convert the equation of a parabola to vertex formy^2+4x-14y+57=0

Answers

Answer 1
[tex]y^2+4x-14y+57=0[/tex]

first we need to solve X

[tex]\begin{gathered} -y^2+14y-57=4x \\ x=-\frac{1}{4}y^2+\frac{7}{2}y-\frac{57}{4} \\ \end{gathered}[/tex]

we need to write the equation on this form

[tex]x=a(y-h)^2+k[/tex]

where h=-(b/2a) and k=c- a (b/2a)2

we obtain a,b and c from the equation to solve x

so a=-1/4, b=7/2 and c=-57/4

now lets find h and k

[tex]\begin{gathered} h=-(\frac{b}{2a}) \\ h=-(\frac{\frac{7}{2}}{2\cdot-\frac{1}{4}}) \\ \\ h=-(\frac{\frac{7}{2}}{\frac{-1}{2}}) \\ \\ h=-(-7) \\ h=7 \end{gathered}[/tex][tex]\begin{gathered} k=c-a(\frac{b}{2a})^2 \\ \\ k=-\frac{57}{4}-(-\frac{1}{4})(\frac{\frac{7}{2}}{2\cdot-\frac{1}{4}})^2 \\ \\ k=-\frac{57}{4}+\frac{1}{4}(-7)^2 \\ \\ k=-\frac{57}{4}+\frac{1}{4}(49) \\ \\ k=-\frac{8}{4} \\ k=-2 \end{gathered}[/tex]

now replace a, h and k on the equation

[tex]\begin{gathered} x=a(y-h)^2+k \\ \\ x=-\frac{1}{4}(y-7)^2-2 \end{gathered}[/tex]

the evrtex is (h,k)=(7,-2)


Related Questions

How to find the area of a regular hexagon with a radius of 12 inches? Please help

Answers

[tex]\begin{gathered} In\text{ this case, as a regular hexagon} \\ \text{radius = side} \\ Area\text{ =}3\cdot\frac{\sqrt[]{3}side^2}{2} \\ \text{side}=12in \\ side^2=144in^2 \\ Area\text{ =}3\cdot\frac{\sqrt[]{3}\cdot(144in^2)}{2} \\ \\ \text{Area}=374.1in^2 \\ \text{The regular hexagon's area is }374.1in^2 \end{gathered}[/tex]

Need help figuring out if the following is Real or Complex Question number 10

Answers

Explanation:

We have the expression:

[tex]i^3[/tex]

where i represents the complex number i defined as follows:

[tex]i=\sqrt{-1}[/tex]

To find if i^3 is real or complex, we represent it as follows:

[tex]i^3=i^2\times i[/tex]

And we find the value of i^2 using the definition of i:

[tex]i^2=(\sqrt{-1})^2[/tex]

Since the square root and the power of 2 cancel each other

[tex]\imaginaryI^2=-1[/tex]

And therefore, using this value for i^2, we can now write i^3 as follows:

[tex]\begin{gathered} \imaginaryI^3=\imaginaryI^2\times\imaginaryI \\ \downarrow \\ \imaginaryI^3=(-1)\times\imaginaryI \end{gathered}[/tex]

This simplifies to -i

[tex]\imaginaryI^3=-\imaginaryI^[/tex]

Because -i is still a complex number, that means that i^3 is a complex number.

Answer: Complex

You want to build a sandbox that can hold50,445 cubic inches of sand. If the sandbox is to be59 in. long and57 in. wide, how tall will it need to be?

Answers

Volume of sandbox (to be built) = 50,445 cubic inches

A sandbox is the shape of a cuboid and is calculated by the formula

[tex]\text{volume = length }\cdot\text{ wi}\differentialD tth\text{ }\cdot\text{ height }\Rightarrow\text{ v = l }\cdot\text{ w }\cdot\text{ h}[/tex]

Volume = Length * Width * Height

Volume = 50,445 cubic inches, Length = 59 in. Width = 57 in, Height = ?

50,445 = 59 * 57 * h

Make h the subject of the formula, we have:

h = 50445 / (59 * 57) = 15 in

I need help finding 5 points. the vertex, 2 to the left of the vertex, and 2 points to the right of the vertex.

Answers

Let's convert the given equation first into a vertex form.

