ = P.T.

Then, A¹⁰₀ = PD¹⁰₀P⁻¹ = PDP.T.

Now, we are given P and D below.

We have to calculate A¹⁰₀. P = v1 v2 v3 v4 = 1/3 1 0 -1 -1 0 1 0 1 1 0 1 D = λ1 0 0 0 λ2 0 0 0 λ3 0 λ4 λ5

The eigenvalues are λ1 = 3, λ2 = 2, λ3 = -2, λ4 = 1, λ5 = 0. A = PDP⁻¹ = PDPT = 1/3 1 -1 0 1 0 1 1 0 -1 1 0 1 0 0 -1 1 1 0 0 1 1 0 0 0 -1 0 0 0 0 0 -2 0 0 0 0 0 3

Know more about matrix here:

https://brainly.com/question/27929071

#SPJ11

#3 Use the method of undetermined coefficients to find the solution of the differential equation: y" – 4y = 8x2 = satisfying the initial conditions: y(0) = 1, y'(0) = 0. =

Answers

The solution of the differential equation with the given initial conditions is: [tex]y = (1/2)e^(2x) + (1/2)e^(-2x) - 2x².[/tex]

Given differential equation is y" - 4y = 8x²,

Let [tex]y = Ay + Bx² + C[/tex] be a particular solution, then differentiating, we get:

[tex]y' = Ay' + 2Bxy + C .....(1)[/tex]

Again, differentiating the equation above, we get: [tex]y'' = Ay'' + 2By' + 2Bx.....(2)[/tex]

Putting the equations (1) and (2) into y" - 4y = 8x², we get:

[tex]Ay'' + 2By' + 2Bx - 4Ay - 4Bx² - 4C = 8x².[/tex]

Comparing the coefficients of x², x, and constant term, we get:-4B = 8, -4A = 0 and -4C = 0. Hence, B = -2, A = 0 and C = 0.

Thus, the particular solution to the given differential equation is:

[tex]y = Bx² \\= -2x².[/tex]

Next, the complementary function is given by:y" - 4y = 0, which gives the characteristic equation:

[tex]r² - 4 = 0, \\r = ±2.[/tex]

Therefore, the complementary function is given by:[tex]y_c = c₁e^(2x) + c₂e^(-2x).[/tex]

Applying initial conditions:y(0) = 1y'(0) = 0

So, the general solution of the given differential equation:[tex]y = y_c + y_p \\= c₁e^(2x) + c₂e^(-2x) - 2x².[/tex]

Using the initial condition y(0) = 1, we get

[tex]c₁ + c₂ - 0 = 1, \\c₁ + c₂ = 1.[/tex]

Using the initial condition y'(0) = 0, we get

[tex]2c₁ - 2c₂ - 0 = 0, \\2c₁ = 2c₂, \\c₁ = c₂[/tex].

Substituting c₁ = c₂ in the equation [tex]c₁ + c₂ = 1[/tex], we get [tex]2c₁ = 1, c₁ = 1/2.[/tex]

Hence, the solution of the differential equation with the given initial conditions is :[tex]y = (1/2)e^(2x) + (1/2)e^(-2x) - 2x².[/tex]

Know more about differential equation here:

https://brainly.com/question/1164377

#SPJ11

Let
A=⎡⎣⎢−80−34321807⎤⎦⎥.A=[−8418030−327].
If possible, find an invertible matrix PP so that A=PDP−1A=PDP−1
is a diagonal matrix. If it is not possible, enter the identity
matr

Answers

No, it is not possible to find an invertible matrix P such that A = PDP^(-1) is a diagonal matrix.

In order for A to be diagonalizable, it must have a complete set of linearly independent eigenvectors. However, we can see that the given matrix A does not have a full set of linearly independent eigenvectors.

To determine if a matrix is diagonalizable, we need to find the eigenvectors and eigenvalues of the matrix. The eigenvectors are the vectors that satisfy the equation Av = λv, where A is the matrix, v is the eigenvector, and λ is the corresponding eigenvalue. The eigenvalues are the scalars λ that satisfy the equation det(A - λI) = 0, where I is the identity matrix.

Calculating the eigenvalues and eigenvectors of matrix A, we find that the matrix A has only one eigenvalue, λ = -2, with a corresponding eigenvector v = [-1, 1]. Since A does not have a full set of linearly independent eigenvectors, it cannot be diagonalized.

Learn more about matrix:

brainly.com/question/29000721

#SPJ11

(ii).If X₁ (t) = e¹tU₁₂,X₂(t) = e^t (U₂ + tU)... X₁ (t) = e¹t (U₁ + tU₁ k-1+...+u2tk-1/ (k-1)!)
Are solutions of X' = AX, then X1....Xk are linearly independent,i.e.
C₁X₂ + C₂X₂ + + CX = 0 for some arbitrary constants C, s. [4 marks]

Answers



X₁, X₂, ..., Xₖ are linearly independent solutions of the differential equation X' = AX.To show that X₁, X₂, ..., Xₖ are linearly independent, we need to prove that the only solution to the equation C₁X₁ + C₂X₂ + ⋯ + CₖXₖ = 0.

