B. Hexagonal Prism
1) One prism is defined, in terms of naming it by the base.
2) Counting the edges of the base in this net surface, we can tell that this is a Hexagonal Prism for the base is a hexagon.
A group of 38 people are going to an amusement park together. They decide to carpool to save fuel. If seven people can fit in each car, how many cars do they need to take on the outing? [?] cars 3
So, the number of people = 38
7 people can fit in a one car
so, to find the number of cars divide 38 by 7
So, the number of cars = 38/7 = 5.4
But the number of cars must be integer
so, the number of cars = 6 cars
The answer is 6 cars
find the width of a newer 48-in TV whose screen has an aspect ratio of 16:9what is the width?
The width of the TV is 41.84-in
Explanations:The diagonal size of the TV, d= 48 in
The aspect ratio= 16 : 9
The aspect ratio is usually given in form of width : Height
Let the width = w
Let the height = h
The diagram looks like:
[tex]\begin{gathered} \frac{w}{h}=\text{ }\frac{16}{9} \\ h\text{ = }\frac{9w}{16} \end{gathered}[/tex]Using the Pythagoras theorem:
[tex]\begin{gathered} d^2=h^2+w^2 \\ 48^2\text{ = (}\frac{9w}{16})^2+w^2 \\ 2304\text{ = }\frac{81w^2}{256}+w^2 \\ \text{Multiply through by 256} \\ 589824=81w^2+256w^2 \\ 589824\text{ = }337w^2 \\ w^2\text{ = }\frac{589824}{337} \\ w^2\text{ = 1750.22} \\ w\text{ = }\sqrt[]{1750.22} \\ w\text{ = 41.84 } \end{gathered}[/tex]The width of the TV is 41.84-in
Simplify a raised to the negative third power over quantity 2 times b raised to the fourth power end quantity all cubed.
[tex]\frac{1 }{8*a^{9}*b^{12}}[/tex].
Step-by-step explanation:1. Write the expression.[tex](\frac{a^{-3} }{2b^{4} } )^{3}[/tex]
2. Solve the parenthesis by multiplying the exponents with each part of the fraction.[tex]\frac{a^{(-3*3)} }{2^{(3)} b^{(4*3)} } \\ \\\frac{a^{(-9)} }{8b^{(12)} }\\ \\\frac{a^{-9} }{8b^{12} }[/tex]
3. Move a to the denominator (the negative sign of the exponent vanishes).[tex]\frac{1 }{8b^{12} *a^{9}}\\ \\\frac{1 }{8*a^{9}*b^{12}}[/tex]
4. Express your result.[tex](\frac{a^{-3} }{2b^{4} } )^{3}=\frac{1 }{8*a^{9}*b^{12}}[/tex].
a recipe call for 3/4 cup of olive oil for every 1/2 cup of vinegar. how much vinigar is needed for 2 cups of olive oil? how do I solve this step by step?
The amount of vinegar needed is 1 (1/3) cups
What is Unitary method
Unitary method is a method of finding the value of 1 unit by using the value of multiple units or by the given quantity So that we can find the value of a given unknown quantity.
Here we have
A recipe requires 3/4 cup of olive oil for every 1/2 cup of vinegar
The amount of olive oil = 2 cups
Which means 3/4 cup of olive oil requires 1/2 cup of vinegar
then the vinegar required for 1 cup of Olive oil
= (vinegar Qty ÷ olive oil Qty) × 1 cup
= (1/2) ÷ (3/4) × 1
= 1/2 / 3/4 = 2/3
Therefore,
1 cup of olive oil requires 2/3 rd cup of vinegar
Then the amount of vinegar is needed for 2 cups of olive oil
= 2 × [ the amount of vinegar required for 1 cup of olive oil ]
= 2 × (2/3) = 4/3 = 1(⅓)
The amount of vinegar needed is 1 (1/3) cups
Learn more about Unitary Method and calculation at
https://brainly.com/question/20349467
Add the equation below:-9p=3p + 18Hint: We can isolate the variable by dividing each side by factors that don't contain the variable.
