(a) To discover the differential equation of x' = sin(2x), we set x' to zero and fathom for x:
sin(2x) =
This condition is fulfilled at whatever point 2x is a number different from π, i.e.,
x = nπ/2, where n is a number.
Be that as it may, we got to limit the arrangements to the interim [0, 3π/2], so the equilibria are:
x = 0, π/2, π, 3π/2
(b) To decide the soundness of each equilibrium point, we assess the sign of x' within the region of the balance point. In the event that x' is positive (resp. negative) on one side of the harmony and negative (resp. positive) on the other side, at that point the balance is unsteady. In the event that x' has the same sign on both sides, at that point the harmony is steady.
Close x = 0, we have sin(2x) ≈ 2x, so x' ≈ 2x. Since x is a little close to 0, x' is positive for x > and negative for x < xss=removed xss=removed> π/2, so x = π/2 could be a steady harmony.
Close x = π, we have sin(2x) ≈ -1, so x' ≈ -1. Hence, x' is negative for x < π and positive for x > π, so x = π is an unsteady harmony.
Close x = 3π/2, we have sin(2x) ≈ -2x+3π, so x' ≈ -2x+3π. Since x is near to 3π/2, 2x is near to 3π and 2x-3π is negative, so x' is negative for x < 3> 3π/2. Subsequently, x = 3π/2 could be a steady harmony.
In outline, the solidness of the equilibria is:
x = is unsteady
x = π/2 is steady
x = π is unsteady
x = 3π/2 is steady.
To learn about differential equations visit:
https://brainly.com/question/31583235
#SPJ4
A group of students was surveyed in a middle school class. They were asked how many hours they work on math homework each week. The results from the survey were recorded.
Number of Hours Total Number of Students
0 1
1 3
2 3
3 10
4 9
5 6
6 3
Determine the probability that a student studied for exactly 5 hours. Round to the nearest hundredth.
0.83
0.21
0.17
0.14
The probability that a student studied for exactly 5 hours is 0.17. (third option)
What is the probability?Probability calculates the chances that an event would happen. The probability the event occurs with certainty is 1 and the probability that the event would not occur with certainty is 0. The more likely the event is to happen, the closer the probability value would be to 1.
Probability that a student studied for exactly 5 hours = number of students that studied for 5 hours / total students surveyed
= 6 / 35 = 0.17
To learn more about probability, please check: https://brainly.com/question/13234031
#SPJ1
15 in
15 in
12 in
Find the area.
18 in
9 in
Area of = 270 in²
Area of A = [?] in²
Remember:
A₁ = 1/2 bh
Area of Figure= in²
The area of the shape based on the information will be 90 inches ².
How to calculate the areaThe area of a shape simply means the total space that is taken by the shape. It simply expresses the extent of the region on a particular plane as well as a curved surface.
The area of the shape based on the information will be:
= 1/2 b × h
= 1/2 × 15 × 12
= 15 × 6
= 90 inches ².
In conclusion, the area of the shape based on the information will be 90 inches ².
Learn more about area on
https://brainly.com/question/2607596
#SPJ1
The length of the end table is 45 inches. The width is 15 inches. What is the area?
Pls help
Answer:
Area= Length × Width
Area= 45 × 15 (you get 45 as your Length because it says in the equation that the Length of the end table is 45 inches and you get 15 as the width because in the equation it says the width is 15 inches)
Answer = 45 × 15=675
How many quarts are in 8 1/4 gallons?
Answer:
33 qt
Step-by-step explanation:
theirs 4 quarts in a gallon so multiply the volume value by 4 :)
The outer circumference of a dartboard is 48 centimeters. If the radius of the bull’s eye in the center is 0.5 centimeters,what is the area of the dartboard not including the bull’s eye?
If the radius of the bullseye in the dart board is 0.5 cm, then the area of dartboard not including the bullseye is 182.5 cm².
The outer circumference of the dartboard is 48 centimeters, so we can use this to find the radius of the dartboard:
⇒ 48 = 2πr,
Dividing both sides by 2π, we get:
⇒ r = 48/2π ≈ 7.64,
So, radius of the dartboard is 7.64 centimeters.