[tex]y=a(x-h)^2+k[/tex]

where (h, k) is the vertex.

The vertex form of the equatio that we have is:

[tex]y=-2(x-0)^2+0[/tex]

Hence, the vertex of the equation is at the origin (0, 0).

Since "a" is negative, our parabola is opening downward.

Let's identify two points to the left of the vertex. Let's say at x = -1. Replace "x" with -1 in the equation.

[tex]\begin{gathered} y=-2(-1)^2 \\ y=-2(1) \\ y=-2 \end{gathered}[/tex]

Hence, we have a point to the left of the parabola at (-1, -2).

Let's say x = -2. Replace "x" with -2 in the equation.

[tex]\begin{gathered} y=-2(-2)^2 \\ y=-2(4) \\ y=-8 \end{gathered}[/tex]

Hence, we also have another point to the left of the parabola at (-2, -8).

If our x is to the right of the vertex, say, x = 1. Replace "x" with 1 in the equation.

[tex]\begin{gathered} y=-2(1)^2 \\ y=-2(1) \\ y=-2 \end{gathered}[/tex]

We have a point to the right of the parabola at (1, -2).

If x = 2, let's replace "x" with 2 in the equation.

[tex]\begin{gathered} y=-2(2)^2 \\ y=-2(4) \\ y=-8 \end{gathered}[/tex]

Hence, we also have another point to the right of the parabola at (2, -8).

The graph of this equation is:

Four research teamed each used a different method to collect data on how fast a new strain of maize sprouts. Assume that they all agree on the sample size and the sample mean ( in hours). Use the (confidence level; confidence interval) pairs below to select the team that has the smallest sample standard deviation

Answers

We need to identify the team that has the smallest sample standard deviation.

In order to do so, we need to find the stand deviation of each experiment based on the confidence level and confidence interval of each of them.

A. A confidence level of 99.7% corresponds to a confidence interval of 3 standard deviations above and 3 standard deviations below the mean.

Thus, for the confidence interval 42 to 48, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} 3\sigma=48-45=3 \\ \\ \sigma=\frac{3}{3} \\ \\ \sigma=1 \end{gathered}[/tex]

B. A confidence level of 95% corresponds to a confident interval of 2 standard deviations above and 2 standard deviations below the mean.

Thus, for the confidence interval 43 to 47, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} 2\sigma=47-45=2 \\ \\ \sigma=\frac{2}{2} \\ \\ \sigma=1 \end{gathered}[/tex]

C. A confidence level of 68% corresponds to a confident interval of 1 standard deviation above and 1 standard deviation below the mean.

Thus, for the confidence interval 44 to 46, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} \sigma=46-45 \\ \\ \sigma=1 \end{gathered}[/tex]

D. Again, we have a confidence level of 95%, which corresponds to 2 standard deviations.

Thus, for the confidence interval 44 to 46, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} 2\sigma=46-45=1 \\ \\ \sigma=\frac{1}{2} \\ \\ \sigma=0.5 \end{gathered}[/tex]

Therefore, the team that has the smallest sample standard deviation is:

Answer

Alejandra categorized her spending for this month into four categories: Rent, Food, Fun, and Other.The percents she spent in each category are pictured here.Food21%Rent30%Other31%Fun18%If Alejandra spent a total of $2500 this month, how much did she spend on Food?

Answers

she spent 525 on Food

she spent 750 on rent

she spent 775 on others

she spent 450 on fun

Explanation

to find the value of the percentage of any number just use this formula

[tex]\text{ percentage=}\frac{\text{ x\%}\cdot\text{ Number}}{100}[/tex]

so

to find the values, apply the formula

Step 1

a) food :21 %

so

[tex]\begin{gathered} \cos t\text{ of food=}\frac{\text{ 21}\cdot2500}{100} \\ \cos t\text{ of food=}525 \end{gathered}[/tex]

it means she spent 525 on Food

Step 2

b) Rent:30 %

so

[tex]\begin{gathered} \cos t\text{ of rent=}\frac{\text{ 30}\cdot2500}{100} \\ \cos t\text{ of rent=}750 \end{gathered}[/tex]

it means she spent 750 on rent

Step 3

c)other:31 %

so

[tex]\begin{gathered} \cos t\text{ of other=}\frac{\text{ 31}\cdot2500}{100} \\ \cos t\text{ of other=}775 \end{gathered}[/tex]

