6. Express the given function h as a composition of two functions f and g
such that H(x) = (fog)(x).
a) H(x) = |3x +2|
b) H(x) = √√√√5x +4

Answers

Answer 1

The given function can be represented f(x) and g(x) as below

What are functions?

A function from X to Y is an assign of each constituent of Y to each variable of X. The set X is known as the function's scope, while the set Y is known as the function's image domain. The notation f: XY denotes a function, its domain, and its codomain, and the value of a function f at an element x of X, indicated by f(x), is known as the image of x under f, or the value of f applied to the argument x. When defining a function, the domains and codomain are not often explicitly specified, and without performing some (complicated) calculation, one may only know that perhaps the domain is included in a larger package.

The functions are

(a) f(x) = 3x+2 and g(x) = |x|

so, H(x) = f(g(x)) = |3x+2|

(b)  f(x) = 5x+4 and g(x) = √√√√x

so, H(x) = f(g(x)) = √√√√5x+4

To know more about functions, click on the link

https://brainly.com/question/10439235

#SPJ9


Related Questions

A. Marvin worked 4 hours a day plus an additional 5-hour day for a total of 29 hours.B. Marvin worked 9 hours a day for a total of 29 hoursC. Marvin worked 4 hours one day plus an additional 5 hours for a total of 29 hours.D. Marvin worked 4 days plus 5 hours for a total of 29 hours.

Answers

[tex]\begin{gathered} \text{Option A will be correct.} \\ 4\text{ hours per day+ }5\text{ hours =29 hours} \end{gathered}[/tex]

Factor the following expression using the GCF.5dr - 40rr(5 dr - 40)5 r( d - 8)r(5 d - 40)5( dr - 8 r)

Answers

[tex]5dr-40r[/tex]

The greatest common factor (GCF) is: 5r

You multiply 5r by d to get the first term and multiply 5r by -8 to get the second term, then the factors are:

[tex]5r(d-8)[/tex]Answer: 5r(d-8)

what is an identityA) an identity is a false equation relating to a mathematical expression to a real numberB) an identity is a true equation relating to a mathematical expression to a real numberC) an identity is a true equation relating one mathematical expression to another expressionD) an identity is a false equation relating to one mathematical expression to another expression

Answers

The right answer is C

<
Z2
Find the midpoint m of z₁ = (9+7i) and Z₂ = (-7+7₂).
Express your answer in rectangular form.
m=
Re

Answers

The midpoint m of z₁ = (9+7i) and Z₂ = (-7+7i) is 1 + 7i .

Given complex numbers:

[tex]z_{1}[/tex] = (9 + 7i) and [tex]z_{2}[/tex] = (-7 + 7i)

compare these numbers with a1+ib1 and a2+ib2, we get

a1 = 9, a2 = -7 , b1 = 7 and b2 = 7.

Mid point of complex numbers = a1 + a2 /2 + (b1 + b2 /2)i

= (9 + (-7)/2 + (7 + 7 /2)i

= 2/2 + 14/2 i

Mid point m = 1 + 7i

Therefore the midpoint m of z₁ = (9+7i) and Z₂ = (-7+7i) is 1 + 7i

Learn more about the midpoint and complex numbers here:

https://brainly.com/question/11839107

#SPJ1

Identify the constant of variation. 8y-7x=0

Answers

A direct variation between two variables "x" and "y" is given by the following formula:

y = kx

We can rewrite the given expression 8y-7x=0 to get an equation of the form y = kx like this:

8y - 7x = 0

8y - 7x + 7x = 0 + 7x

8y = 7x

8y/8 = 7x/8

y = 7/8x

The number that is being multiplied by x should be the constant of variation k, then in this case, the constant of variation equals 7/8

Rami practices his saxophone for 5/6 hour on 4 days each week.
How many hours does Rami practice his saxophone each week?

