Answer:
The correct answer is A. A government that wants to increase its GDP would most likely increase the money supply to make it easier to borrow money.
Explanation:
If the government wanted to increase its GDP, the most appropriate way to do so would be to increase the money supply both through issuance and through a reduction in bank reserve requirements, thereby increasing the circulating money in the hands of society.
This, in turn, would make citizens reinvest that money, increasing economic production and, therefore, the national GDP.
Answer: A. Increase the money supply to make it easier to borrow money
Explanation: I just took the test on Ap ex
A motorboat is a lot heavier than a pebble. Why does the boat float?
Answer:
The boat has more buoyancy
Explanation:
A 0.75 m3 rigid tank initially contains air whose density is 1.18 kg/m3. The tank is connected to a high-pressure supply link through a valve. The valve is opened, and air is allowed to enter the tank until the density in the tank rises to 4.95 kg/m3. Determine, in kg, the mass of air that has entered the tank..
Answer:
2.83kg
Explanation:
Answer:
2.83kg
Explanation:
Given
initial density = 1.18 kg/m3
Final density in the tank = 4.95 kg/m3.
Let us write the mass balance first.
Change in the mass of the system=mass of the air entering the system - Mass of air out the system
Mass that entered= M2 - M1
But DENSITY= MASS/ VOLUME
Mass= volume × Density
We can expressed the mass in terms of density since density is given in the question.
Mass that entered= (volume × density)2 - ( volume × density)1
= (V ρ)2 - (V ρ)1
But V1= V2 the volume remains the same
= ( ρ2 - ρ1)v
= (4.95 kg/m3 - 1.18 kg/m3) 0.75 m3
= 3.77× 0.75
= 2.8275kg
Mass that entered= 2.83kg
therefore, mass of air that has entered the tank= 2.83kg
A daring stunt woman sitting on a tree limb
wishes to drop vertically onto a horse gallop-
ing under the tree. The constant speed of the
horse is 6.8 m/s, and the woman is initially
1.91 m above the level of the saddle.
How long is she in the air? The acceleration
of gravity is 9.8 m/s.
Answer in units of s.
Answer:
she is in the air for approximately 0.62 seconds
Explanation:
We want to find the time for a free fall under the acceleration of gravity, covering a distance of 1.91 m, and considering that the woman doesn't impart initial velocity in the vertical direction. So we use the kinematic equation:
[tex]d=v_i\,t+ \frac{g}{2} \,t^21.91 = 0 +4.9\, t^2\\t^2=1.91/4.9\\t=\sqrt{1.91/4.9} \\t\approx 0.624\,\,sec[/tex]
Then she is in the air for approximately 0.62 seconds
Weight of a body becomes greater at the pole than that at the equator . why ?
Sometimes we will want to write vectors in terms of a coordinate grid. To show a vector points
horizontally (along the x-axis), place an x after the magnitude of the vector. To show a vector point
vertically (along the y-axis), place a y after the magnitude.
4) Using the notation above,
i. How would you write d1?
ii. How would you write d2?
iii. How would you write dtotal?
d1=(0,5)
d2=(5,5)
Answer:
III) [tex]d_{1}+ d_{2}=d_{t}[/tex]
Explanation:
I) coordinate (0,5) is the head for [tex]d_{1}[/tex] I will put the tail coordinate as (0,0) but it could be any other number in the x just not in the 5 with the the y being any other value.
II) coordinate (5,5) is the head for [tex]d_{2}[/tex] the tail needs to be in the head of [tex]d_{1}[/tex] being (0,5)
III) coordinates for [tex]d_{t}[/tex] is connecting the tail from [tex]d_{1}[/tex] and the head of [tex]d_{2}[/tex] making it (0,0)[tex](tail)[/tex] and (0,5)[tex](head)[/tex] and is written as [tex]d_{1}+ d_{2}=d_{t}[/tex]
(i) using coordinate grid notation to represent d₁, d₁ = 5y
(ii) using coordinate grid notation to represent d₂, d₂ = 5x + 5y
(ii) The sum of d₁ and d₂ is written as 5x + 10y
In order to show the horizontal direction of a vector, we will place x after the magnitude of the vector.