The area(A) of a circle is = πr²,
where "r" is = radius,
The area of the bull's eye is:
⇒ Area of Bullseye = π × (0.5)²,
⇒ 0.785,
To find the area of the dartboard not including the bull's eye,
We subtract the area of the bull's eye from the area of the whole dartboard:
⇒ Area of dartboard not including bullseye = πr² - (area of bullseye),
⇒ Area of dartboard not including bullseye = 3.14×7.64×7.64 - 0.785,
⇒ Area of dartboard not including bullseye = 183.28 - 0.785,
⇒ Area of dartboard not including bullseye ≈ 182.5,
Therefore, the area of the dartboard not including the bull's eye is approximately 182.5 cm².
Learn more about Area here
https://brainly.com/question/16125353
#SPJ1
Please help 5 points Question in picture
Identify the type of slope each graph represents
A) Positive
B) Negative
C) Zero
D) Undefined
Answer:
C. zero
Step-by-step explanation:
The equation for this graph is y = 2
Because the slope is 0 and the y-intercept is 2, that is why the line runs across y = 2.
The area of one piece of pizza is 14.13 in2. If the pizza is cut into eighths, find the radius of the pizza.
Answer:
We can use the formula for the area of a circle to solve this problem. We know that the area of one piece of pizza is 14.13 in². If the pizza is cut into eight equal pieces, then the total area of the pizza is 8 times the area of one piece of pizza, which is 8 * 14.13 = 113.04 in².
The formula for the area of a circle is A = πr², where A is the area of the circle and r is the radius. Solving for r, we get r = √(A/π). Substituting the total area of the pizza, we get:
r = √(113.04/π) ≈ 6
Therefore, the radius of the pizza is approximately 6 inches.
Step-by-step explanation:
A study was conducted to compare the effectiveness of two weight loss strategies for obese participants. The proportion of obese clients who lost at least 10% of their body weight was compared for the two strategies. The resulting 98% confidence interval for p1 - p2 is (-0.13, 0.09). Give an interpretation of this confidence interval.Is it A. There is a 98% probability that the proportion of obese clients losing weight under strategy 1 is between 13% less and 9% more than the proportion of obese clients losing weight under strategy 2. B. We are 98% confident that the proportion of obese clients losing weight under strategy 2 is between 13% less and 9% more than the proportion of obese clients losing weight under strategy 1. C. We are 98% confident that the proportion of obese clients losing weight under strategy 1 is between 13% less and 9% more than the proportion of obese clients losing weight under strategy 2. D. If samples were repeatedly drawn from the same populations under the same circumstances, the true population difference (p1 - p2) would be between -0.13 and 0.09 98% of the time. E. There is a 98% probability that the proportion of obese clients losing weight under strategy 2 is between 13% less and 9% more than the proportion of obese clients losing weight under strategy 1.
The correct interpretation of the given confidence interval is C. We are 98% confident that the proportion of obese clients losing weight under strategy 1 is between 13% less and 9% more than the proportion of obese clients losing weight under strategy 2.
The confidence interval is given as (-0.13, 0.09), which represents the range within which the true difference in proportions (p1 - p2) is likely to fall with a confidence level of 98%.
The negative value of -0.13 indicates that the proportion of obese clients losing weight under strategy 1 may be 13% less than the proportion under strategy 2.
The positive value of 0.09 indicates that the proportion of obese clients losing weight under strategy 1 may be 9% more than the proportion under strategy 2.
Since the confidence interval includes both positive and negative values, it suggests that the true difference in proportions could be either positive or negative.
The confidence level of 98% means that if we were to repeat the study and construct 100 different confidence intervals, about 98 of those intervals would capture the true difference in proportions (p1 - p2).
Therefore, we can conclude that we are 98% confident that the proportion of obese clients losing weight under strategy 1 is between 13% less and 9% more than the proportion of obese clients losing weight under strategy 2.
To learn more about confidence interval here:
brainly.com/question/24131141#
#SPJ11
Winston has $2,003 to budget each month. He budgets $1,081 for
fixed expenses and the remainder of his budget is set aside for
variable expenses. What percent of his budget is allotted to variable
expenses? Round your answer to the nearest percent if necessary.
The percentage of his budget allotted to the variable expenses is 46%.