[] 2/[] Hr

Answers

Answer:

you take 5/6 and multiply it by 4/1.

which gives you 20/6

then reduce it by dividing the top number by the bottom number

 which gives you 3 with a remainder of 2

you then place the remainder over the

This tells you he practicedfor 3 2/6

Step-by-step explanation:

A box has 14 candies in it: 3 are taffy, 7 are butterscotch, and 4 are caramel. Juan wants to select two candies to eat for dessert. The first candy will be selectedat random, and then the second candy will be selected at random from the remaining candies. What is the probability that the two candies selected are taffy?Do not round your intermediate computations. Round your final answer to three decimal places.

Answers

Okay, here we have this:

Considering the provided information we are going to calculate what is the probability that the two candies selected are taffy. So, for this, first we are going to calculate the probability that the first is taffy, and then the probability that the second is taffy. Finally we will multiply these two probabilities to find the total probability.

Remember that the simple probability of an event is equal to favorable events, over possible events.

First is taffy:

At the beginning there are 14 sweets, and 3 are taffy, so there are 3 favorable events and 14 possible, then:

First is taffy=3/14

Second is taffy:

Now, in the bag there are 13 sweets left, and of those 2 are taffy, so now there are 2 favorable events out of 13 possible:

Second is taffy=2/13

The first and second are taffy:

First is taffy*Second is taffy=3/14*2/13

First is taffy*Second is taffy=3/91

First is taffy*Second is taffy=0.033

First is taffy*Second is taffy=3.3%

Finally we obtain that the probability that the two candies selected are taffy is aproximately 0.033 or 3.3%.

The given point (-3,-4) is on the terminal side of an angle in standard position. How do you determine the exact value of the six trig functions of the angle?

Answers

In this problem -3 will be the adyacent side, -4 will be the opposite side and wwe can calculate the hypotenuse so:

[tex]\begin{gathered} h^{}=\sqrt[]{(-3)^2+(-4)^2} \\ h=\sqrt[]{9+16} \\ h=\sqrt[]{25} \\ h=5 \end{gathered}[/tex]

So the trigonometric function will be:

[tex]\begin{gathered} \sin (\theta)=-\frac{4}{5} \\ \cos (\theta)=-\frac{3}{5} \\ \tan (\theta)=\frac{4}{3} \\ \csc (\theta)=-\frac{5}{4} \\ \sec (\theta)=-\frac{5}{3} \\ \cot (\theta)=\frac{3}{4} \end{gathered}[/tex]

Find the sum of the first nine terms of the geometric series 1 – 3 + 9 - 27+....

Answers

Hello there. To solve this question, we'll have to remember some properties about geometric series.

Given that we want the sum of

[tex]1-3+9-27...[/tex]

First, we find the general term of this series:

Notice they are all powers of 3, namely

[tex]\begin{gathered} 1=3^0 \\ 3=3^1 \\ 9=3^2 \\ 27=3^3 \\ \vdots \end{gathered}[/tex]

But this is an alternating series, hence the general term is given by:

[tex]a_n=\left(-3\right)^{n-1}[/tex]

Since we just want the sum of the first 9 terms of this geometric series, we apply the formula:

[tex]S_n=\frac{a_1\cdot\left(1-q^n\right?}{1-q}[/tex]

Where q is the ratio between two consecutive terms of the series.

We find q as follows:

[tex]q=\frac{a_2}{a_1}=\frac{\left(-3\right)^{2-1}}{\left(-3\right)^{1-1}}=\frac{-3}{1}=-3[/tex]

Then we plug n = 9 in the formula, such that:

[tex]S_9=\frac{1\cdot\left(1-\left(-3\right)^9\right?}{1-\left(-3\right)}=\frac{1-\left(-19683\right)}{1+3}=\frac{19684}{4}[/tex]

Simplify the fraction by a factor of 4

[tex]S_9=4921[/tex]

This is the sum of the nine first terms of this geometric series and it is the answer contained in the second option.

help ! it may or may not have multiple answers

Answers

From the given problem, there are 3 computer labs and each lab has "s" computer stations.

So the total number of computers is :

[tex]3\times s=3s[/tex]

Mr. Baxter is ordering a new keyboard and a mouse for each computer, since the cost of a keyboard is $13.50 and the cost of a mouse is $6.50.