it means she spent 775 on others

Step 4

d)Fun:18 %

so

[tex]\begin{gathered} \cos t\text{ of fun=}\frac{\text{ 18}\cdot2500}{100} \\ \cos t\text{ of fun=}450 \end{gathered}[/tex]

it means she spent 450 on fun

I hope this helps you

11. The population of the District of Columbia was approximately 572 thousand in 2000 and had been growing by about 1.15% per year.(a) Write an explicit formula for the population of DC t years after 2000 (i.e. t=0 in 2000), where Pt is measured in thousands of people.Pt = (b) If this trend continues, what will the district's population be in 2025? Round your answer to the nearest whole number. thousand people(c) When does this model predict DC's population to exceed 800 thousand? Give your answer as a calendar year (ex: 2000).During the year

Answers

Given:

Population in 2000 = 572 thousand

Rate of growth per year = 1.15%

Let's solve for the following:

(a) Explicit formula for the population years after 2000.

Where:

In year 2000, t = 0

To write the explicit formula, apply the exponantial growth function formula:

[tex]f(t)=a(1+r)^t[/tex]

Where:

a is the initial amount

r is the growth rate.

Thus, we have:

[tex]\begin{gathered} P_t=572(1+\frac{1.15}{100}_{^{}})^t \\ \\ P_t=572(1+0.0115)^t \end{gathered}[/tex]

Therefore, the explicit formula for the population years after 2000 is:

[tex]P_t=572(1.0115)^t[/tex]

(b) What will be the district's population in 2025.

Where:

In the year 2000, t = 0

In the year 2025, t will be = 25

To find the population in 2025, substitute 25 for t in the explicit formula for evalaute:

[tex]\begin{gathered} P_{25}=572(1.0115)^{25} \\ \\ P_{25}=572(1.330905371) \\ \\ P_{25}=761.28\approx761 \end{gathered}[/tex]

The population in 2025 if the trend continues will be approximately 761 thousand.

(c) When does the model predict the population to exceeed 800 thousand.

Substitute 800 for Pt and solve for t.

We have:

[tex]\begin{gathered} P_t=572(1.0115)^t \\ \\ 800=572(1.0115)^t \end{gathered}[/tex]

Divide both sides by 572:

[tex]\begin{gathered} \frac{800}{572^{}}=\frac{572(1.0115)^t}{572} \\ \\ 1.3986=1.0115^t \end{gathered}[/tex]

Take the natural logarithm of both sides:

[tex]\begin{gathered} \ln (1.3986)=\ln (1.0115)^t \\ \\ \ln (1.3986)=t\ln (1.0115) \\ \\ 0.33547=0.01143t \end{gathered}[/tex]

Divide both sides by 0.01143:

[tex]\begin{gathered} \frac{0.33547}{0.01143}=\frac{0.01143t}{0.01143} \\ \\ 29.3=t \\ \\ t=29.3\approx29 \end{gathered}[/tex]

When t = 29, the year is 2000 + 29 = 2029

Therefore, using this model, DC's population will exceed 800 thousand in the year 2029.

ANSWERS:

[tex]\begin{gathered} (a)P_t=572(1.0115)^t \\ \\ (b)=761\text{ thousand people} \\ \\ (c)\text{ 20}29 \end{gathered}[/tex]

An observer in a lighthouse 350 ft above sea level observes two ships directly offshore. The angles of depression to the shops are 4 degree and 6.5 degree. How far apart are the ships?

Answers

Answer:

The two ships are 1933.32 ft apart

Explanation:

Given:

The height of the lighthouse = 350 ft

The angles of depression to the ships are 4 degree and 6.5 degree

To find:

the distance between the two ships

To determine the distance, we will use an illustration of the situation

First we will find the value of y as we need to know this value to get x

To get y, we will apply tan ratio (TOA)

[tex]\begin{gathered} tan\text{ 6.5\degree = }\frac{opposite}{adjacent} \\ opp\text{ = 350 ft} \\ adj\text{ = y} \\ tan\text{ 6.5\degree = }\frac{350}{y} \\ y(tan\text{ 6.5\degree\rparen= 350} \\ y\text{ = }\frac{350}{tan\text{ 6.5}} \\ y\text{ = 3071.9106 ft} \end{gathered}[/tex]