How to find the percent of budget allotted to variable expenses?Winston has $2,003 to budget each month. He budgets $1,081 for fixed expenses and the remainder of his budget is set aside for variable expenses.
Therefore, the percentage allotted for variable expenses can be calculated as follows:
Hence,
percent for allotted for variable expenses = 2003 - 1081 / 2003 × 100
percent for allotted for variable expenses = 922 / 2003 × 100
percent for allotted for variable expenses = 92200 / 2003
percent for allotted for variable expenses = 46.0309535696
percent for allotted for variable expenses = 46%
learn more on percent here: https://brainly.com/question/30538577
#SPJ1
(1) In a certain city, 60% of all residents have Internet service, 80% have television service, and 50% have both services. If a resident is randomly selected, what is the probability that he/she has at least one of these two services, and what is the probability that he/she has Internet service given that he/she had already television service?
The probability that he/she has Internet service given that he/she had already television service is 62.5%.
We need to find the probability that a resident has at least one of the two services and the probability that a resident has Internet service given they already have television service.
(1) To find the probability of a resident having at least one of these two services, we can use the formula P(A ∪ B) = P(A) + P(B) - P(A ∩ B), where A represents Internet service and B represents television service.
P(A) = 0.60 (60% have Internet service)
P(B) = 0.80 (80% have television service)
P(A ∩ B) = 0.50 (50% have both services)
P(A ∪ B) = 0.60 + 0.80 - 0.50 = 0.90 (90%)
Therefore, the probability that a resident has at least one of the two services is 90%.
(2) To find the probability of a resident having Internet service given they have television service, we can use the formula P(A | B) = P(A ∩ B) / P(B).
P(A | B) = P(A ∩ B) / P(B) = 0.50 / 0.80 = 0.625 (62.5%)
So, the probability that a resident has Internet service given they already have television service is 62.5%.
Know more about probability here:
https://brainly.com/question/13604758
#SPJ11
A mower retails for $425. It is put on sale for 23% off. The store manager discounted the mower another $10. To the nearest tenth of a percent, what is the percent decrease in the mower's price?
The percent decrease in the mower's price to the nearest tenth of a percent is 25.3%.
We have,
We need to calculate the initial discount given by the 23% off sale:
Discount
= 0.23 x $425
= $97.75
After the first discount, the mower's price is:
New price
= $425 - $97.75
= $327.25
Then, the store manager discounted it by another $10, so the final price is:
Final price
= $327.25 - $10
= $317.25
The total decrease in price is:
= $425 - $317.25
= $107.75
The percent decrease in the mower's price is:
Percent decrease
= (107.75 / 425) x 100%
= 25.3%
Therefore,
The percent decrease in the mower's price to the nearest tenth of a percent is 25.3%.
Learn more about percentages here:
https://brainly.com/question/11403063
#SPJ1
Khong thinks he has a different way to solve equations, by first factoring out both sides of the equation by the greatest common factor. This is how he solved a equation.
The solution is, : Factor out the greatest common factor, then solving the equation 4(2x – 1) + 8 = 4x + 24, we get, x=5.
Here, we have,
given that,
4(2x – 1) + 8 = 4x + 24.
Factor out a 4 from each side
4{ 2x-1 +2} = 4(x+6)
Cancel the 4 on each side
2x-1+2 = x+6
Combine like terms
2x+1 = x+6
Subtract x from each side
2x+1-x = x+6-x
x+1 = 6
Subtract 1 from each side
x+1-1 = 6-1
x = 5
Factor out the greatest common factor, then solving the equation 4(2x – 1) + 8 = 4x + 24, we get, x=5.
To learn more on GCF click:
brainly.com/question/30685324
#SPJ1
complete question:
Solve the equation 4(2x – 1) + 8 = 4x + 24. Factor out the greatest common factor, then
solve.
Point Kis on line segment JL. Given JL = 4x + 2, KL=5x– 6, and JK = 3x, determine the numerical length of JK.
The numerical length of JK is 6 based on the expression of segments of JL, JK and KL.
The complete segment JL is made up of constituent small segments JK and KL. So, using this relation to find the length of JK by relaying the expression.