Each computer has 1 keyboard and 1 mouse, so the total cost needed for 1 computer is :

[tex]\$13.50+\$6.50[/tex]

Since you now have the cost for 1 computer, multiply this to the total number of computers which is 3s to get the total cost needed by Mr. Brax :

[tex]3s\times(13.50+6.50)[/tex]

Using distributive property :

[tex]a(b+c)=(ab+ac)[/tex]

Distribute s inside the parenthesis :

[tex]3(13.50s+6.50s)[/tex]

One answer is 1st Option 3(13.50s + 6.50s)

Simplifying the expression further :

[tex]\begin{gathered} 3(13.50s+6.50s) \\ =3(20.00s) \end{gathered}[/tex]

Another answer is 4th Option 3(20.00s)

create an original function that has at least one asymptote and possibly a removable discontinuity list these features of your function: asymptote(s) (vertical horizontal slant) removable discontinuity(ies) x intercept(s) y intercept and end behavior provide any other details that would enable another student to graph and determine the equation for your function do not state your function

Answers

We have to create a function that has at least one asymptote and one removable discontinuity (a "hole").

We then have to list the type of feature.

We can start with a function like y = 1/x. This function will have a vertical asymptote at x = 0 and a horizontal asymptote at y = 0.

We can translate it one unit up and one unit to the right and write the equation as:

[tex]y=\frac{1}{x-1}+1=\frac{1}{x-1}+\frac{x-1}{x-1}=\frac{x}{x-1}[/tex]

Then, the asymptotes will be x = 1 and y = 1. We have at least one asymptote for this function.

We can now add a removable discontinuity. This type of discontinuity is one that is present in the original equation but, when factorizing numerator and denominator, it can be cancelled. This happens when both the numerator and denominator have a common root: the rational function can be simplified, but the root is still present in the original expression.

We than can add a removable discontinuity to the expression by multiplying both the numerator and denominator by a common factor, like (x-2). This will add a removable discontinuity at x = 2.

We can do it as:

[tex]y=\frac{x(x-2)}{(x-1)(x-2)}=\frac{x^2-2x}{x^2-3x+2}[/tex]

This will have the same shape as y =x/(x-1) but with a hole at x = 2, as the function can not take a value that makes the denominator become 0, so it is not defined for x = 2.

Finally, we can find the x and y intercepts.

The y-intercepts happens when x = 0, so we can calculate it as:

[tex]\begin{gathered} f(x)=\frac{x^2-2x}{x^2-3x+2} \\ f(0)=\frac{0^2-2\cdot0}{0^2-3\cdot0+2}=\frac{0}{2}=0 \end{gathered}[/tex]

The y-intercept is y = 0, with the function passing through the point (0,0).

As the x-intercept is the value of x when y = 0, we already know that the x-intercept is x = 0, as the function pass through (0,0).

Then, we can list the features as:

Asymptotes: Vertical asymptote at x = 1 and horizontal asymptote at y = 1.

Removable discontinuity: x = 2.

y-intercept: y = 0.

End behaviour: the function tends to y = 1 when x approaches infinity or minus infinity.

With that information, the function can be graphed.

I need some help with this (and no this is not a test)

Answers

You have the following expression:

[tex]a_n=3+2(a_{n-1})^{2}[/tex]

consider a1 = 6.

In order to determine the value of a2, consider that if an = a2, then an-1 = a1. Replace these values into the previous sequence formula:

[tex]\begin{gathered} a_2=3+2(a_1)^{2}= \\ 3+2\mleft(6\mright)^2= \\ 3+2(36)= \\ 3+72= \\ 75 \end{gathered}[/tex]

Hence, a2 is equal to 75

im taking geometry A and i have a hard time with the keeping the properties straight in mathematical reasoning. the question im struggling with at the moment is in the picture here:thank you for your time

Answers

The given proposition is

[tex]m\angle UJN=m\angle EJN\rightarrow m\angle UJN+m\angle YJN=m\angle EJN+m\angle YJN[/tex]

As you can observe, it was added angle YJN to the equation on both sides. The property that allows us to do that it's call addition property of equalities.

Therefore, the right answer is "addition property".