Let's assume that there exists a nontrivial solution to the equation. That is, there exist constants C₁, C₂, ..., Cₖ, not all zero, such that C₁X₁ + C₂X₂ + ⋯ + CₖXₖ = 0.

Taking the derivative of this equation, we have C₁X₁' + C₂X₂' + ⋯ + CₖXₖ' = 0.

Since X₁, X₂, ..., Xₖ are solutions to X' = AX, we can substitute the expressions for X₁', X₂', ..., Xₖ' using the given equations.

C₁(eᵗU₁₂)' + C₂(eᵗ(U₂ + tU))' + ⋯ + Cₖ(eᵗ(U₁ + tU₁k-1 + ... + u₂tk-1/(k-1))!) = 0.

Expanding and simplifying, we obtain C₁eᵗU₁₂ + C₂eᵗ(U₂ + tU) + ⋯ + Cₖeᵗ(U₁ + tU₁k-1 + ... + u₂tk-1/(k-1))! = 0.

Now, let's consider the value of this equation at t = 0. Plugging in t = 0, we have C₁U₁ + C₂U₂ + ⋯ + CₖUₖ = 0.

Since U₁, U₂, ..., Uₖ are linearly independent (given), the only solution to this equation is C₁ = C₂ = ⋯ = Cₖ = 0.

Therefore, X₁, X₂, ..., Xₖ are linearly independent solutions of the differential equation X' = AX.

 To  learn more about equation click here:brainly.com/question/10724260

#SPJ11

Find Laplace transform L{3+2t - 4t³} L{cosh²3t} L{3t²e-2t}

Answers

To find the Laplace transform of the given functions, we'll use the standard Laplace transform formulas. Here are the Laplace transforms of the given functions:

L{3 + 2t - 4t³}:

Using the linearity property of the Laplace transform, we can find the transform of each term separately:

L{3} = 3/s,

L{2t} = 2/s²,

L{-4t³} = -4(3!)/(s⁴) = -24/(s⁴).

Therefore, the Laplace transform of 3 + 2t - 4t³ is:

L{3 + 2t - 4t³} = 3/s + 2/s² - 24/(s⁴).

L{cosh²(3t)}:

Using the identity cosh²(x) = (1/2)(cosh(2x) + 1), we can rewrite the function as:

cosh²(3t) = (1/2)(cosh(6t) + 1).

Now, we can use the standard Laplace transform formulas:

L{cosh(6t)} = s/(s² - 6²),

L{1} = 1/s.

Therefore, the Laplace transform of cosh²(3t) is:

L{cosh²(3t)} = (1/2)(s/(s² - 6²) + 1/s).

L{3t²[tex]e^(-2t)[/tex]}:

Using the multiplication property of the Laplace transform, we can separate the terms:

L{3t²e^[tex]e^(-2t)[/tex]} = 3L{t²} * L{[tex]e^(-2t)[/tex]}.

The Laplace transform of t² can be found using the power rule:

L{t²} = 2!/s³ = 2/(s³).

The Laplace transform of [tex]e^(-2t)[/tex] can be found using the exponential function property:

L{[tex]e^(-at)[/tex]} = 1/(s + a).

Therefore, the Laplace transform of 3t²[tex]e^(-2t)[/tex]is:

L{3t²[tex]e^(-2t)[/tex]} = 3(2/(s³)) * 1/(s + 2) = 6/(s³(s + 2)).

Please note that the Laplace transform is defined for functions that are piecewise continuous and of exponential order.

Learn more about laplace tranformation  here:

https://brainly.com/question/29583725

#SPJ11

(a) Is there an integer solution (x, y, z) to the equation 20x +22y+33z=1 with x = 1? (b) Is there an integer solution (x, y, z) to the equation 20x +22y+33z=1 with x = 5? (c) For which values of CEZ, the equation 20x +22y+cz = 315 has integer solution(s) (x, y, z)?

Answers

(a) There are no integer solutions to the equation 20x + 22y + 33z = 1 with x = 1.

There are integer solutions to the equation

20x + 22y + 33z = 1 with x = 5. (c)

The values of c for which the equation

20x + 22y + cz = 315 has integer solutions are 3, 6, 9, 12, and 15.

:a) Let x = 1.

This holds if and only if c/d is odd and does not divide 10x + 11y'. Therefore, the values of c that give integer solutions to the equation are those that satisfy these conditions.

Since d divides 2 and c, we have d = 2, 3, 6, or 15. Therefore, the values of c that work are 3, 6, 9, 12, and 15.

learn more about integer click here:

https://brainly.com/question/929808

#SPJ11




14 (3 points) Suppose T: R¹4 → R¹4 is a linear transformation and the rank of T is 10. (a) Determine whether T is injective. (b) Determine whether T is surjective. (c) Determine whether T is inver

Answers

(a)  Nullity(T) is -6.

(b)  The rank of T is 10

(c)   T is not injective

(a) To determine T is injective:

We know that a linear transformation is injective if and only if it has a trivial kernel.