JL = JK + KL
4x + 2 = 3x + 5x - 6
Performing addition on Right Hand Side of the equation
4x + 2 = 8x - 6
Rewriting the equation
8x - 4x = 6 + 2
Performing subtraction and addition on Left and Right Hand Side of the equation
4x = 8
x = 8/4
Performing division
x = 2
So, the length of JK = 3×2
Length of JK = 6
Learn more about expression -
https://brainly.com/question/723406
#SPJ4
There is a right angled triangle XOY right angled and angle O. M and N are mid points of OX and OY respectively. Given that XN = 19cm and YM = 22cm. Find XY.
Answer:
In a right-angled triangle XOY, with right angle at O, let M and N be the midpoints of legs OX and OY, respectively. If XN = 19 cm and YM = 22 cm , we need to find the length of XY.
We can use the Pythagorean theorem to solve this problem. Let the length of OX be a and the length of OY be b. Then, from the midpoint theorem, we know that XN = (1/2)b and YM = (1/2)a.
Using the Pythagorean theorem, we have:
a^2 + b^2 = OX^2 + OY^2 = XY^2
Substituting XN and YM in terms of a and b, we get:
(1/4)b^2 + (1/4)a^2 = (1/2)XY^2
Substituting the given values of XN and YM, we get:
19^2 + 22^2 = (1/2)XY^2
Simplifying, we get:
XY^2 = 865
Taking the square root of both sides, we get:
XY = sqrt(865) = 29.4 cm (approx.)
Therefore, the length of XY is approximately 29.4 cm.
Step-by-step explanation:
Solve I dy = y² +1 and find the particular solution when y(1) = 1 dar =
The particular solution for the given differential equation when y(1) = 1 is:
arctan(y) = x + π/4 - 1
The given equation is:
dy/dx = y² + 1
To solve this first-order, nonlinear, ordinary differential equation, we can use the separation of variables method. Here are the steps:
1. Rewrite the equation to separate variables:
dy/(y² + 1) = dx
2. Integrate both sides:
∫(1/(y² + 1)) dy = ∫(1) dx
On the left side, the integral is arctan(y), and on the right side, it's x + C:
arctan(y) = x + C
Now, we'll find the particular solution using the initial condition y(1) = 1:
arctan(1) = 1 + C
Since arctan(1) = π/4, we can solve for C:
π/4 = 1 + C
C = π/4 - 1
So, the particular solution for the given differential equation when y(1) = 1 is:
arctan(y) = x + π/4 - 1
To learn more about differential equations visit : https://brainly.com/question/28099315
#SPJ11
Each side of a square is increasing at a rate of 8 cm/s. At what
rate is the area of the square increasing when the area of the
square is 16 cm^2?
The length of a rectangle is increasing at a rate of 3 cm/s and
its width is increasing at a rate of 5 cm/s. When the length is 13
cm and the width is 4 cm, how fast is the area of the rectangle
increasing?
The radius of a sphere is increasing at a rate of 4 mm/s. How
fast is the volume increasing when the diameter is 60 mm?
The area of the square is increasing at a rate of 64 cm²/s when the area of the square is 16 cm² and each side is increasing at a rate of 8 cm/s.
The area of the rectangle is increasing at a rate of 67 cm²/s when the length is 13 cm and the width is 4 cm, and the length and width are increasing at rates of 3 cm/s and 5 cm/s, respectively.
The volume is increasing at the rate of 14400π mm³/s when the diameter is 60 mm.
We have,
1)
Each side of a square is increasing at a rate of 8 cm/s.
Let's use the formula for the area of a square:
A = s², where s is the length of the side of the square.
We are given that ds/dt = 8 cm/s, where s is the length of the side of the square, and we want to find dA/dt when A = 16 cm^2.
Using the chain rule, we can find dA/dt as follows:
dA/dt = d/dt (s^2) = 2s(ds/dt)
When A = 16 cm²,
s = √(A) = √(16) = 4 cm.
When A = 16 cm²,
dA/dt = 2s(ds/dt) = 2(4)(8) = 64 cm^2/s
So the area of the square is increasing at a rate of 64 cm²/s when the area of the square is 16 cm² and each side is increasing at a rate of 8 cm/s.