I need help doing this it’s the homework but I need to understand it for the test

Answers

By similar triangle, we have:

[tex]\begin{gathered} Let\text{ the unknown measurement be x} \\ \text{Thus, we have:} \\ \frac{14}{x}=\frac{8}{15} \\ \text{cross}-\text{multiply} \\ 8x=210 \\ x=\frac{210}{8} \\ x=26.25\text{ f}eet \end{gathered}[/tex]

Hence, the unknown measurement of the plan is 26.25 feet

Which of the following statements are true regarding functions? Check all that apply. A. The horizontal line test may be used to determine whether a function is one-to-one. B. The vertical line test may be used to determine whether a relatio is a function. C. A sequence is a function whose domain is the set of rational numbers. PREVIOUS

Answers

Statement A is true.

In the next example, we can see a function that is not one-to-one with the help of the horizontal line test:

Statement B is true.

In the next example, we can see a relationship that is not a function because it doesn't pass the vertical line test

Statement C is false.

A sequence is a function whose domain is the set of natural numbers

Given a function described by the table below, what is y when x is 5?XY264859612

Answers

Given a function described by the table

We will find the value of (y) when x = 5

As shown in the table

When x = 5, y = 9

so, the answer will be y = 9

According to the Florida Agency for Workforce, the monthly average number of unemployment claims in a certain county is given by () = 22.16^2 − 238.5 + 2005, where t is the number of years after 1990. a) During what years did the number of claims decrease? b) Find the relative extrema and interpret it.

Answers

SOLUTION

(a) Now from the question, we want to find during what years the number of claims decrease. Let us make the graph of the function to help us answer this

[tex]N(t)=22.16^2-238.5t+2005[/tex]

We have

From the graph above, we can see that the function decreased at between x = 0 to x = 5.381

Hence the number of claims decreased between 1990 to 1995, that is 1990, 1991, 1992, 1993, 1994 and 1995

Note that 1990 was taken as zero

(b) The relative extrema from the graph is at 5.381, which represents 1995.

Hence the interpretation is that it is at 1995 that the minimum number of claims is approximately 1363.

Note that 1363 is approximately the y-value 1363.278

Lne segment AC and BD are parallel, what are the new endpoints of the line segments AC and BD if the parallel lines are reflected across the y-axis?

Answers

Given a point P = (x, y) a reflection P' alongside the y axis of that point follows the rule:

[tex]P=(x,y)\Rightarrow P^{\prime}=(-x,y)[/tex]

We need to multiply the x coordinates of the points by (-1)

The cordinates of the points in the problem are:

A = (2, 5)

B = (2, 4)

C = (-5, 1)

D = (-5, 0)

Then the endpoints of the reflection over the y axis are:

A' = (-2, 5)

B' = (-2, 4)

C' = (5, 1)

D' = (5, 0)

Which is the second option.

The slope of the line containing the points (-2, 3) and (-3, 1) is

Answers

Hey :)

[tex]\star\sim\star\sim\star\sim\star\sim\star\sim[/tex]

Apply the little slope equation. By doing that successfully, we should get our correct slope.

[tex]\large\boldsymbol{\frac{y2-y1}{x2-x1}}[/tex]

[tex]\large\boldsymbol{\frac{1-3}{-3-(-2)}}[/tex]

[tex]\large\boldsymbol{\frac{-2}{-3+2}}[/tex]

[tex]\large\boldsymbol{\frac{-2}{-1}}[/tex]

[tex]\large\boldsymbol{-2}}[/tex]

So, the calculations showed that the slope is -2. I hope i could provide a good explanation and a correct answer to you. Thank you for taking the time to read my answer.

here for further service,

silennia

[tex]\star\sim\star\sim\star\sim\star\sim\star\sim[/tex]

Lisa's rectangular living room is 15 feet wide. If the length is 7 feet less than twice the width, what is the area of her living room?

Answers

345ft²

1) Since we have the following data then we can write it down:

width: 15 ft

length: 2w-7

2) And we can write out the following equation regarding that the area of a rectangle is given by:

[tex]S=l\cdot w[/tex]

We can plug into that the given data:

[tex]\begin{gathered} S=15(2(15)-7)) \\ S=15(30-7) \\ S=15\cdot23 \\ S=345 \end{gathered}[/tex]

Notice we have used the FOIL acronym. And the PEMDAS order of operations prioritizing the inner parentheses.