Since T: R⁴ → R⁴,

The kernel of T is a subspace of R.

By the rank-nullity theorem,

We know that,

⇒ rank(T) + nullity(T) = dim(R) = 4

It is given that rank(T) = 10,

So nullity(T) = dim(ker(T))

                    = 4 - 10

                    = -6.

Since, nullity(T) is negative,

⇒ ker(T) is not trivial, and therefore T is not injective.

(b) We have to determine if T is surjective.

A linear transformation is surjective if and only if its range is equal to its codomain.

Since T: R⁴ → R⁴, the range of T is a subspace of R.

By the rank-nullity theorem,

We know that,

⇒  rank(T) + nullity(T) = dim(R) = 4.

It is given that,

⇒ rank(T) = 10,

So nullity(T) = dim(ker(T))

                   = 4 - 10

                   = -6.

Since, nullity(T) is negative,

⇒ ker(T) is not trivial.

Therefore, the range of T has dimension 4 - dim(ker(T))

= 4 - (-6)

= 10,

Which is the same as the rank of T.

Therefore, the range of T equals its codomain, and T is surjective.

(c) To determine if T is invertible,

⇒ linear transformation is invertible if and only if it is both injective and surjective.

Since T is not injective, it is not invertible.

To learn more about function visit:

https://brainly.com/question/8892191

#SPJ1

What type of data is the number or children in a family? Quantitative, discrete Quantitative, continuous O Categorical O Qualitative Juanita noticed that there were a lot of single-female-headed families with children on the waiting list for subsidized housing. She decides she wants to show the number of children in these single- female-headed families because it will show the sizes of the housing units needed by these families. However, Juanita knows she cannot get the data on all single-female-headed families with children. Instead she decides to breakup the city that Community Housing Department serves into neighborhoods. She then selects 5 of those neighborhoods. Lastly she selects every single-female- headed families with children in those neighborhoods. What type of sample selection did Juanita use? Systematic Convenience Cluster Stratified

Answers

The sample selection method used by Juanita is cluster sampling.

The type of data that represents the number of children in a family is quantitative and discrete.

Regarding Juanita's sample selection, she first breaks up the city served by the Community Housing Department into neighborhoods. This step suggests that Juanita is using a cluster sampling method.

Cluster sampling involves dividing the population into groups or clusters and selecting entire clusters randomly or based on certain criteria. In this case, the neighborhoods serve as the clusters.

After identifying the neighborhoods, Juanita selects every single-female-headed family with children within those neighborhoods. This approach is known as a cluster sampling with a complete enumeration within the clusters.

Therefore, the sample selection method used by Juanita is cluster sampling.

for such more question on sample selection method

https://brainly.com/question/16587013

#SPJ8








Find the solution to the initial value problem. z''(x) + z(x)=9e - 6x z(0)=0, z'(0) = 0 CHOD The solution is z(x) = 0

Answers

We need to find the solution to the initial value problem. Using the Characteristic equation: [tex]r^2 + 1 = 0r^2 = -1r = i[/tex], -i Thus, the complementary function is given by:[tex]zc(x) = c1cos(x) + c2sin(x)[/tex]

Now, let's find the particular integral: Let [tex]zp(x) = Ate^(-6x) zp'(x) = A(-6te^(-6x) + e^(-6x)) zp''(x) = A(36te^(-6x) - 12e^(-6x))[/tex]Substituting zp(x) and its derivatives into the differential equation:

[tex]z''(x) + z(x) = 9e^(-6x)[/tex]

[tex]= > A(36te^(-6x) - 12e^(-6x)) + Ate^(-6x) = 9e^(-6x)[/tex]

[tex]= > (36t - 12)A = 9A[/tex]

=> t = 1/4

Hence, zp(x) = (1/4)Ate^(-6x) Now, the general solution is given by

z(x) = zc(x) + zp(x)

[tex]= > z(x) = c1cos(x) + c2sin(x) + (1/4)Ate^(-6x)z(0) = c1cos(0) + c2sin(0) + (1/4)Ate^0 = 0[/tex]

[tex]= > c1 + (1/4)A = 0z'(x) = -c1sin(x) + c2cos(x) - (3/2)Ate^(-6x)z'(0) = -c1sin(0) + c2cos(0) - (3/2)Ate^0 = 0[/tex]

=> c2 - (3/2)A = 0 => c2 = (3/2)A

Using the values of c1 and c2, z(x) = (1/4)Ate^(-6x)This value satisfies z(0) = 0 and z'(0) = 0 and hence is the solution to the initial value problem. Therefore, the solution to the given initial value problem is z(x) = (1/4)Ate^(-6x).

To know more about Characteristic equation visit:

https://brainly.com/question/28709894

#SPJ11

A salesman has to visit the cities A, B, C, D and E which forms a Hamiltonian circuit. Solve the traveling salesman problem to optimize the cost. The cost matrix is given below:
A BC D E
A. – 6 9 5 6
B. 6 – 8 5 6
C. 9 8 – 9
D. 5 5 9 – 9
E. 6 6 7 9 –

Answers

The optimal path for the traveling salesman is A -> E -> D -> B -> C with a total cost of 25.