2)
The length of a rectangle is increasing at a rate of 3 cm/s and its width is increasing at a rate of 5 cm/s.
Let's use the formula for the area of a rectangle:
A = lw, where l is the length and w is the width.
We are given that dl/dt = 3 cm/s and dw/dt = 5 cm/s, and we want to find dA/dt when l = 13 cm and w = 4 cm.
Using the product rule, we can find dA/dt as follows:
dA/dt = d/dt (lw) = w(dl/dt) + l(dw/dt)
When l = 13 cm and w = 4 cm, we have:
dA/dt = w(dl/dt) + l(dw/dt) = 4(3) + 13(5) = 67 cm²/s
So the area of the rectangle is increasing at a rate of 67 cm^2/s when the length is 13 cm and the width is 4 cm, and the length and width are increasing at rates of 3 cm/s and 5 cm/s, respectively.
3)
The radius of a sphere is increasing at a rate of 4 mm/s.
Let's use the formulas for the radius and volume of a sphere:
r = d/2 and V = (4/3)πr^3, where d is the diameter.
We are given that dr/dt = 4 mm/s when d = 60 mm, and we want to find dV/dt.
Using the chain rule, we can find dV/dt as follows:
dV/dt = d/dt [(4/3)πr^3] = 4πr^2(dr/dt)
When d = 60 mm, we have r = d/2 = 30 mm.
dV/dt = 4πr²(dr/dt) = 4π(30)²(4) = 14400π mm³/s
Thus,
The area of the square is increasing at a rate of 64 cm²/s when the area of the square is 16 cm² and each side is increasing at a rate of 8 cm/s.
The area of the rectangle is increasing at a rate of 67 cm²/s when the length is 13 cm and the width is 4 cm, and the length and width are increasing at rates of 3 cm/s and 5 cm/s, respectively.
The volume is increasing at the rate of 14400π mm³/s when the diameter is 60 mm.
Learn more about squares here:
https://brainly.com/question/22964077
#SPJ1
The tables represent the points earned in each game for a season by two football teams.
Eagles
3 24 14
27 10 13
10 21 24
17 27 7
40 37 55
Falcons
24 24 10
7 30 28
21 6 17
16 35 30
28 24 14
Which team had the best overall record for the season? Determine the best measure of center to compare, and explain your answer.
Eagles; they have a larger median value of 21 points
Falcons; they have a larger median value of 24 points
Eagles; they have a larger mean value of about 22 points
Falcons; they have a larger mean value of about 20.9 points
The team that had the best overall record for the season is C. Eagles; they have a larger mean value of about 22 points Falcons; they have a larger mean value of about 20.9 points
What is the mean about?The best measure of center to compare the overall records of the two teams is the mean (average) value of the points earned in each game. This is because the mean is a commonly used measure of center in statistics and provides a good overall summary of the data set.
In this case, the Eagles have a larger mean value of about 22 points (calculated by summing the points and dividing by the number of games) compared to the Falcons' mean value of about 20.9 points. So, the correct answer would be Eagles; they have a larger mean value of about 22 points
It's worth noting that using the median value in this case is not the most accurate, because this will give you a more robust representation of the center of the dataset in cases where data have outliers.
Learn more about mean on https://brainly.com/question/31101410
#SPJ1
The mean incubation time of fertilized eggs is 23 days. Suppose the incubation times are approximately normally distributed with a standard deviation of 1 day.
(a) Determine the 20th percentile for incubation times. (b) Determine the incubation times that make up the middle 95%.
Click the icon to view a table of areas under the normal curve.
(a) The 20th percentile for incubation times is days. (Round to the nearest whole number as needed.)
The 20th percentile for incubation times is 22 days. The incubation times that make up the middle 95% are between 21 and 25 days.
(a) To determine the 20th percentile for incubation times, follow these steps:
1. Find the z-score corresponding to the 20th percentile using a standard normal distribution table or calculator.
For the 20th percentile, you'll look for an area of 0.20. The z-score is approximately -0.84.
2. Use the following formula to convert the z-score to the incubation time (X): X = μ + (z × σ),
where μ is the mean, z is the z-score, and σ is the standard deviation.