3) So we can state that the area of her living room is 345ft²

Gloria's teacher asks her to draw a triangle with a 90° angle and a 42° angle.How many unique triangles can Gloria draw that meet her teacher's requirements?AOne unique triangle can be drawn because the third angle must measure 48º.BNo unique triangle can be drawn because the teacher only gave the measures of two angles.СInfinitely many unique triangles can be drawn because the side lengths of the triangles can be different sizes.DThere is not enough information to determine how many unique triangles can be drawn.

Answers

SOLUTION

Sum of angles in a triangle must be equal to 180°

So, since one of the angle measures 90° and the other is 42°, then

90 + 42 + y = 180°, where y is the third angle

So, 132 + y = 180

y = 180 - 132 = 48°.

Therefore, one unique triangle can be drawn because the third angle must measure 48º.

Option A is the correct answer.

A ball is thrown from an initial height of 4 feet with an initial upward velocity of 23 ft/s. The ball's height h (in feet) after 1 seconds is given by the following.h=4+231-167Find all values of 1 for which the ball's height is 12 feet.Round your answer(s) to the nearest hundredth.(If there is more than one answer, use the "or" button.)Please just provide the answer my last tutor lost connection abruptly.

Answers

Answer

t = 0.59 seconds or t = 0.85 seconds

Step-by-step explanation:

[tex]\begin{gathered} Given\text{ the following equation} \\ h=4+23t-16t^2\text{ } \\ h\text{ = 12 f}eet \\ 12=4+23t-16t^2 \\ \text{Collect the like terms} \\ 12-4=23t-16t^2 \\ 8=23t-16t^2 \\ 23t-16t^2\text{ = 8} \\ -16t^2\text{ + 23t - 8 = 0} \\ \text{ Using the general formula} \\ t\text{ }=\text{ }\frac{-b\pm\sqrt[]{b^2\text{ - 4ac}}}{2a} \\ \text{let a = -16, b = 23, c = -8} \\ t\text{ = }\frac{-23\pm\sqrt[]{(23)^2\text{ - 4}\cdot\text{ }}(-16)\text{ x (-8)}}{2(-16)} \\ t\text{ = }\frac{-23\pm\sqrt[]{529\text{ - 512}}}{-32} \\ t\text{ = }\frac{-23\pm\sqrt[]{17}}{-32} \\ \text{t = -23+}\frac{\sqrt[]{17}}{-32}\text{ or -23-}\frac{\sqrt[]{17}}{-32} \\ t\text{ = -23 }+\text{ 4.12/-32 or t = }\frac{-23\text{ - 4.12}}{-32} \\ t\text{ = }0.59\text{ seconds or t =0.85 seconds} \end{gathered}[/tex]

Therefore, t = 0.59 seconds or t = 0.85 seconds

Determine the frequency of each class and the table shown

Answers

Given:

The dataset and table with class.

Required:

Determine the frequency of each class.

Explanation:

Answer:

Answered the question.

Let f(x)=3x-2. What is f^-1 (x) ?

Answers

Given the function:

f(x) = 3x - 2

Let's find the inverse of the function f⁻¹(x).

To find the inverse of the function, apply the following steps:

• Step 1.

Rewrite y for f(x)

[tex]y=3x-2[/tex]

• Step 2.

Interchange the x and y variables:

[tex]x=3y-2[/tex]

• Step 3.

Solve for y.

Add 2 to both sides:

[tex]\begin{gathered} x+2=3y-2+2 \\ \\ x+2=3y \end{gathered}[/tex]

• Step 4.