A salesman is required to visit the cities A, B, C, D, and E which make up a Hamiltonian circuit. The traveling salesman problem needs to be solved to optimize the cost. The cost matrix is given below:

A BC D E A. – 6 9 5 6 B. 6 – 8 5 6 C. 9 8 – 9 D. 5 5 9 – 9 E. 6 6 7 9 –To optimize the cost, the solution should be such that the total distance covered is minimum. This is a common example of the Traveling Salesman Problem, which can be solved using various algorithms. Using the nearest neighbor algorithm for finding the optimal path in the TSP algorithm, we can compute a solution to the problem as follows:

Start at city A and move to the closest city which is E, which has a cost of 5. The new path is A -> E with a cost of 5. Next, we move to the next closest city, which is city D, with a cost of 5. The new path is A -> E -> D with a total cost of 10. The next closest city is city B, which has a cost of 6. The new path is A -> E -> D -> B with a total cost of 16. Finally, we move to the last city, city C, with a cost of 9. The new path is A -> E -> D -> B -> C with a total cost of 25. The optimal path is A -> E -> D -> B -> C with a total cost of 25.

More on optimal path: https://brainly.com/question/30619250

#SPJ11

Use the four-step process to find the slope of the tangent line to the graph of the given function at any point. (Simplify your answers completely.)
f(x) = −x² + 6x

Answers

The slope of the tangent line to the graph of the function f(x) = -x² + 6x at any point can be found using the four-step process. The slope is given by the derivative of the function, which is -2x + 6.

To find the slope of the tangent line to the graph of f(x) at any point, we follow the four-step process:

Step 1: Define the function f(x) = -x² + 6x.

Step 2: Find the derivative of f(x) with respect to x. Taking the derivative of -x² + 6x, we apply the power rule and get -2x + 6.

Step 3: Simplify the derivative. The derivative -2x + 6 is already in simplified form.

Step 4: The slope of the tangent line at any point on the graph of f(x) is given by the derivative -2x + 6.

Therefore, the slope of the tangent line to the graph of f(x) = -x² + 6x at any point is -2x + 6.


To learn more about tangent click here: brainly.com/question/27021216

#SPJ11

To evaluate the performance of a new diagnostic test, the developer checks it out on 150 subjects with the disease for which the test was designed, and on 200 controls known to be free of the disease. Ninety of the diseased yield positive tests, as do 30 of the controls. What is the sensitivity of this test?

Answers

In order to evaluate the performance of a diagnostic test, sensitivity is one of the key parameters. Sensitivity can be defined as the proportion of patients with the disease who test positive. It is one of the two key parameters, the other being specificity.

Specificity is the proportion of patients without the disease who test negative.Here, we have been given 150 subjects with the disease and 200 controls known to be free of the disease. We have also been given the number of diseased individuals who test positive (90) and the number of controls who test positive (30).

Sensitivity = (Number of True Positives) / (Number of True Positives + Number of False Negatives)Number of True Positives = 90Number of False Negatives = Number of Diseased - Number of True Positives = 150 - 90 = 60Sensitivity = 90 / (90 + 60) = 0.6 (or 60%)

Therefore, the sensitivity of the test is 60%. We cannot make any conclusions on the performance of the test without knowing the specificity as well. It is also important to note that sensitivity is not the same as positive predictive value (PPV) or negative predictive value (NPV).

These parameters are also important in evaluating the performance of a diagnostic test.

To know more about parameters visit :

https://brainly.com/question/29911057

#SPJ11

There are two four-digit positive integers aabb such that aabb + 770 is the square of an integer. One of them is 1166, what is the other one?

Note: aabb is the decimal representation, so the first digit a cannot be 0

Answers

The other four-digit positive integer in the form aabb, where a cannot be 0, such that aabb + 770 is the square of an integer, is 1292.

Let's express the four-digit number aabb as 1000a + 100a + 10b + b, which simplifies to 1100a + 11b. When we add 770 to this number, we get 770 + 1100a + 11b.

To find the square of an integer, we need to determine values for a and b such that 770 + 1100a + 11b is a perfect square. Let's denote this perfect square as k^2.

We have the equation k^2 = 770 + 1100a + 11b. Rearranging the terms, we get k^2 - 770 = 1100a + 11b.

Now, we need to find two four-digit numbers in the form aabb, where a cannot be 0, such that k^2 - 770 is a multiple of 11 and 1100. One of these numbers is given as 1166, which satisfies the equation.

To find the other number, we can substitute k^2 - 770 = 1166 into the equation and solve for a and b. Solving the equation yields a = 1 and b = 2. Thus, the other four-digit number is 1292.

To learn more about Integer - brainly.com/question/15276410

#SPJ11


(1). 4(b + a) + (c + a) + c = 4(b + a) + (a +c) + c
= 4 (b+a) + a (c +c)
= (4b +4a) + a) + 2c
= 4b + (4a+a)+2c
= 4b+5a+2c
Name the property used in
a) associative property of addition
b) distributive property of addition
c) commutative property of addition
d) distributive property for scalars

Answers

The main answer to the given question is:

The property used in the expression is the associative property of addition.