Also, to show the vertical direction of a vector, we will place a y after the magnitude of the vector.
(i) Using coordinate grid to represent d₁ = (0, 5)
[tex]d_1 = 0(x) + 5(y)\\\\d_1 = 5y[/tex]
(ii) Using coordinate grid to represent d₂ = (5, 5)
[tex]d_2 = 5x + 5y[/tex]
(iii) The total vector is written as;
[tex]d_1 + d_2 = 5y + (5x + 5y)\\\\d_1 + d_2 = 5y + 5x + 5y\\\\d_1 + d_2 = 5x + 10y[/tex]
Learn more here: https://brainly.com/question/17212749
In the absence of a gravitational field, you could determine the mass of an object (of unknown composition) by:
A) applying a known force and measuring it's acceleration.
B) measuring the volume.
C) weighing it.
Answer:
A) By applying a known force, and measuring it's acceleration.
Explanation:
This is actually something that astronauts do in space as a mathmatical exercise when calculating the mass of an object since F = m × a.
Once the force, and acceleration are applied, the only unknown is the mass which can be solved by dividing force over acceleration. This is because inertial mass is equal to gravitational mass.
You release a ball from rest at the top of a ramp. 6 s later it is moving at 4.0
m/s. What is the acceleration? (in meters per second squared) *
Your answer
[tex]a = \frac{vf - vi}{t} [/tex]
here initial velocity vi=0 as ball release from rest
the final velocity is vf=4.0
time is t=6
so putting all these values in above equation
[tex]a = \frac{ 4.0- 0}{6} [/tex]
[tex]a = 0.6667m \s {}^{2} [/tex]
A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 98 m and acquired a velocity of The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground. The upward acceleration of the rocket during the burn phase is closest to:
29 m/s2
31 m/s2
33 m/s2
30 m/s2
32 m/s2
Explanation:
The question is incomplete. Here is the complete question.
A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 98 m and acquired a velocity of 30m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground. The upward acceleration of the rocket during the burn phase is closest to...
Given
initial velocity of rocket u = 0m/s
final velocity of rocket = 30m/s
Height reached by the rocket = 98m
Required
upward acceleration of the rocket
Using the equation of motion below to get the acceleration a:
[tex]v^2 = u^2+2as\\30^2 = 0^2 + 2(a)(98)\\900 = 196a\\a = \frac{900}{196}\\a = 4.59m/s^2[/tex]
Hence upward acceleration of the rocket during the burn phase is closest to 5m/s²
Note that the velocity used in calculation was assumed.
Density is calculated by dividing the mass of an object by its volume. The Sun has a mass of 1.99×1030 kg and a radius of 6.96×108 m. What is the average density of the Sun?
Answer:
Density is calculated by dividing the mass of an object by its volume. The Sun has a mass of 1.99×1030 kg and a radius of 6.96×108 m. What is the average density of the Sun?
A negative charge -Q is placed inside the cavity of a hollow metal solid. The outside of the solid is grounded by connecting a conducting wire between it and the earth. Is any excess charge induced on the inner surface of the metal? Is there any excess charge on the outside surface of the metal? Why or why not? Would someone outside the solid measure an electric field due to the charge -Q? Is it reasonable to say that the grounded conductor has shielded the region outside the conductor from the effects of the charge -Q? In principle, could the same thing be done for gravity? Why or why not?
Answer:
a) + Q charge is inducce that compensates for the internal charge
b) There is no excess charge on the external face q_net = 0
c) E=0
Explanation:
Let's analyze the situation when a negative charge is placed inside the cavity, it repels the other negative charges, leaving the necessary positive charges to compensate for the -Q charge. The electrons that migrated to the outer part of the sphere, as it is connected to the ground, can pass to the earth and remain on the planet; therefore on the outside of the sphere the net charge remains zero.