Divide all terms by 3:

[tex]undefined[/tex]

I will provide another picture with the questions to this problemBefore beginning: please note that this is lengthy, pre calculus practice problem

Answers

[tex]\begin{gathered} \text{For }Albert \\ For\text{ \$1,000} \\ t=10years=120\text{ months} \\ i=1.2\text{\%=0.012} \\ C=1,000(1+0.012)^{120} \\ C=1,000(1.012)^{120} \\ C=\text{\$}4,184.67 \\ \text{For \$}500 \\ \text{lost 2\%=0.02 over 10 years, hence} \\ C1=500(1-0.02) \\ C1=500(0.98) \\ C1=\text{ \$}490 \\ \text{For \$}500 \\ i=0.8\text{ \%=0.008} \\ t=10 \\ C2=500(1+0.008)^{10} \\ C2=500(1.008)^{10} \\ C2=\text{ \$}541.47 \\ \text{Total}=\text{\$}4,184.67+\text{ \$}490+\text{ \$}541.47 \\ \text{Total}=\text{ \$5,216.14} \\ After\text{ 10 year Albert has \$5,216.14} \\ \text{For Marie} \\ For\text{ \$1,500} \\ Quaterly \\ 1\text{ year has }3\text{ quaternions, hence in 10 years are 30 quaternions, t=30} \\ i=1.4\text{ \% monthly, hence } \\ \frac{1.4\text{ \% }}{3}=0.467\text{ \%=0.00467} \\ C=1,500(1+0.00467)^{30} \\ C=1,500(1.00467)^{30} \\ C=\text{ \$}1,725.02 \\ \text{For \$500} \\ C2=500(1+0.04) \\ C2=500(1.04) \\ C2=\text{ \$}520 \\ \text{Total}=\text{ \$}1,725.02+\text{ \$}520 \\ \text{Total}=\text{ \$}2,245.02 \\ After\text{ 10 year Marie has \$2,245.02} \\ \text{For }Hans \\ t=10 \\ i=0.9\text{ \%=0.009} \\ C=2,000(1+0.009)^{10} \\ C=2,000(1.009)^{10} \\ C=\text{\$}2,187.47 \\ After\text{ 10 year Hans has \$}2,187.47 \\ \text{For }Max \\ For\text{ 1,000} \\ t=10 \\ i=0.5\text{ \%=0.005} \\ C=1,000e^{(-0.005)(10)} \\ C=\text{\$}951.23 \\ \text{For 1,000} \\ i=1.8\text{ \%=0.018} \\ t=20 \\ C1=1,000(1+0.018)^{20} \\ C1=1,000(1.018)^{20} \\ C1=\text{ \$1,428.75} \\ \text{Total =\$}951.23+\text{ \$1,428.75} \\ \text{Total}=\text{ \$2,379.98} \\ After\text{ 10 year Max has \$2,379.98} \\ \\ At\text{ the end of the competition is \$10,000 richer than his siblings} \end{gathered}[/tex]

write each of the following numbers as a power of the number 2

Answers

Answer

The power on 2 is either -3.5 in decimal form or (-7/2) in fraction form.

Explanation

To do this, we have to first note that

[tex]\begin{gathered} \sqrt[]{2}=2^{\frac{1}{2}} \\ \text{And} \\ 16=2^4 \end{gathered}[/tex]

So, we can then simplify the given expression

[tex]\begin{gathered} \frac{\sqrt[]{2}}{16}=\frac{2^{\frac{1}{2}}}{2^4}=2^{\frac{1}{2}-4} \\ =2^{0.5-4} \\ =2^{-3.5} \\ OR \\ =2^{\frac{-7}{2}} \end{gathered}[/tex]

Hope this Helps!!!

Professor Ahmad Shaoki please help me! The length of each side of a square is extended 5 in. The area of the resulting square is 64 in,2 Find the length of a side of the

original square. Help me! From: Jessie

Answers

The length of the original square must be equal to 3 inches.

Length of the Original Square

To find the length of the original square, we have to first assume the unknown length is equal x and then use formula of area of a square to determine it's length.

Since the new length is stretched by 5in, the new length would be.

[tex]l = (x + 5)in[/tex]

The area of a square is given as

[tex]A = l^2[/tex]

But the area is equal 64 squared inches; let's use substitute the value of l into the equation above.