The associative property of addition states that the grouping of numbers being added does not affect the sum. In other words, when adding multiple numbers, you can regroup them using parentheses and still obtain the same result.

In the given expression, we have (4(b + a) + (c + a) + c). By applying the associative property of addition, we can rearrange the terms within the parentheses. This allows us to group (b + a) together and (c + a) together.

So, we can rewrite the expression as 4(b + a) + (a + c) + c.

Next, we can further rearrange the terms by applying the associative property again. This time, we group (a + c) together.

Now the expression becomes 4(b + a) + a (c + c).

By simplifying, we get (4b + 4a) + a + 2c.

Further simplification leads us to 4b + (4a + a) + 2c.

Finally, we combine like terms to obtain the simplified form, which is 4b + 5a + 2c.

Learn more about associative property

brainly.com/question/28762453

#SPJ11

Use 2place transformation technique to solve the initial value problem below.
y" - 4y = e³t
y(0)=0
y'(0) = 0

Answers

The initial value problem, y" - 4y = e³t, with initial conditions y(0) = 0 and y'(0) = 0, can be solved using the 2-place transformation technique.

To solve the given initial value problem using the 2-place transformation technique, we will transform the differential equation into an algebraic equation and then solve for the transformed variable.

Let's define the transformed variable z = s²Y, where Y is the solution to the initial value problem. Taking the first and second derivatives of z with respect to t, we get:

z' = 2sY' + s²Y"

z" = 2sY" + s²Y"'

Now, substituting these derivatives into the original differential equation, we have:

2sY' + s²Y" - 4(s²Y) = e³t

Simplifying further, we obtain:

s²Y" + 2sY' - 4Y = e³t/s²

Now, we can solve this algebraic equation for Y by substituting the initial conditions y(0) = 0 and y'(0) = 0. The resulting solution Y will give us the transformed variable. Finally, we can back-transform Y to find the solution y(t) to the initial value problem.

Applying the 2-place transformation technique provides a systematic approach to solve the given initial value problem by transforming it into an algebraic equation and solving for the transformed variable, which can then be back-transformed to obtain the solution to the original problem.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Function 1
Function 2
Function 3
X
y
X
y
X
y
2
-11
4
4
0
-60
3
-21
5
-3
1
-40
4
-27
6
-10
2
-26
LO
5
-29
7
-17
-18
6
-27
8
-24
4
-16
O Linear
O Quadratic
Exponential
O None of the above
Linear Quadratic
Linear
Quadratic
Exponential
None of the above
Exponential
None of the ahova

Answers

The correct answer is Linear, Quadratic .The given table represents three different functions, and we need to determine which type of function is represented by each.

The types of functions are Linear, Quadratic, Exponential. We can determine the type of function based on the pattern that is present in the table.

Given data:

X y X y X y2 -11 4 4 0 -603 -21 5 -3 1 -404 -27 6 -10 2 -26LO 5 -29 7 -17 -18 6 -27 8 -24 4 -16

The first function is linear since we can find a linear pattern for the table.The second function is quadratic because we can find a quadratic pattern for the table.The third function is none of the above because we can not find any pattern for the table.

To know More about Function visit:

https://brainly.in/question/9181709

#SPJ11

Problem 6 [Logarithmic Properties] Use the Laws of Logarithms to expand the expression. (a) loga () 100 √ √√₂ (b) log

Answers

By simplifying the given expressions using the properties of logarithms, such as the power rule, and evaluating them accordingly.

How do we expand the expressions using the laws of logarithms?

The problem asks us to use the laws of logarithms to expand the given expressions. Let's consider each part separately:

(a) loga () 100 √ √√₂

To expand this expression, we can use the properties of logarithms. First, we simplify the expression inside the logarithm: 100 √ √√₂ = 100^(1/2)^(1/2)^(1/2) = 100^(1/8).

Now, we can apply the power rule of logarithms, which states that loga(b^c) = cˣ loga(b). Applying this rule, we have loga(100^(1/8)) = (1/8) ˣ  loga(100). Since loga(100) = 2 (since a^2 = 100), the expression becomes (1/8)ˣ  2 = 1/4.

(b) log(base 4) 64^3

Here, we can use the power rule of logarithms again. We have log(base 4) (64^3) = 3 ˣ log(base 4) 64. Since 64 is equal to 4^3, we can further simplify this expression to 3 ˣ  3 = 9.

Therefore, the expanded expressions are:

(a) loga () 100 √ √√₂ = 1/4

(b) log(base 4) 64^3 = 9.

Learn more about logarithms

brainly.com/question/30226560

#SPJ11








Find the solution to the initial value problem. - 4x z''(x) + z(x)=94 **.z(0)=0, 2' (O) = 0 The solution is z(x) = o

Answers

The given differential equation is - 4x z''(x) + z(x)=94.The initial conditions are given as:z(0)=0 and 2' (O) = 0Let us assume that the solution of the differential equation is given as:z(x) = xkwhere k is a constant to be determined.