3. Plug in the values: X = 23 + (-0.84 × 1) = 23 - 0.84 = 22.16
4. Round to the nearest whole number: X ≈ 22 days
The 20th percentile for incubation times is 22 days.
(b) To determine the incubation times that make up the middle 95%, follow these steps:
1. Find the z-scores corresponding to the lower and upper bounds of the middle 95%. You'll look for areas of 0.025 and 0.975 in the standard normal distribution table. The z-scores are approximately -1.96 and 1.96.
2. Use the formula X = μ + (z × σ) to convert the z-scores to incubation times.
3. For the lower bound, plug in the values: X = 23 + (-1.96 × 1) = 23 - 1.96 = 21.04
4. For the upper bound, plug in the values: X = 23 + (1.96 × 1) = 23 + 1.96 = 24.96
5. Round to the nearest whole number: Lower bound ≈ 21 days, Upper bound ≈ 25 days
The incubation times that make up the middle 95% are between 21 and 25 days.
To know more about the incubation time visit:
https://brainly.com/question/15728619
#SPJ11
If
�
x and
�
y vary directly and
�
y is 48 when
�
x is 6, find
�
y when
�
x is 12.
We can see that the constant of proportionality between x and y is k = 8, using that we can see that when x = 12 the value of y is 96
How to find the value of y when x is 12?
We know that x and y vary directly, then we can write the equation that relates these variables as.
y = kx
Where k is a constant
We know that y = 48 when x = 6, then we can write.
48 = k*6
48/6 = k
8 = k
The relation is:
y = 8*x
Then if x = 12, we have.
y = 8*12
y = 96
That is the value of y.
Learn more about direct variation at.
https://brainly.com/question/6499629
#SPJ1
Algebra 1 Ch 6 Lesson 2 Quadratic Functions in Vertex Form
Directions:How does the graph of each function compare to the graph of the parent function
f(x) = x2.. State the direction and units; then state if there was a change to the axis of symmetry.
1. f(x) = x2 + 2
2. f(x) = ×2 - 6
3. f(x) = ×2 + 50
4. f(x) = (x - 6)?
5. f(x) = (x + 4)2
6. f(x) = (x - 7)2
Answer: I believe your answer is number one
Step-by-step explanation:
Jessica can shoot 10 photos of a model in 10 minutes. How many photos can she shoot in 1 hour
Hi, I've solved part a (c = 30), and was wondering if someone would please solve part b? Thanks!
1. The proportion of time per day that all checkout counters in a supermarket are busy is a random variable Y with pdf cy?
(1 – y)2, 0 f(y) = 0 elsewhere. (a) Find the value of c that makes f(y) a valid pdf. b) Find the cumulative probability distribution function F(y).
To find the cumulative probability distribution function (CDF) F(y), we need to integrate the given PDF f(y) from 0 to y:
F(y) = integral of f(y) dy from 0 to y
= integral of c*y*(1-y)^2 dy from 0 to y (substituting c=30 from part a)
= 30*integral of y*(1-y)^2 dy from 0 to y
To integrate this, we can use integration by substitution. Let u = 1 - y, then du/dy = -1 and y = 1 - u. Substituting, we get:
F(y) = 30*integral of (1-u)*u^2 * (-du) from 0 to 1-y
= 30*integral of u^2 - u^3 du from 0 to 1-y
= 30*[u^3/3 - u^4/4] evaluated at 0 and 1-y
= 10*(1 - (1-y)^3 - 3(1-y)^4/4), 0 <= y <= 1
Therefore, the cumulative probability distribution function (CDF) of Y is:
F(y) = {
0, y < 0
10*(1 - (1-y)^3 - 3(1-y)^4/4), 0 <= y <= 1
1, y > 1
}
To learn more about probability visit:
https://brainly.com/question/15124899
#SPJ11
15. Two lines intersect parallel lines m and n as shown below.
Two parallel lines are shown. The top line is labeled M. The bottom line is labeled N. Two
transversal lines intersect line M at the same point but intersect line N at different points, to form
a triangle. The angle between line M and the left side of the triangle is labeled 48 degrees. The
angle at the top of the triangle is labeled X degrees. The angle at the bottom right of the triangle
is labeled 72 degrees.
What is the value of x?