We have the next given equation:
[tex]9p=3p+18[/tex]Now, we can subtract both sides by 3p:
[tex]\begin{gathered} 9p-3p=3p-3p+18 \\ 6p=18 \end{gathered}[/tex]Then, divide both sides by 6:
[tex]\begin{gathered} \frac{6p}{6}=\frac{18}{6} \\ p=3 \end{gathered}[/tex]Hence, the answer is p=3
What is the value of x in the equation −6 + x = −2? (5 points)84−4−8
Given the equation:
[tex]-6+x=-2[/tex]solving for x:
[tex]\begin{gathered} x=-2+6 \\ x=4 \end{gathered}[/tex]ANSWER
x = 4
In a recent year, 26.3% of all registered doctors were female. If there were 47,400 female registered doctors that year, what was the total number of registered doctors? Round your answer to the nearest whole number.
From the problem statement we can write:
47,400 is 26.3% of total registered doctors
We need to convert this word equation to algebraic equation noting that,
• "is" means "="
,• "of" means "x"
Also, remember to convert the percentage to decimal by dividing by 100,
[tex]\frac{26.3}{100}=0.263[/tex]The algebraic equation, thus, is:
[tex]47,400=0.263\times\text{total}[/tex]We let total be "t" and solve :
[tex]\begin{gathered} 47,400=0.263t \\ t=\frac{47,400}{0.263} \\ t=180228.14 \end{gathered}[/tex]Rounding to the nearest whole number,
Total Registered Doctors = 180,228
Answer:
180,228A computer part costs $7 to produce and distribute. Express the profit p made by selling 300 of these parts as a function of the price of c dollars. (Do not include $ symbol in your answer)
Given:
Each part costs $7 to produce and distribute.
The total number of parts on selling is 300 to make the profit P.
To write the function expression in terms of sale price C and profit P:
As we know,
[tex]\text{Profit}=\text{Selling price-cost price}[/tex]So, if we produce 1 part and sell that part, then the profit is
[tex]P=C-7[/tex]For 300 parts, the profit is
[tex]\begin{gathered} P=300(C-7) \\ P=300C-2100 \end{gathered}[/tex]Hence, the function is expressed in terms of P and C is,
[tex]P=300C-2100[/tex]Please help with the question below (please try to answer in maximum 5/10 minutes).
Given
Joshira can create 1 item in 3/4 of an hour.
To find:
How many items can she create in 8 hours?
Explanation:
It is given that,
Joshira can create 1 item in 3/4 of an hour.
That implies,
[tex]\begin{gathered} Number\text{ }of\text{ }items\text{ }created\text{ }in\text{ }\frac{3}{4}\text{ }hour=1 \\ Number\text{ }of\text{ }items\text{ }created\text{ }in\text{ }1\text{ }hour=1\div(\frac{3}{4}) \\ =1\times\frac{4}{3} \\ =\frac{4}{3} \end{gathered}[/tex]Therefore, number of items created in 8 hours is,
[tex]\begin{gathered} Number\text{ }of\text{ }items\text{ }created\text{ }in\text{ }8\text{ }hours=\frac{4}{3}\times8 \\ =\frac{32}{3} \\ =\frac{30+2}{3} \\ =\frac{30}{3}+\frac{2}{3} \\ =10+\frac{2}{3} \\ =10\frac{2}{3}\text{ }items \end{gathered}[/tex]Hence, she can create 10 2/3 items in 8 hours.
Find the 100-th term of the following sequence
3, 10, 17, 24, …
Also find the sum of the first 100 terms.
Answer:
696
Step-by-step explanation:
*nth term = 7n - 4
n = 100
7 × 100 - 4 = 696
So the 100th term of the following sequence is: 696
*To find the nth term:
They all increase by 7 so it is 7n3 - 7 = -4 so then it is 7n - 4Answer:
Below in bold.
Step-by-step explanation:
This is an arithmetic sequence with a1 = 3 and d = 7.
So, 100th term
= a1 + d(n - 1)
= 3 + 7(100-1)
= 696.
Sum (100) =
(n/2)[2a1 + d(n - 1)]
= 50(6 + 99*7)
= 50 * 699
= 34950.