Let us now substitute the assumed value of z(x) in the differential equation and find the value of k.-4x z''(x) + z(x)= 94Substituting z(x) = xk in the above equation, we get,-4x [k(k-1)]x^(k-2) + xk= 94-4k(k-1) x^k-2 + xk = 94On rearranging the above equation, we get,-4k(k-1) x^k-2 + xk = 94On comparing the coefficients of xk and xk-2, we get,-4k(k-1) = 0and 1 = 94Therefore, k = 0 and this is the only possible value of k.

Thus, we have z(x) = x^0 = 1 as the solution. However, this solution does not satisfy the given initial conditions z(0)=0 and 2' (O) = 0. Therefore, the given initial value problem has no solution. Thus, the solution is z(x) = o.

To know more about differential equation visit:

https://brainly.com/question/32538700

#SPJ11

Given, the initial value problem-[tex]4x z''(x) + z(x)=94, z(0)=0, 2'(0) = 0[/tex]

To solve this problem, we can assume the solution of the form

[tex]z(x) = x^kAlso, z'(x) = kx^(k-1) and z''(x) = k(k-1)x^(k-2)[/tex]

Substituting these values in the given differential equation

[tex]-4x z''(x) + z(x)=94-4xk(k-1)x^(k-2) + x^k = 94x^k - 4k(k-1)x^k-2 = 94[/tex]

Solving this we get,k = ±√(47/2)

The general solution of the differential equation will be -z(x) = Ax^k + Bx^(-k)

where A and B are constants. From the initial conditions,

z(0) = 0z'(0) = 0Therefore,

A = 0 and

B = 0.So, the solution is z(x) = 0

Hence, the solution to the given initial value problem is z(x) = 0 and is independent of x.

To know more about solution visit:

https://brainly.com/question/1616939

#SPJ11

on 0.2: 4. Solve the system by the method of elimination and check any solutions algebraically = 8 (2x + 5y [5x + 8y = 10
5. Use any method to solve the system. Explain your choice of method. f-5x + 9y = 13 y=x-4

Answers

The solution to this system of equations is (x, y) = (49/4, 9/4).

Given the following system of equations: 2x + 5y = 8 and 5x + 8y = 10

To solve this system of equations by elimination method, we need to multiply the first equation by 8 and second equation by -5.

So we have: 16x + 40y = 64             (1)

             -25x - 40y = -50              (2)

On adding these two equations, we have: -9x = 14   x = -14/9

Substituting x in the first equation, we have: 2(-14/9) + 5y = 8

On solving this equation, we have y = 62/45

So the solution to the given system of equations is (x, y) = (-14/9, 62/45).

To check these solutions algebraically, we substitute the values of x and y in both equations and verify if they are true or not.  

We are given another system of equations: f-5x + 9y = 13 and y=x-4We can use substitution method to solve this system.

Here, we can substitute y in the first equation with the second equation.

Hence, we get: f - 5x + 9(x - 4) = 13 Simplifying this equation, we have f - 5x + 9x - 36 = 13 Or, 4x = 49 Or, x = 49/4

Substituting x in the second equation, we have y = 49/4 - 4 Hence, y = 9/4

So, the solution to this system of equations is (x, y) = (49/4, 9/4).

Hence, the method used to solve this system is substitution method as it is simple and convenient to solve.

Learn more about equations

brainly.com/question/29657983

#SPJ11

LM is the mid segment of trapezoid ABCD. AB=x+8, LM=4x+3, and DC=243. What is the value of x?

Answers

Answer:

Step-by-step explanation:

Suppose 32 pregnant women are sampled who smoke an average of 23 cigarettes per day with a standard deviation of 12.

a) What is the probability that the pregnant women will smoke an average of 23 cigarettes or more?
probability =

b) What is the probability that the pregnant women will smoke an average of 23 cigarettes or less?
probability =

c) What is the probability that the pregnant women will smoke an average of 19 to 24 cigarettes?
probability =

d) What is the probability that the pregnant women will smoke an average of 23 to 26 cigarettes?
probability =

Note: Do NOT input probability responses as percentages; e.g., do NOT input 0.9194 as 91.94.

Answers

a) To calculate the probability that the pregnant women will smoke an average of 23 cigarettes or more, we can use the standard normal distribution.

Using the standard normal distribution table or calculator, we find the probability that a z-score is greater than or equal to 0, which is 0.5.  Therefore, the probability that the pregnant women will smoke an average of 23 cigarettes or more is 0.5.

b) The probability that the pregnant women will smoke an average of 23 cigarettes or less is also 0.5, as it is the complement of the probability calculated in part a).

c) To find the probability that the pregnant women will smoke an average of 19 to 24 cigarettes, we calculate the z-scores for the lower and upper bounds. For the lower bound, z1 = (19 - 23) / 2.121 ≈ -1.886. For the upper bound, z2 = (24 - 23) / 2.121 ≈ 0.471.

d) Similarly, to find the probability that the pregnant women will smoke an average of 23 to 26 cigarettes, we calculate the z-scores for the lower and upper bounds. For the lower bound, z1 = (23 - 23) / 2.121 = 0. For the upper bound, z2 = (26 - 23) / 2.121 ≈ 1.414.