With this analysis we can answer the specific questions
a) + Q charge is inducce that compensates for the internal charge
b) There is no excess charge on the external face q_net = 0
c) If we create a Gaussian surface on the outside of the sphere the net charge on the inside of this sphere is zero, therefore there is no electric field, on the outside
d) If it is very reasonable and this system configuration is called a Faraday Cage
e) We cannot apply this principle to gravity since there are no particles that repel, in all cases the attractive forces.
It takes a minimum distance of 48.96 m to stop a car moving at 12.0 m/s by applying the brakes (without locking the wheels). Assume that the same frictional forces apply and find the minimum stopping distance when the car is moving at 25.0 m/s.
Answer:
102 m
Explanation:
Given that It takes a minimum distance of 48.96 m to stop a car moving at 12.0 m/s by applying the brakes (without locking the wheels). Assume that the same frictional forces apply and find the minimum stopping distance when the car is moving at 25.0 m/s.
Let the stopping distance be equal to S.
According to the definition of speed,
Speed = distance / time.
make time the subject of the formula
Time = distance / speed
then, the equivalent time is:
48.96 / 12 = S / 25
Cross multiply
12S = 48.96 x 25
12S = 1224
S = 1224 / 12
S = 102 m
Therefore, the stopping distance is 102 m
During a thunderstorm the electric field at a certain point in the earth's atmosphere is 1.07 105 N/C, directed upward. Find the acceleration of a small piece of ice of mass 1.08 10-4 g, carrying a charge of 1.05 10-11 C.
Answer:
The acceleration of a small piece of ice is 10.40 m/s².
Explanation:
The electric force is given by:
[tex]F = Eq[/tex]
Where:
E is the electric field = 1.07x10⁵ N/C
q is the charge = 1.05x10⁻¹¹ C
The electric force is equal to Newton's second law:
[tex] Eq = ma [/tex]
Where:
m is the mass = 1.08x10⁻⁴ g = 1.08x10⁻⁷ kg
a is the acceleration
Hence, the acceleration is:
[tex] a = \frac{Eq}{m} = \frac{1.07 \cdot 10^{5} N/C*1.05 \cdot 10^{-11} C}{1.08 \cdot 10^{-7} kg} = 10.40 m/s^{2} [/tex]
Therefore, the acceleration of a small piece of ice is 10.40 m/s².
I hope it helps you!
I am a cell. I am long and thin. I reach all the way from the brain
to the tip of a finger. I have a special coat of fat that helps me do
my job. My job is to send electrical signals from one part of the
body to another.
Answer:
Neurons
Explanation:
We humans have a nervous system that coordinates our behavior and transmits signals between different parts of our body.
Now, this nervous system contains a lot of nerve cells which we call Neurons. These Neurons have a cell like body and their job is to transmit signals from one part of our body to another.
Thus, the cell is called Neurons.
help me get the answer in Physical Science.
Answer:
lithium
Explanation:
I took physical science 2 years ago and passed with an A
Calculate the force a 75 kg high jumper must exert in order to produce an acceleration that is 3.2 times the acceleration due to gravity.
Answer:
Explanation
According to Newton's second law of motion,
F = ma
m is the mass
a is the acceleration
If the acceleration is 3.2 times the acceleration due to gravity, then a = 3.2g
The formula becomes;
F = m(3.2g)
F = 3.2mg
m= 75kg
g = 9.81m/s²
F = 3.2(75)(9.81)
F = 2,354.4N
Hence the force exerted by the jumper is 2,354.4N
A plane flying horizontally at a speed of 40.0 m/s and at an elevation of 160 m drops a package. Two seconds later it drops a second package. How far apart will the two packages land on the ground?
Answer:
Package 1 will land at 228.0 m, package 2 will land at 308.0 m, and the distance between them is 80.0 m.
Explanation:
To find the distance at which the first package will land we need to calculate the time:
[tex] Y_{f} = Y_{0} + V_{0y}t - \frac{1}{2}gt^{2} [/tex]
Where:
Y(f) is the final position = 0
Y(0) is the initial position = 160 m
V(0y) is initial speed in "y" direction = 0
g is the gravity = 9.81 m/s²
t is the time=?