Next is to find x using tan ratio (TOA):

[tex]\begin{gathered} angle\text{ = 4\degree} \\ tan\text{ 4\degree= }\frac{opposite}{adjacent} \\ \\ opposite\text{ = 350 ft} \\ adjacent\text{ = y + x} \\ tan\text{ 4\degree= }\frac{350}{y\text{ + x}} \end{gathered}[/tex][tex]\begin{gathered} tan\text{ 4 = }\frac{350}{3071.9106+x} \\ \frac{350}{tan\text{ 4}}\text{ = 3071.9106 + x} \\ 5005.2332\text{ = 3071.9106 + x} \\ x\text{ = 1933.3226} \\ \\ The\text{ ships are 1933.32 ft apart \lparen nearest hundredth\rparen} \end{gathered}[/tex]

1. 9c-3c=48A) c=9B) c=3C) c=4D) C=8

Answers

[tex]9c\text{ - 3c = 48}[/tex]

To solve this equation, we need to subtract both, 9c - 3c:

[tex]9c\text{ - 3c = 6c = 48}[/tex]

Dividing by 6 at both sides of the equation

[tex]\frac{6c}{c}\text{ = }\frac{48}{6}[/tex]

Then

[tex]c\text{ = 8}[/tex]

Then the answer C = 8. (Option D)

I don't understand please explain in simple words the transformation that is happeningwhat is the function notation

Answers

We have the next functions

[tex]f(x)=5^x^{}[/tex][tex]g(x)=2(5)^x+1[/tex]

Function notation

[tex]g(x)=2(f(x))+1[/tex]

Describe the transformation in words

we have 2 transformations, the 2 that multiplies the function f(x) means that we will have an expansion in the y axis by 2, the one means that we will have a shift up by one unit

Can someone help me with this math question. I just need to see the work.
pic of question below

Answers

The polar coordinates for each point are given as follows:

a. [tex](r, \theta) = \left(2\sqrt{5}, \frac{7\pi}{4}\right)[/tex]

b. [tex](r, \theta) = \left(6, \frac{\pi}{3}\right)[/tex]

Polar coordinates

Suppose we have a point with Cartesian coordinates given as follows:

(x,y).

The polar coordinates will be found as follows:

r² = x² + y².θ = arctan(y/x).

For item a), the Cartesian coordinates are as follows:

(-4, 4).

Hence the polar coordinates will be given as follows:

r² = (-4)² + (4)² -:> r =  sqrt(32) = 2sqrt(5).θ = arctan(-4/4) = arctan(-1) = -45º = 2pi - pi/4 = 7pi/4.

For item a), the Cartesian coordinates are as follows:

(3, 3sqrt(3)).

Hence the polar coordinates will be given as follows:

r² = (3)² + (3sqrt(3))² = 9 + 27 = 36 -> r = sqrt(36) = 6.θ = arctan(3sqrt(3)/3) = arctan(sqrt(3)) = 60º = pi/3.

More can be learned about polar coordinates at https://brainly.com/question/7009095

#SPJ1

NEED TO FINISH BEFORE 9!!! PLEASE HELP!!!

Answers

A rational value that is less than zero is -√4.

An irrational value greater than five is 5 1/9.

A rational value between 10 and 20 is √225.

What are rational numbers and irrational numbers?

A rational number is a number that can be expressed as a fraction of two integers. A rational number can either be a positive number, negative number, whole number, decimal or fraction.  Examples of rational numbers are 100, -0.5.

A irrational number is a number that cannot be expressed as a fraction of two integers. An irrational number can either be a positive number, negative number, whole number, decimal or fraction.  Examples of irrational numbers are 22/7, 1-/9.

To learn more about rational numbers, please check: brainly.com/question/20435423

#SPJ1

Find the product. Write your answer in scientific notation. (6.5 X 10^8) X (1.4 x 10^-5) =

Answers

Evaluate the product of the expression.

[tex]\begin{gathered} (6.5\times10^8)\cdot(1.4\times10^{-5})=6.5\cdot1.4\times10^{8-5} \\ =9.1\times10^3 \end{gathered}[/tex]

So answer is 9.1X10^3.