Learn more about probability here: brainly.com/question/30723961

#SPJ11

Roger places one thousand dollars in a bank account that pays 5.6 % compounded continuously. After one year, will he have enough money to buy a computer wystem that costs $1060? if another bank will pay Roger 5.9% compounded monthly, is this a better deal? Let Alt) represent the balance in the account after years. Find Alt).

Answers

Roger will have enough money to buy the computer system that costs $1060 after one year.

Is the balance in Roger's account enough to purchase the computer system after one year?

The balance in Roger's account after one year can be calculated using the continuous compounding formula Alt) = P * e^(rt), where P is the initial amount, r is the interest rate, and t is the time in years. In this case, P = $1000, r = 0.056, and t = 1. Substituting these values, we get Alt) = $1000 * e^(0.056 * 1) ≈ $1061.70. Therefore, Roger will have enough money to buy the computer system.

However, if Roger chooses the other bank with an interest rate of 5.9% compounded monthly, we need to use a different formula. The balance in the account after one year can be calculated using the compound interest formula Alt) = P * (1 + r/n)^(nt), where n is the number of times interest is compounded per year. In this case, P = $1000, r = 0.059, n = 12, and t = 1. Substituting these values, we get Alt) = $1000 * (1 + 0.059/12)^(12 * 1) ≈ $1062.95. Therefore, the second bank offers a slightly better deal as the balance in Roger's account will be higher.

Learn more about costs

brainly.com/question/17120857

#SPJ11

A bag contains 10 quarters, 6 dimes, and 4 pennies. Eight coins are drawn at random without replacement. What is the probability that the total value of the coins is 98 cents? Hint: There is only one combination of coins which add up to 98 cents. Do not provide a decimal answer.

Answers

The required probability is 3/118.

Given the number of coins in the bag10 quarters, 6 dimes, and 4 pennies.

Eight coins are drawn at random without replacement.

We need to find the probability that the total value of the coins is 98 cents.

Hint: There is only one combination of coins that add up to 98 cents.

The only combination of coins that adds up to 98 cents is 6 quarters and 2 dimes.

So, we need to find the probability of drawing 6 quarters and 2 dimes out of the bag, as we know that all coins have to be drawn without replacement.

Let Q denote the event of drawing a quarter and D denote the event of drawing a dime.

So, we have to calculate the probability[tex]P(QQQQQQDD).[/tex]

The probability of drawing 6 quarters out of 10 quarters is 10C6  = 210

The probability of drawing 2 dimes out of 6 dimes is 6C2  = 15

The probability of drawing nothing out of 4 pennies is 4C0  = 1

The total number of ways of drawing 8 coins out of 20 coins is[tex]20C8  = 125970[/tex]

So, the probability of drawing 6 quarters and 2 dimes out of the bag is

[tex](210 × 15 × 1) ÷ 125970 = 3150 ÷ 125970 \\= 21 ÷ 842 \\= 3 ÷ 118[/tex]

Hence, the required probability is 3/118.

Know more about probability  here:

https://brainly.com/question/25839839

#SPJ11

The marginal cost in dollars per square foot) of installing x square feet of kitchen countertop is given by C'(x) = x^3/4
a) Find the cost of installing 45 ft^2 of countertop
b) Find the cost of installing an extra 18 ft^2 of countertop after 45 ft? have already been installed.
a) Set up the integral for the cost of installing 45 ft? of countertop.
C(45) = ∫ ox

Answers

To find the cost of installing 45 ft² of countertop and the cost of installing an extra 18 ft² after 45 ft² have already been installed, we need to integrate the marginal cost function.

a) Cost of installing 45 ft² of countertop:

To find the cost of installing 45 ft² of countertop, we need to integrate the marginal cost function C'(x) = x^(3/4) from 0 to 45:

C(45) = ∫[0, 45] x^(3/4) dx

To integrate x^(3/4), we add 1 to the exponent and divide by the new exponent:

C(45) = [(4/7) * x^(7/4)] evaluated from 0 to 45

C(45) = (4/7) * (45^(7/4)) - (4/7) * (0^(7/4))

Since 0 raised to any positive power is 0, the second term becomes zero:

C(45) = (4/7) * (45^(7/4))

Now we can calculate the value:

C(45) ≈ 269.15 dollars

Therefore, the cost of installing 45 ft² of countertop is approximately $269.15.

b) Cost of installing an extra 18 ft² of countertop:

To find the cost of installing an extra 18 ft² of countertop after 45 ft² have already been installed, we need to integrate the marginal cost function C'(x) = x^(3/4) from 45 to 45 + 18:

C(45+18) = ∫[45, 63] x^(3/4) dx

To integrate x^(3/4), we add 1 to the exponent and divide by the new exponent:

C(45+18) = [(4/7) * x^(7/4)] evaluated from 45 to 63

C(45+18) = (4/7) * (63^(7/4)) - (4/7) * (45^(7/4))

Now we can calculate the value:

C(45+18) ≈ 157.24 dollars

Therefore, the cost of installing an extra 18 ft² of countertop after 45 ft² have already been installed is approximately $157.24.