A. 24
B. 48
C. 60
D. 66
7) a manager must select 4 employees for a new team; 9 employees are eligible. a) in how many ways can the team be chosen if all four members have the same role on the team? b) in how many ways can the team be chosen if all four members have different roles on the team? g
a) The team can be chosen in 126 ways if all four members have the same role on the team.
b) The team can be chosen in 1260 ways if all four members have different roles on the team.
a) When all four members have the same role, we simply need to select 4 employees out of 9 eligible ones. This can be done in 9C4 ways, which is equal to 126.
b) When all four members have different roles, we need to select one employee for each of the four roles. The first employee can be chosen in 9 ways, the second in 8 ways (as one employee has already been chosen), the third in 7 ways, and the fourth in 6 ways.
Therefore, the total number of ways to select the team is 9 x 8 x 7 x 6, which is equal to 1260.
For more questions like Employees click the link below:
https://brainly.com/question/21847040
#SPJ11
A triangle has sides with lengths of 5 feet 11 feet and 13 feet is it a right triangle
Answer:
no
Step-by-step explanation:
to be a right triangle it must satisfy the Pythagoras theorem. 5-12-13 works
Answer:
Yes.
Step-by-step explanation:
29,61,90 are right triangles
15+11+13 is 29 therefor its a right triangle
find the standard form of the equation of the ellipse with the given characteristics and center at the origin.
An ellipse is a geometric shape that looks like a flattened circle, with two focal points. The standard form of the equation of an ellipse with center at the origin is (x^2/a^2) + (y^2/b^2) = 1, where a and b are the lengths of the major and minor axes, respectively.
To find the standard form of the equation of an ellipse with given characteristics and center at the origin, we first need to identify the values of a and b. The major axis is the longer axis of the ellipse, while the minor axis is the shorter axis. If we know the length of the major and minor axes, we can easily find a and b.
Once we have identified a and b, we can plug them into the standard form equation and simplify it to find the equation of the ellipse. For example, if the length of the major axis is 8 and the length of the minor axis is 6, then a = 4 and b = 3. We can plug these values into the equation (x^2/4^2) + (y^2/3^2) = 1 and simplify it to get the standard form of the equation of the ellipse.
In conclusion, finding the standard form of the equation of an ellipse with given characteristics and center at the origin involves identifying the values of a and b, and then plugging them into the standard form equation and simplifying it.
More on ellipse : https://brainly.com/question/16904744
#SPJ11
A certain flight arrives on time 88 percent of the time. Suppose 145 flights are randomly selected. Use the normal approximation to the binomial to approximate the probability that(a) exactly 128 flights are on time.(b) at least 128 flights are on time.(c) fewer than 124 flights are on time.(d) between 124 and 125, inclusive are on time.(Round to four decimal places as needed.)
The probability that between 124 and 125, inclusive are on time is approximately 0.0655.
Given:
The probability of a flight arriving on time is 0.88
Number of flights selected randomly = 145
Let X be the number of flights arriving on time.
(a) P(exactly 128 flights are on time)
Using the normal approximation to the binomial distribution, we have:
Mean, µ = np = 145 × 0.88 = 127.6
Standard deviation, σ = sqrt(np(1-p)) = sqrt(145 × 0.88 × 0.12) = 3.238
P(X = 128) can be approximated using the standard normal distribution:
z = (128 - µ) / σ = (128 - 127.6) / 3.238 = 0.1234
P(X = 128) ≈ P(z = 0.1234) = 0.4511
Therefore, the probability that exactly 128 flights are on time is approximately 0.4511.
(b) P(at least 128 flights are on time)
P(X ≥ 128) can be approximated as:
z = (128 - µ) / σ = (128 - 127.6) / 3.238 = 0.1234
P(X ≥ 128) ≈ P(z ≥ 0.1234) = 0.4515
Therefore, the probability that at least 128 flights are on time is approximately 0.4515.
(c) P(fewer than 124 flights are on time)
P(X < 124) can be approximated as:
z = (124 - µ) / σ = (124 - 127.6) / 3.238 = -1.1154
P(X < 124) ≈ P(z < -1.1154) = 0.1326
Therefore, the probability that fewer than 124 flights are on time is approximately 0.1326.