I need help question 10 b and c

Answers

Part b.

In this case, we have the following function:

[tex]y=5(2.4)^x[/tex]

First, we need to solve for x. Then, by applying natural logarithm to both sides, we have

[tex]\log y=\log (5(2.4^x))[/tex]

By the properties of the logarithm, it yields

[tex]\log y=\log 5+x\log 2.4[/tex]

By moving log5 to the left hand side, we have

[tex]\begin{gathered} \log y-\log 5=x\log 2.4 \\ \text{which is equivalent to} \\ \log (\frac{y}{5})=x\log 2.4 \end{gathered}[/tex]

By moving log2.4 to the left hand side, we obtain

[tex]\begin{gathered} \frac{\log\frac{y}{5}}{\log2.4}=x \\ or\text{ equivalently,} \\ x=\frac{\log\frac{y}{5}}{\log2.4} \end{gathered}[/tex]

Therfore, the answer is

[tex]f^{-1}(y)=\frac{\log\frac{y}{5}}{\log2.4}[/tex]

Part C.

In this case, the given function is

[tex]y=\log _{10}(\frac{x}{17})[/tex]

and we need to solve x. Then, by raising both side to the power 10, we have

[tex]\begin{gathered} 10^y=10^{\log _{10}(\frac{x}{17})} \\ \text{which gives} \\ 10^y=\frac{x}{17} \end{gathered}[/tex]

By moving 17 to the left hand side, we get

[tex]\begin{gathered} 17\times10^y=x \\ or\text{ equivalently,} \\ x=17\times10^y \end{gathered}[/tex]

Therefore, the answer is

[tex]f^{-1}(y)=17\times10^y[/tex]

using the gcf and the distributive property find the sum of 34+51

Answers

the sum of those two would be 75.

it would be 75 ur welcome

SOMEONE PLS HELPPPPPPPP

Answers

Answer:

**NEED USEFUL ANSWER ASAP, H.W QUESTION**

Given that hotter blackbodies produce more energy than cooler blackbodies, why do cooler red giants have much higher luminosities than much hotter white dwarfs?

Step-by-step explanation:

What is the seventy-seven is forty-six more than r

Answers

Answer: 77 = 46 + r, r = 31

Step-by-step explanation:

      We will write an equation to represent this situation. Then, we will solve for r by isolating the variable.

  Seventy-seven is forty-six more than r.

77 is forty-six more than r.

77 = forty-six more than r.

77 = 46 more than r.

  77 = 46 + r

  77 = 46 + r

(77) - 46 = (46 + r) - 46

31 = r

  r = 31

Use the change of base formula and a calculator to evaluate the logarithm

Answers

The change of base formula states that:

[tex]\log _bx=\frac{\ln x}{\ln b}[/tex]

this means that we can caculate any logarithm using the natural logarithm if we make the quotient of the natural logarithm of the original value and the natural logarithm of the original base.

In this case we have:

[tex]\begin{gathered} x=14 \\ b=\sqrt[]{3} \end{gathered}[/tex]

Then, using the change of base formula, we have:

[tex]\log _{\sqrt[]{3}}14=\frac{\ln 14}{\ln \sqrt[]{3}}[/tex]

Once we have the expression we just evaluate the expression on the right to get the appoximation we need:

[tex]\log _{\sqrt[]{3}}14=\frac{\ln14}{\ln\sqrt[]{3}}\approx4.804[/tex]


*Statistical question: Is the proportion of inner-city families living on a subsistence income: 20%? Two hundred families were randomly selected for the survey
and 38 were found to have income at the subsistence level. Use the formal critical value method at 5% level of significance.
List the assumptions pertaining to this procedure.


Answers

Since the critical value of the test is greater than the absolute value of the test statistic, there is not enough evidence to conclude that the proportion is different of 20%.

Hypothesis tested and critical value

At the null hypothesis, it is tested if the proportion is of 20%, that is:

[tex]H_0: p = 0.2[/tex]

At the alternative hypothesis, it is tested if the proportion is different of 20%, hence:

[tex]H_1: p \neq 0.2[/tex]

We have a two-tailed test, as we are testing if the mean is different of a value, with a significance level of 0.05, hence the critical value is of:

|z| = 1.96.