Maria made 97% of her penalty kicks in soccer. Her teammates' percentages were uniformly distributed between 65% and 80%.Select all the statements that must be true?O A The mean would decrease by omitting Maria's score.B. The median would decrease by omitting Maria's score.O c The range would decrease by omitting Maria's score.D. The interquartile range would decrease by omitting Maria's score.E The standard deviation would decrease by omitting Maria's score,
Let's evaluate each statement to check wheter they are true or not.
A. "The mean would decrease by omitting Maria's score".
The mean is the sum of all the scores divided by the number of attempts. Since Maria had a higher score, if we omitted it then the sum would decrease and by extension the mean would decrease as well.
This option is true.
B. The median would decrease by omitting Maria's score.
The median is the value on the middle of the series, if we omit Maria's score, which was one of the highest then the middle of the series should move to the left, decreasing it.
This option is true.
C. The range would decrease by omitting Maria's score.
The range of a function are the values that said function can have as an output. If we omit Maria's score then the output of the function would be only the values scored by their team mates, which would go from 65 to 80, instead of 65 to 97. Therefore the range would decrease.
This option is true.
D. The interquartile range would decrease by omitting Maria's score.
The interquartile range are the values between the 25% values of the series and the 75% values of the series. Since Maria is the highest score between her teammates, she is not considered into the IQR and the value wouldn't change by removing her score.
This option is false.
E. The standard deviation would decrease by omitting Maria's score.
The standard deviation is the mean amount of variation in a series, since all her teammates are in the range of 65% to 80% and Maria is way above on the 97% score, by taking her score out we decrease the standard deviation, because there will be less variation in the serie.
This option is true.
5(3a-1) - 2(3a+2)=3(a+2) + vselect two expressions that are equivalent to v.
Let's solve the equation for v to identify the expressions:
[tex]\begin{gathered} 5(3a-1)-2(3a+2)=3(a+2)+v \\ 15a-5-6a-4=3a+6+v \\ 9a-9=3a+6+v \\ v=9a-3a-9-6 \\ v=6a-15 \\ v=3(2a-5) \end{gathered}[/tex]Therefore the equivalent expressions are D and E
Question 5
< >
A research group needs to determine a 99% confidence interval for the mean repair cost for all car insurance
small claims. From past research, it is known that the standard deviation of such claims amounts to $146.91.
a. What is the critical value that corresponds to the given level of confidence?
Round your answer to two decimal places.
b. If the group wants their estimate to have a maximum error of $16, how many small claims should they
sample?
Round your answer up to the next integer.
Submit Question Jump to Answer
A standard deviation is a measure of how widely distributed the data is in relation to the mean. The critical value is z = 1.645 and the should sample at least 228.13638 small claims.
What is meant by standard deviation?A standard deviation (or) is a measure of how widely distributed the data is in relation to the mean. A low standard deviation indicates that data is clustered around the mean, whereas a high standard deviation indicates that data is more spread out.
The square root of the average of all squared deviations is the standard deviation. A region defined by one standard deviation, or one sigma, plotted above or below the average value on that normal distribution curve would include 68 percent of all data points.
Explanation in detail:
We can calculate our ∝ level by subtracting 1 from the confidence interval and dividing it by 2. So:
[tex]$\alpha=\frac{1-0.99}{2}=0.05[/tex]
Now we must locate z in the Stable, as z has a p value of [tex]$1-\alpha$[/tex]
So z with a p value of 1-0.05=0.95 equals z=1.645, implying that the answer to question an is z=1.645.
Determine the margin of error M as follows:
[tex]M=z * \frac{\sigma}{\sqrt{n}}[/tex]
In which ∝ is the standard deviation of the people and n is the size of the sample.
b)
[tex]$16=1.645 \cdot \frac{146.91}{\sqrt{n}}[/tex]
Expand
[tex]$1.645 \cdot \frac{146.91}{\sqrt{n}}: \quad \frac{241.66695}{\sqrt{n}}$$$[/tex]
[tex]$16=\frac{241.66695}{\sqrt{n}}$$[/tex]
Square both sides:
[tex]$\quad 256=\frac{58402.91472 \ldots}{n}$[/tex]
[tex]$256=\frac{58402.91472 \ldots}{n}[/tex]
Solve
[tex]$256=\frac{58402.91472 \ldots}{n}: \quad n=228.13638 \ldots$[/tex]
Verify Solutions: [tex]$n=228.13638 \ldots$[/tex] True
The solution is
n=228.13638...