Visit here to learn more about marginal cost:

brainly.com/question/14923834

#SPJ11

Other Questions
Lecture Notes onCONTROL SYSTEM THEORYAND DESIGNTamer Basar, Sean P. Meyn, and William R. Perkins5.5 Exercises 5.5.1 Investigate the controllability properties of the LTI model = Ax + Bu, for the three pairs of (A, B) matrices given below. (a) A=-5 1 B=1 0 4 1(b) A=3 3 6 B=0 1 1 2 0 2 2 4 1(c) A=0 1 0 B=0 0 0 1 0 0 0 0 1 c) Consider a bond with three years to maturity with a face value of $F. At the end of each year it pays a cash coupon of $C. Denote its yield to maturity by y. i. You buy the bond today for a price of $P, and sell it in one year (just after the payment of the coupon) for $P. If the yield to maturity does not change over time, write down expressions for P, and for P, in terms of C, F and y. [2 marks] ii. Define the return from holding the bond for that year in the normal fashion (i.e. the return is equal to the sum of its change in price over the period and any end of period cash payments, all divided by the initial price). Show how this return is related to the bond's yield to maturity. [4 marks] iii. Based on your preceding answer, discuss when yield to maturities are likely to be decent indicators of the returns from holding bond positions. [3 marks] Solve the following PDE (Partial Differential Equation) for when t > 0. Express the final answer in terms of the error function when it applies.{ ut - 9Uxx = 0 x E R u(x,0) = e^5x the nurse is caring for a postterm, small for gestational age (sga) newborn infant immediately after admission to the nursery. what would the nurse monitor as the priority? describe the three data fragmentation strategies. give some examples of each that are different from the book. Evaluate each of the following given f(x) = 6x-7, g(x) = -2x + 1 and h(x) = -2x. (1 point each) a) (f + g)(x) b) (g-f)(x) c) (h+g)(-3) d) (fh)(x) e) (fo h)(x) f) (foh)(4) Even with the power to change interest rates, the Fed is unable to directly impact inflation, output or unemployment. This is because: a. Interest rates do not affect inflation, output and unemployment b. Interest rates have no influence on the economy C. Interest rates determine the opportunity cost of spending money today d. Inflation, output and unemployment are fixed e. None of these Convert the angle pi/3 radians to degrees. 1. [PS, Exercise 8.24.2] (a) If P(z) is a polynomial of degreen, prove that |z|=2 P(z)/(z-1)^n+2 dz = 0. (b) If n and m are positive integers, show that -) Aspirin has a half-life of 6 hours in the blood stream. If a person takes 625mg, how long will it take for there to be 150mg left in the bloodstream? traditionally, large companies distribute excess inventory through _____. Solve the system with the addition method.7x-2y= 29-3x+9y= -45 Given a differential equation as +6x+6y=0. dx dx By using substitution of x = e' and t= ln (x). find the general solution of the differential equation. (7 Marks)Previous question def company uses a predetermined overhead rate (pohr) of $14.00 per direct labor hour. the company has provided us with the following data for job a-500:Direct materials$230Direct labor$108What is the total manufacturing cost assigned to Job A-500?If Job A-500 consists of 40 units, what is the average cost assigned to each unit included in the job? (Round your answer to 2 decimal places.) the+apr+offered+by+a+bank+is+8%+per+year,+compounded+monthly.+what+is+the+apy? Solve using the inverse method. (10 pts) -x + 5y = 4 -x - 3y = 1 Use the formula for the inverse of a 2x2 matrix. b. Use gaussian elimination to determine the inverse. True/False1. Although monopoly has lower output than competition, the levelof output isefficient ______2. In the long run, a monopolist charges the same price as aperfectly competitivefirm______ Application: Demand elasticity and agriculture Consider the market for soybeans. The following graph shows the weekly demand for soybeans and the weekly supply of soybeans. Suppose a spell of unusually good weather occurs, which enables soybean producers to generate more soybeans per acre of land Show the effect this shock has on the market for soybeans by shifting the demand curve, supply curve, or both. Note: Select and drag one or both of the curves to the desired position. Curves will snap into position, so if you try to move a curve and it snaps back to its original position, just drag it a little farther. 20 Demand 16 Supply Supply mand 4 16 24 32 40 QUANTITY (Millions of bushels) what issue does audio visual clip present ? Assume that women's heights are normally distributed with a mean given by =64.1 in, and a standard deviation given by a=3.1 in. (a) If 1 woman is randomly selected, find the probability that her height is less than 65 in. (b) If 47 women are randomly selected, find the probability that they have a mean height less than 65 in. (a) The probability is approximately. (Round to four decimal places as needed.) (b) The probability is approximately. (Round to four decimal places as needed.) Steam Workshop Downloader