[tex] 0 = 160 m + 0t - \frac{1}{2}9.81 m/s^{2}t^{2} [/tex]
[tex] t = \sqrt{\frac{2*160 m}{9.81 m/s^{2}}} = 5.7 s [/tex]
Now we can find the distance of the first package:
[tex] X_{1} = V_{0x}*t = 40.0 m/s*5.7 s = 228.0 m [/tex]
Then, after 2 seconds the distance traveled by plane is (from the initial position):
[tex] X_{p} = V_{0x}*t = 40.0 m/s*2 s = 80.0 m [/tex]
Now, the distance of the second package is:
[tex] X _{2} = X_{1} + X_{p} = 228.0 m + 80.0 m = 308.0 m [/tex]
The distance between the packages is:
[tex] X = X_{2} - X_{1} = 308.0 - 228.0 m = 80.0 m [/tex]
Therefore, package 1 will land at 228.0 m, package 2 will land at 308.0 m and the distance between them is 80.0 m.
I hope it helps you!
An electric bulb rated 100 W, 100 V has to be
operated aross 141.4 V, 50 Hz A.C. supply. The
capacitance of the capacitor which has to be
connected in series with bulb so that bulb will
glow with full intensity is [NCERT Pg. 251]
Answer:
The capacitance of the capacitor is 31.84 μF.
Explanation:
Given;
power rating of the bulb, P = 100 W
voltage rating of the bulb, Vr = 100 V
operating voltage of the bulb, V= 141.4 V
frequency of the AC = 50 Hz
P = IV = 100 W
V = 100 V
I =
Ic = 1 A
The voltage across the capacitor is given by;
[tex]V_c = \sqrt{V^2 - V_R^2} \\\\V_c = \sqrt{141.4^2 - 100^2} \\\\V_c =99.97 \ V[/tex]
[tex]V_c = I_cX_c\\\\V_c = I_C* \frac{1}{2\pi fC}\\\\ 99.97 = 1 * \frac{1}{2\pi *50 *C}\\\\ C=\frac{1}{2\pi *50*99.97}\\\\ C = 31.84*10^{-6} \ F\\\\C = 31.84 \ \mu F[/tex]
Therefore, the capacitance of the capacitor is 31.84 μF.
The scientific method is the only way of learning about Nature used by scientist today *
A. true
B. false
Answer:
false
Explanation:
Jumping on a trampoline cause you to fly up in the air. What type of newton’s law is it ?
Answer:
The Third law
Explanation:
For every action there is an equal and opposite reaction.
Answer:
First Law
Explanation:
An object at rest (not moving) will stay at rest unless an unbalanced force acts on it.
An object in motion will stay in motion (in a straight line and at a constant speed) unless an unbalanced force acts on it.
You jump down on a trampoline and fly up in the air as a result.
ionic bonds form when electrons?
Answer:
when the electron transferred permanently to another atom
Part D
Next, we'll examine magnetic force. Bring the ends of your two magnets together. Explore the three
possible combinations. In two of the combinations, the two ends are the same. In one combination, the
two ends are different. Describe the force you feel in each combination
Answer:
i. The magnetic force of repulsion.
ii. The magnetic force of attraction.
Explanation:
A magnet is a material that has the attraction and repulsion capability. Magnets has two poles, north and south, thus would attract or repel another magnet in its neighborhood. It can either be a permanent or temporal magnet, and attracts ferrous metals.
i. In the case of two combinations where two ends are the same, it could be observed that the two ends (poles) repels each other. Thus since like poles repels, magnetic force of repulsion is felt.
ii. In the case of one combination in which the two ends are different, the two ends (poles) attract. Since unlike poles attracts, magnetic force of attraction is observed.
m_Cu * sh_CuA system consists of a copper tank whose mass is 13 kilogram , 4 kilogram of liquid water, and an electrical resistor of negligible mass. The system is insulated on its outer surface. Initially, the temperature of the copper is 27 degC and the temperature of the water is 50 degC . The electrical resistor transfers 100 kilojoule to the system. Eventually the system comes to equilibrium. Determine the final equilibrium temperature, in ∘C.