To learn more about standard deviation, refer to:
https://brainly.com/question/475676
#SPJ13
Cheng-Yu ordered a book that cost $24 from an online store. Hertotal with the shipping charge was $27. What was the percent ofmarkup charged for shipping?
Given:
Cost of book = $24
Total cost of book (shipping charge inclusive) = $27
The shipping charge is:
Total cost - cost of book = $27 - $24 = $3
The shipping charge is $3
To find the percentage markup charged for shipping, use the formula:
[tex]\frac{ship\text{ charge}}{Total\text{ cost}}\ast100[/tex][tex]\frac{3}{27}\ast100\text{ = }0.111\text{ }\ast\text{ 100 = }11.1percent^{}[/tex]Therefore, the percent of markup charged for shipping is 11.1%
ANSWER:
11.1%
CD is the midsegment of trapezoid WXYZ. you must show your work to all the parts below
Given that CD is the midsegment of the trapezoid WXYZ
From the properties of Midsegment of trapezoid we have :
0. The midsegment of a trapezoid is parallel to each base.
,1. The length of the midsegment of a trapezoid is equal to half the sum of the lengths of its bases.
[tex]\text{length of mid segment =}\frac{a+b}{2}[/tex]In the given figur, the mid segement CD= 22
length of parallel side is WZ=x+3
and the length of another side XY = 4x+1
so apply the mid segment length formula :
[tex]\begin{gathered} CD=\frac{WZ+XY}{2} \\ 22=\frac{x+3+4x+1}{2} \\ 5x+4=44 \\ 5x=40 \\ x=8 \end{gathered}[/tex]x=8,
For, XY :
Substitute x=8 into the given length expression of XY
XY =4x+1
XY=4(8)+1
XY=33
For, WZ :
Substitute x=8 into the given expression length of WZ
WZ=x+3
WZ=8+3
WZ=11
Answer :
a). x = 8
b). XY = 33
c). WZ = 11
What is the most precise name for quadrilateral ABCD with vertices A(−5,7), B(6,−3), C(10,2), and D(−1,12)?A. rectangleB. parallelogramC. squareD. rhombus
Answer:
A. Rectangle
Step-by-step explanation:
A person randomly selects one of four envelopes. Each envelope contains a check that the person gets to keep. However, before the person can select an envelope, he or she must pay $ 15 to play. Determine the person's expectation if two of the envelopes contain $ 5 checks and two of the envelopes contain $ 35 checks.
The person's expectation if two of the envelopes contain $ 5 checks and two of the envelopes contain $ 35 checks is $5.
In the given question,
A person randomly selects one of four envelopes.
Each envelope contains a check that the person gets to keep.
However, before the person can select an envelope, he or she must pay $15 to play.
We have to determine the person's expectation if two of the envelopes contain $5 checks and two of the envelopes contain $35 checks.
As we know that when the person have to select envelope then they have to pay $15.
Total number of envelop = 4
From the 4 envelop 2 have $5 each and 2 have $35 each.
So the probability of getting envelop of $5 = 2/4 = 1/2
Probability of getting envelop of $35 = 2/4 = 1/2
Let x be the amount a person gets after selecting the envelop.
So E(x) = $5×1/2 + $35×1/2
Taking 1/2 common on both side
E(x) = 1/2 ($5+$35)
E(x) = 1/2×$40
E(x) = $20
But he have to pay $15 before selecting the envelop.
So required expectation = $20−$15 = $5
Hence, the person's expectation if two of the envelopes contain $ 5 checks and two of the envelopes contain $ 35 checks is $5.
To learn more about Probability link is here
https://brainly.com/question/11234923
#SPJ1
Write the tangent ratios for LP and 4Q. If needed, reduce!P12R160Not drawn to scaletan P=tan Q =
Given: The right triangle PQR as shown
To Determine: The tangents of P and Q
Solution
Given a right triangle, the tangent of any angle can be determine
Note that the side facing the right angle is the hypothenuse, the side facing the angle is the opposite and the other side is the adjacent.