Test statistic

The test statistic is given by the rule presented as follows:

[tex]z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]

In which:

[tex]\overline{p}[/tex] is the sample proportion.p is the proportion tested at the null hypothesis.n is the sample size.

In the context of this problem, the parameters are given as follows:

[tex]p = 0.2, n = 200, \overline{p} = \frac{38}{200} = 0.19[/tex]

Hence the test statistic is:

[tex]z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]

[tex]z = \frac{0.19 - 0.2}{\sqrt{\frac{0.2(0.8)}{200}}}[/tex]

z = -0.35.

|z| < 1.96, hence there is not enough evidence to conclude that the proportion is different of 20%.

More can be learned about the use of the z-distribution to test an hypothesis at https://brainly.com/question/13873630

#SPJ1

Slope of Linear EquationsWhich description best compares the graph given by the following equations:23-5y = 82Y == -6Choose one. 4 pointsO parallelO perpendicularintersecting but not perpendicularO coinciding

Answers

Answer:

The two lines are parallel.

Explanation:

We have the equations:

[tex]\begin{gathered} 2x-5y=8 \\ y=\frac{2}{5}x-6 \end{gathered}[/tex]

Let's solve the first one for y, so we get the same formatting on both euqations:

[tex]\begin{gathered} 2x-5y=8 \\ 5y=2x-8 \\ y=\frac{2}{5}x-\frac{8}{5} \end{gathered}[/tex]

SInce the two lines have the same slope, 2/5, the two lines are parallel.

The length of a rectangle is 5 ft less than double the width, and the area of the rectangle is 33f * t ^ 2 Find the dimensions of the rectangle. length___with____

Answers

The length of rectangle is : 6ft .

Width of rectangle is : 5.5ft .

What is an area of rectangle?

The area of rectangle is :

A = l × w

Here given,

length is 5ft less than twice the width,

So the equation can be represented in terms of length as,

l = 2w - 5

Given area = 33sqft

By substituting value of length,

33 = (2w - 5) × w

By applying distributive property,

33 = 2w² - 5w

= 2w² - 5w - 33

By factoring the equation:

(2w - 11)(w + 3) = 0

To find value of zeros,

2w - 11 = 0

2w = 11

w = 5.5

Similarly,

w + 3 = 0

w = -3

Since width cannot be negative , the width will be:

the width = 5.5 ft.

Also find length by substituting value of width in equation,

33 = 5.5l

33/5.5 = l

l = 6 ft.

∴ The  length = 6ft, and width = 5.5ft.

To learn more about area of rectangle refer to :

https://brainly.com/question/1171312

#SPJ1

Find the volume of this triangular prism.Be sure to include the correct unit in your answer.8 cm7 cm→5 cm

Answers

The formula to find the volume of a triangular prism is the following:

[tex]V=\frac{1}{2}h\cdot b\cdot w[/tex]

where:

h - height

b - base length

w - width

for this problem:

h = 8 cm

b = 5 cm

w = 7 cm

then

[tex]V=\frac{1}{2}8\cdot5\cdot7[/tex]

solving this, we obtain that the volume of the triangular prism is 140 cm^3 or cubic centimeters

What is 5,435,778 expressed in scientific notation?A.5.435778 x 10*7B.5.435778 x 10*3C.5.435778 x 10*6D.5.435778 x 10*5

Answers

Given the number

[tex]5,435,778[/tex]

We can express it in scientific notation below;

Scientific notation is a way of writing very large or very small numbers. A number is written in scientific notation when a number between 1 and 10 is multiplied by a power of 10. For example, 650,000,000 can be written in scientific notation as 6.5 ✕ 10^8.

Therefore, in the given question, we will have;

[tex]5,435,778=5.435778\times10^6[/tex]

Answer: Option C

Please fill in the blanks so that the following statement is trues

Answers

x-intercepts

1) In a quadratic equation, the Real solutions correspond to the points in which the parabola intercepts the x-axis.

2) Note that when the roots are not real solutions, then we'd have complex numbers and the parabola wouldn't intercept the x-axis.