(d) P(between 124 and 125, inclusive are on time)
P(124 ≤ X ≤ 125) can be approximated as:
z1 = (124 - µ) / σ = (124 - 127.6) / 3.238 = -1.1154
z2 = (125 - µ) / σ = (125 - 127.6) / 3.238 = -0.7388
P(124 ≤ X ≤ 125) ≈ P(-1.1154 ≤ z ≤ -0.7388) = P(z ≤ -0.7388) - P(z < -1.1154)
P(124 ≤ X ≤ 125) ≈ 0.1981 - 0.1326 = 0.0655
Therefore, the probability that between 124 and 125, inclusive are on time is approximately 0.0655.
To learn more about probability visit:
https://brainly.com/question/11234923
#SPJ11
At one time, the British advanced corporation tax system taxed British companies' foreign earnings at a higher rate than their domestic earnings. This was put in place to ______.
At one time, the British advanced corporation tax system taxed British companies' foreign earnings at a higher rate than their domestic earnings.
This was put in place to discourage multinational corporations from artificially shifting profits earned in the UK to low-tax jurisdictions. The policy was aimed at preventing companies from avoiding tax by moving profits out of the UK and into tax havens. By imposing a higher tax rate on foreign earnings, the UK government hoped to make it less attractive for companies to engage in profit-shifting practices.
The policy was controversial and faced criticism from some business groups, who argued that it placed an unfair burden on companies operating overseas. However, the government defended the policy as necessary to ensure that companies paid their fair share of tax in the countries where they operated. Eventually, the policy was replaced by a territorial tax system, which only taxes companies on their profits earned in the UK. This change was made to simplify the tax system and make it more attractive for companies to invest in the UK.
Learn more about British here:
https://brainly.com/question/2280126
#SPJ11
Consider the following system of first order linear differential equations
x' (t) = Ax(t).
Suppose the solution to the system can be written as
x(t) = 5e2t - 3et
Which of the following A allows for the above equation to be a solution to the system?
The matrix A that allows x(t) = 5e^(2t) - 3e^(t) to be a solution to the system x'(t) = Ax(t) is:
A = [2 0; 0 2]
We can find A by plugging in x(t) = 5e^(2t) - 3e^(t) into x'(t) = Ax(t) and solving for A.
x'(t) = d/dt (5e^(2t) - 3e^(t)) = 10e^(2t) - 3e^(t)
Ax(t) = A(5e^(2t) - 3e^(t)) = 5Ae^(2t) - 3Ae^(t)
For x(t) to be a solution to x'(t) = Ax(t), we must have:
10e^(2t) - 3e^(t) = 5Ae^(2t) - 3Ae^(t)
Simplifying this equation, we get:
(5A - 10)e^(2t) + 3Ae^(t) - 3e^(t) = 0
This equation must hold for all t, so the coefficients of e^(2t), e^(t), and the constant term must all be zero.
Thus, we get the following system of equations:
5A - 10 = 0
3A - 3 = 0
Solving this system, we find A = 2.
Therefore, the matrix A that allows x(t) = 5e^(2t) - 3e^(t) to be a solution to the system x'(t) = Ax(t) is:
A = [2 0; 0 2]
To learn more about coefficients visit:
https://brainly.com/question/30066987
#SPJ11
The figure below shows a circle with center � B, diameter � � ‾ WD , secant � � ↔ WE , and tangent � � ↔ GX . Which of the angles must be right angles? Select all that apply.
The angles which must be right angles include the following:
∠PLJ
∠KLJ
∠PEJ
∠JEB
What is a perpendicular bisector?In Mathematics and Geometry, a perpendicular bisector is a line that bisects or divides a line segment exactly into two (2) equal halves and forms an angle that has a magnitude of 90 degrees at the point of intersection.
What is a right angle?In Mathematics and Geometry, a right angle can be defined as a type of angle that is formed in a triangle by the intersection of two (2) straight lines at 90 degrees. This ultimately implies that, a right angled triangle has a measure of 90 degrees.
Based on the diagram shown in the image attached below, we can reasonably infer and logically deduce that angles formed at L and E must be right angles.
Read more on right triangle here: brainly.com/question/1248322
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.