Determine the opposite and the adjacent for angle P in the triangle PQR given
[tex]\begin{gathered} Note; \\ tan\theta=\frac{opposite}{adjacent} \\ tanP=\frac{16}{12} \\ tanP=\frac{4}{3} \end{gathered}[/tex]Subtract 9 1/4 - 4 3/4 . Simplify the answer and write as a mixed number.
Upon subtracting 9 1/4 from 4 3/4 we get 18/4.
Given
9 1/4 - 4 3/4
solution:
[tex]9\frac{1}{4}[/tex] can be written as 37/4 ( 9 * 4 + 1 thus 37/4) and
[tex]4\frac{3}{4}[/tex] can be written as 19/4 ( 4 * 4 + 3 thus 19/4)
37/4 - 19/4 as 4 is the common denominator for both the fractions so take 4 as the denominator
[tex]= \frac{37-19}{4}[/tex] = 18/4 if we further simplify 18/4 = 4.5
learn more about simplifications at
brainly.com/question/23509407
A fisherman drops a fishing line into the sea. The end of the fishing pole is at an elevation of 5 feet. The hook that is in the water is at an elevation of -2 feet.cessmentThe number line shows their heights. Sea level is represented by 0.1. Write an absolute value expression telling how many feet the end of the fishingpole is above sea level. Evaluate the expression.2. Write an absolute value expression telling how many feet the hook is below sealevel. Evaluate the expression. 3. If the fishing line goes straight down into the water, what is the distance betweenthe end of the pole and the hook? Explain how you found this distance.
In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data:
sea level = 0 ft
end of fishing pole = 5 ft
hook = -2 ft
Step 02:
absolute value:
distance between sea level and the end of fishing pole:
| 5 - 0| = | 5 | = 5 ft
distance between hook and sea level:
|0 - (-2)| = | 0 + 2| = |2| = 2 ft
distance between hook and the end of the fishing pole:
| 5 - (-2)| = | 5 + 2| = |7| = 7 ft
To find out the distance we must consider the entire interval.
That is the full solution.
Answer:
Given a fishing line acting as number line, find the asked distances
Explanation:
given a fishing line having its one end of the fishing pole above the water. Let this distance be denoted by 'a'.
given that the hook of this fishing line is in the water hence, below the sea level. Let this depth be denoted by 'b'.
let the height of pole from sea-level be denoted by , height of the hook from sea level be denoted by and the length between pole end and hook be
since, this fishing line is acting as a number line with sea level as . The depth of fishing hook is negative and the elevation of the pole end is positive .
hence we get expressions,
for given values the evaluation of the expressions is,
Step-by-step explanation:
Expand the following using the suitable identity.(-x + 2y - 3z)^2
Given the expression (-x + 2y - 3z)², we are to expand it using a suitable identity.
Using the square of the sum of trinomial identity expressed as:
[tex](a+b+c)^2=a^2+b^2+c^2+2\text{ab+2ac+2bc}[/tex]From the given expression;
[tex]\begin{gathered} a=-x \\ b=2y \\ c=-3z \end{gathered}[/tex]Substitute the parameters into the identity to expand as shown:
[tex](-x+2y-3z)^2=(-x)^2+(2y)^2+(-3z)^2+2(-x)(2y)+2(-x)(-3z)_{}+2(2y)(-3z)[/tex]
Simplify the result to have:
[tex](-x+2y-3z)^2=x^2+4y^2+9z^2-4xy+6xz_{}-12yz[/tex]This gives the correct expansion using a suitable identity
The inequality 3x +2> x+8 is equivalent to
A. x>-12
C. x > 3
B. x > 2/2/1
D. x <3
Answer: C
Step-by-step explanation:
3x + 2 > x +8
= 3x + 2 -2 > x + 8 -2
= 3x > x + 6
= 3x - x > x - x + 6
= 2x/2 > 6/2
= x > 3
Answer:
C
Step-by-step explanation:
It is the only one that makes sense.
pls mark brainlest with the crown
Enter an equation that represents the data in the table. 3 5 10 8 16 10 20 у 6 An equation is y = 6
Given data:
The given table is shown.