3) Therefore, the answer is: x-intercepts

Find 2 given that =−4/5 and < < 3/2

Answers

Find 2 given that =

−4/5 and < < 3/2

we know that

sin(2x) = 2 sin(x) cos(x)

so

step 1

Find the value of cos(x)

Remember that

[tex]\sin ^2(x)+\cos ^2(x)=1^{}[/tex]

we have

sin(x)=-4/5

The angle x lies on III quadrant

that means

cos(x) is negative

substitute the value of sin(x)

[tex]\begin{gathered} (-\frac{4}{5})^2+\cos ^2(x)=1^{} \\ \\ \frac{16}{25}+\cos ^2(x)=1^{} \\ \\ \cos ^2(x)=1-\frac{16}{25} \\ \cos ^2(x)=\frac{9}{25} \\ \cos (x)=-\frac{3}{5} \end{gathered}[/tex]

step 2

Find the value of sin(2x)

sin(2x) = 2 sin(x) cos(x)

we have

sin(x)=-4/5

cos(x)=-3/5

substitute

sin(2x)=2(-4/5)(-3/5)

sin(2x)=24/25

**Determine the x-value at which the-following function touches but does not cross the x-axis:3x^3- 182 + 27x

Answers

Okay, here we have this:

We need to identify the x-value at which the-following function touches but does not cross the x-axis in the following function: 3x^3- 18^2 + 27x. So, considering that if is a zero with even multiplicity, the graph touches the x-axis and bounces off of the axis. And if it is a zero with odd multiplicity, the graph crosses the x-axis at a zero.

According with this let's

The variables x and y vary directly. Use values to write an equation that relates x and y. y=25;x=5And y=20;x=12

Answers

A lineal equation has the next form:

[tex]y=mx+b[/tex]

where m is the slope and is calculated as follow:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

For this case

y1=20

y2= 25

x1=12

x2= 5

so:

[tex]m=\frac{25-20}{5-12_{}}=\frac{5}{-7}=-\frac{5}{7}[/tex]

then the equation will be:

[tex]y=(-\frac{1}{7})x+b[/tex]

Using one of the points we calculate the b

we are going to use y=25 x=5

[tex]25=(-\frac{5}{7})5+b[/tex]

Clearing the b we get:

[tex]25-\frac{25}{7}=b\Rightarrow\frac{200}{7}=b[/tex]

b=200/7 or b=28.57

So the final equation is:[tex]y=-\frac{1}{7}x+\frac{200}{7}[/tex]

A lineal equation has the next form:

[tex]y=mx+b[/tex]

where m is the slope and is calculated as follow:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

For this case

y1=20

y2= 25

x1=12

x2= 5

so:

[tex]m=\frac{25-20}{5-12_{}}=\frac{5}{-7}=-\frac{5}{7}[/tex]

then the equation will be:

[tex]y=(-\frac{1}{7})x+b[/tex]

Using one of the points we calculate the b

we are going to use y=25 x=5

[tex]25=(-\frac{5}{7})5+b[/tex]

Clearing the b we get:

[tex]25-\frac{25}{7}=b\Rightarrow\frac{200}{7}=b[/tex]

b=200/7 or b=28.57

So the final equation is:[tex]y=-\frac{1}{7}x+\frac{200}{7}[/tex]

a circular cylinder with a diameter of 12 cm and a height of 27 cm is filled with water. An aquarium is in the shaoe of a rectangular prism with the dimensions 35 cm 40cm by 42cm. what isvthe maximum number of full cylinders that can be poured into the fish tank without overflowing it?

Answers

Given data:

The diameter of cylinder is d=12 cm.

The height of the cylinder is h= 27 cm.

The dimension of the aquarium is V=(35 cm)(40 cm)( 42 cm).

The volume of the cylinder is,

[tex]\begin{gathered} V^{\prime}=\frac{\pi}{4}(d)^2h \\ =\frac{\pi}{4}(12cm)^2(27\text{ cm)} \\ =3053.628cm^3 \end{gathered}[/tex]

The volume of the aquarium is,

[tex]\begin{gathered} V=(35\text{ cm)(40 cm)(42 cm)} \\ =58800cm^3 \end{gathered}[/tex]

The number of cylinders that can be pour into aquarium is,

[tex]\begin{gathered} n=\frac{V}{V^{\prime}} \\ =\frac{58800}{3053.628} \\ =19.25 \end{gathered}[/tex]

Thus, the number of cylinders that can be pour into aquarium is 19.25.