[tex]A = l^2\\l = x + 5\\A = 64\\64 = (x+5)^2\\64 = x^2 + 10x + 25\\x^2 + 10x - 39 = 0\\[/tex]

Solving the quadratic equation above;

[tex]x^2 + 10x - 39 = 0\\x = 3 or x = -13[/tex]

Taking the positive root only, x = 3.

The side length of the original square is equal to 3 inches.

Learn more on area of square here;

https://brainly.com/question/24487155

#SPJ1

geometric series in context

Answers

Solution

For this case we can model the problem with a geometric series given by:

[tex]a_n=600(1+0.2)^{n-1}[/tex]

And we can find the value for n=23 and we got:

[tex]a_{23}=600(1.2)^{23-1}=33123.69[/tex]

And rounded to the neares whole number we got 33124

and using the sum formula we got:

[tex]S_{23}=\frac{600(1.2^{23}-1)}{1.2-1}=195742[/tex]

I need to find the radius and the diameter but I don't understand.

Answers

ANSWER

Radius = 3 yd

Diameter = 6 yd

EXPLANATION

We are given the circle in the figure.

The radius of a circle is defined as the distance between the centre of a circle and its circumference.

Therefore, from the circle given, the radius is 3 yards

The diameter of a circle is defined as the total distance (through the centre) from one end of a circle to another.

It is twice the radius. Therefore, the diameter of the given circle is:

D = 3 * 2

D = 6 yards

The diameter is 6 yards.

Not sure on how to do this. Would really like some help.

Answers

Given:

[tex]\cos60^{\circ}[/tex]

To find:

The value

Explanation:

We know that,

[tex]\cos\theta=\sin(90-\theta)[/tex]

So, we write,

[tex]\begin{gathered} \cos60^{\circ}=\sin(90-60) \\ =\sin30^{\circ} \\ =\frac{1}{2} \end{gathered}[/tex]

Final answer:

[tex]\cos60^{\circ}=\frac{1}{2}[/tex]

Other Questions
I am struggling with this question. could you help me please?? SOMEONE PLEASE HELP ME QUICKLY WITH THIS,ITS AN EMERGENCY!!!!! pls explain how you get the solution as well, sorry! Thank you Four points are labeled on the number line. M K L zo 0.5 1 Which point best represents 3? F. Point K G. H. Point 2 Point M Point N J. Given ABC with mB = 62, a = 14, and c = 16, what is the measure of A? I need the answer soon!A museum charges $10 for general admission and $2 for each special exhibit you attend.What does f(0) = 10 represent in the context of this problem? carlos is an hr manager in a manufacturing plant who wants to motivate his employees. he uses job characteristics theory to guide him. one step carlos will take is: An envelope is 15 centimeters wide, and it measures 17 centimeters along the diagonal. The envelope is __ centimeters tall. The area of a rectangle is 110 square units. Its length measures 11 units. Find the length of its diagonal. Round to the nearest tenth of a unit n Bill's physics class, he had to solve the equation 6 = 12kx2 for k. Each step of his work is shown below. Hello! I need a little bit of help with this question please. (This information is not from an open test, it is a book as I'm studying for the ASVAB I am going to take later on.) a company acquires equipment for $50,000 and expects to use the equipment for 5 years. salvage value at the end is expected to be $10,000. the amount of annual depreciation by the straight-line method is $ Solve for y:4x-8y=32 In an arithmetic sequence with a1=-5 and d=-3, which term is -24?The term -24 is the ___th term of the sequence hi I need help with this question anyone got answers??? please its due tmrrrr!!!!!5 1/4 2/4 what were the goals of taylor's scientific management? benefit the worker benefit the firm increase focus on human factors increase worker productivity Send me Answers for Questions A, B, and C In response to increased consumer demand for healthful beverages, some soft-drink companies introduced new product lines of flavored water and fruit juices in order to ________blank their product mix. 8. Anna withdrew $50 from her checking account. She spent $28 on a pair of shoes. What fraction of her money does Anna have left? What is the barter system? What is the inherent problem of this system? How does money solve the problem of double coincidence of wants? A boat can travel 228 miles on 19gallons of gasoline. How much gasolinewill it need to go 48 miles?Round the answer to two decimal digits