The expression for the equation passing through the points (3, 6) and (5, 10) is,
[tex]\begin{gathered} y-6=\frac{10-6}{5-3}(x-3) \\ y-6=\frac{4}{2}(x-3) \\ y-6=2(x-3) \\ y=2x \end{gathered}[/tex]Thus, the equation of the line is y=2x.
find the reference angle for -0.8pi
Answer:
What is Meant by the Reference Angle? In mathematics, the reference angle is defined as the acute angle and it is measuring less than 90 degrees. It is always the smallest angle, and it makes the terminal side of an angle with the x-axis.
how to write the rule for the rotation on #11?
#11
If the point (x, y) is rotated 180 degrees around the origin clockwise or anti-clockwise, then its image will be (-x, -y)
We just change the sign of the coordinates
From the attached picture we can see
The parallelogram MNOP where
M = (1, -2)
N = (3, -2)
O = (4, -4)
P = (2, -4)
The parallelogram M'N'O'P' where
M' = (-1, 2)
N' = (-3, 2)
O' = (-4, 4)
P' = (-2, 4)
Since all the signs of the coordinates are changed, then
M'N'O'P' is the image of MNOP by rotation 180 degrees around the orign
The rule of transformation is
[tex]R\rightarrow(O,180^{\circ})[/tex]Mai must choose a number between 49 and 95 that is a multiple of 3, 8, and 12. Write all the numbers that she could choose. If there is more than one number, seperate them with commas.
Answer:
72
Explanation:
To choose a number between 49 and 95 that is a multiple of 3, 8, and 12, the first step is to find the lowest common multiple of the three numbers.
Begin by expressing them as a product of their prime factors:
[tex]\begin{gathered} 3=3 \\ 8=2^3 \\ 12=2^2\times3 \\ \text{LCM}=2^3\times3=24 \end{gathered}[/tex]Next, we find multiples of the L.C.M in between 49 and 95.
[tex]\begin{gathered} 24\times2=48 \\ 24\times3=72 \\ 24\times4=96 \end{gathered}[/tex]The only number that she could choose is 72.
HELP ASAP 15 POINTS Determine which integer will make the equation true.
4x + 7 = 23
S = {3, 4, 5, 6}
3
4
5
6
Answer:
S = 4
Step-by-step explanation:
23-7 = 16
16/4 = 4
4x4+7 = 23
Answer: S = 4
Step-by-step explanation:
23 - 7 = 16
16 / 4 = 4
4 x 4 + 7 = 23
How much would you need to deposit in an account now in order to have $5000 in the account in 15years? Assume the account earns 8% interest compounded monthly.$
A(t) = amount in t years
P = Principal (original investment)
r = annual interest rate (in decimal form)
n = number of times that interest is compounded each year
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
Substitute in the given values:
[tex]5000=P(1+\frac{0.08}{12})^{12\times15}[/tex][tex]5000=P(1.0067)^{180^{}}[/tex][tex]5000=P\times3.307[/tex][tex]P=1511.94[/tex]Hence the amount need to deposit is 1511.94 dollar.
A 13-feet ladder is placed 5 feet away from a wall. What is the height at which the top of the ladder reaches the wall?
Draw the situation for a better understanding:
To find the height at which the top of the ladder reaches the wall use pythagorean theorem:
[tex]\begin{gathered} h=\sqrt[]{13^2-5^2} \\ h=\sqrt[]{169-25} \\ h=\sqrt[]{144} \\ h=12 \end{gathered}[/tex]The height at which the top of the ladder reaches the wall is 12 ft.
Please help me with my calc hw, I'd be more than happy to chip in albeit with my limited knowledge.
Given:
[tex]F(x)=\int_0^x\sqrt{36-t^2}dt[/tex]Required:
To find the range of the given function.
Explanation:
The graph of the function
[tex]y=\sqrt{36-t^2}[/tex]is upper semicircle with center (0,0) and radius 6, with
[tex]-6\leq t\leq6[/tex]So,
[tex]\int_0^x\sqrt{36-t^2}dt[/tex]is the area of the portion of the right half of the semicircle that lies between
t=0 and t=x.
When x=0, the value of the integral is also 0.
When x=6, the value of the integral is the area of the quarter circle, which is
[tex]\frac{36\pi}{4}=9\pi[/tex]Therefore, the range is
[tex][0,9\pi][/tex]Final Answer:
The range of the function is,
[tex][0,9\pi][/tex]