I need these answers quickly. If I don't get them by midnight ill cry.

Answers

The answer is the second option, “The tank has 200 gallons in it when Jack opens the valve.”

This is because the y intercept represents how much water is in the tank when the time = 0 minutes, and at 0 minutes Jack hasn’t opened the valve yet and no water has been lost.

0.2x + 0.21x - 0.04 = 8.16Solve for "x".

Answers

Given the folllowing equation:

[tex]0.2x+0.21x-0.04=8.16​[/tex]

You need to solve for "x" in order to find its value. To do this, you can follow the steps shown below:

1. You can apply the Addition property of equality by adding 0.04 to both sides of the equation:

[tex]\begin{gathered} 0.2x+0.21x-0.04+(0.04)=8.16​+(0.04) \\ 0.2x+0.21x=8.2 \end{gathered}[/tex]

2. Now you need to add the like terms on the left side of the equation:

[tex]0.41x=8.2[/tex]

3. Finally, you can apply the Division property of equality by dividing both sides of the equation by 0.41:

[tex]\begin{gathered} \frac{0.41x}{0.41}=\frac{8.2}{0.41} \\ \\ x=20 \end{gathered}[/tex]

The answer is:

[tex]x=20[/tex]

Other Questions
using a survey, we have obtained a large dataset of how many close friends people have. its mean is 7 and its median is 4. the variance is 100. we calculate the standard scores. what is the value of the median of the standardized dataset? group of answer choices In the case study "GEM of a Study" 1. How can you improve the causality of the study? Evaluate the expression [tex]9 + 7 - 3 \times 3 - 2[/tex] Need help with this psychology c pat does not follow what the teacher is doing and has difficulty focusing on the task at hand. his behavior in class is disruptive because he cannot sit still, which leads to poor grades in school. these symptoms most likely indicate: a. attention-deficit/hyperactivity disorder. b. school phobia with acting out. c. dyslexia with childhood anxiety. d. a conduct disorder. Convert decimal to 0.147 to fraction ( the last digit 7 repeating) number of litres of gas in 4.51 mol Xe Mimi wants to spend a $25 gift card on two kinds of in -app purchases for her favorite game: premium skins that cost $2.99, and tools that cost $4.99. 3. 135 g of ice is placed in a beaker of water. The water temperature in the beaker is 67 C. After all the icemelts, the final water temperature in the beaker is 19.7 C. 4 ptsHeat of fusion for water = 334 J/g. Specific heat of water = 4.184 J/g C. T2-T1 = 47.3 C.Note there are a couple different ways to solve this problems to sove this por(a) Determine the initial volume of water in the beaker (before the ice was added).(b) Determine the final volume of water in the beaker (after all the ice has melted). 3(2x+4) - 2(4x-1)=20A. x=5B. x=-5C. x=3D. x=-3 Put the following elements in order, with the element having the most valence electrons at the top of your list and the element with the fewest valence electrons at the bottom.swap_vertAstatine (At)swap_vertArsenic (As)swap_vertCalcium (Ca)swap_vertSodium (Na)swap_vertOxygen (O)swap_vertSilicon (Si)swap_vertAluminum (Al) Select the correct answer. abraham lincoln was the first president elected from which political party? a. federalist b. democratic c. republican d. reform e. whig Translate the sentence into an equation,The sum of 5 times a number and 4 is 3.Use the variable b for the unknown number. Discuss in brief the major of components of computer network? It's a gross thought, but the number (N) of bacteria in refrigerated food is given by latex-1T20 where T is the temperature of the food in degrees Celsius. When you take the food out of the refrigerator, the temperature of the food is given by T(t)=3t+2,0t6 where t is the time in hours. Find the composition N(T(t)) and interpret what it means in this context. Michael studied the feather lengths of some adult fox sparrows.How long is the shortest feather in the data set? stephan is reviewing the data on product returns for an online retailer. thus far, 3.5% of all sold units were returned. if stephan takes 200 sold unit records, what is the probability that at most 6 units were returned? Netflix offered its subscribers a selection of over one hundred thousand dvd-by-mail titles, while other video rental firms can only offer as much as three thousand. This presents a significant _____ for netflix over its rivals. Observez la photo du chteau de Versailles et expliquez la phrase: . I need help with my question