Answer:
T₂ = 49.3°C
Explanation:
Applying law of conservation of energy to the system we get the following equation:
Energy Supplied by Resistor = Energy Absorbed by Tank + Energy Absorbed by Water
E = mC(T₂ - T₁) + m'C'(T'₂ - T'₁)
where,
E = Energy Supplied by Resistor = 100 KJ = 100000 J
m = mass of copper tank = 13 kg
C = Specific Heat of Copper = 385 J/kg.°C
T₂ = Final Temperature of Copper Tank
T₁ = Initial Temperature of Copper Tank = 27°C
T'₂ = Final Temperature of Water
T'₁ = Initial Temperature of Water = 50°C
m' = Mass of Water = 4 kg
C' = Specific Heat of Water = 4179.6 K/kg.°C
Since, the system will come to equilibrium finally. Therefor: T'₂ = T₂
Therefore,
(100000 J) = (13 kg)(385 J/kg.°C)(T₂ - 27°C) + (4 kg)(4179.6 J/kg.°C)(T₂ - 50°C)
100000 J = (5005 J/°C)T₂ - 135135 J + (16718.4 J/°C)T₂ - 835920 J
100000 J + 135135 J + 835920 J = (21723.4 J/°C)T₂
(1071055 J)/(21723.4 J/°C) = T₂
T₂ = 49.3°C
A battery is used to charge a parallel-plate capacitor, after which it is disconnected. Then the plates are pulled apart to twice their original separation. This process will double the: __________A. capacitance
B. surface charge density on each plate
C. stored energy
D. electricfield between the two places
E. charge on each plate"
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
If the plates are pulled apart to twice their original separation, then this will double the stored energy. Hence, option (C) is correct.
The given problem is based on the concept of parallel plat capacitor. For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
here.
e is the permittivity of free space.
Since, the distance is inversely proportional then if we double the distance, the capacitance halves. Now, the stored energy can be given as,
E = (1/2)*Q^2/C
here,
Q is the charge stored in the capacitor.
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
So, the energy is proportional to the distance between the plates.
Thus, we can conclude that if the plates are pulled apart to twice their original separation, then this will double the stored energy. Hence, option (C) is correct.
Learn more about the energy stored in a capacitor here:
https://brainly.com/question/3611251
What is the speed of a wave that has a frequency of 2,400 Hz and a wavelength of 0.75
Answer:
1800 m/s
Explanation:
The equation is v = fλ
λ= 0.75
f = 2400 Hz
V = 2400 × 0.75
V = 1800 m/s
[ you did not give units for wavelength, I assumed it would be m/s]
Which statement best describes an atom? (2 points)
оа
Protons and neutrons grouped in a specific pattern
Ob
Protons and electrons spread around randomly
ос
A group of protons and neutrons that are surrounded by electrons
Od
A ball of electrons and neutrons surrounded by protons
Answer:
A group of protons and neutrons that are surrounded by electrons I think that's the answer...
Explanation:
cameron drives his car 15 km north. He stops for lunch and then drives 12 km south. What is his displacement?
Answer:
Displacement is 3 km North
Explanation:
the diagram shows a contour map. letter a through k are reference points on the map. which points are located at the same elevation above sea level?
Answer:
K and I
Explanation:
Contour maps use lines that represent spaces in a map that have the same elevation, this means that all the lines should be continuous and closed, in this case, we are not able to see the full extent of most of the lines, but since the points are located in different lines we can assume that they are at different heights, so since only point K and point I are on the same line, we know that these two points are at the same height.
A particle moves along a path described by y=Ax^3 and x = Bt, where tt is time. What are the units of A and B?
Answer:
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
Explanation:
From Dimensional Analysis we understand that [tex]x[/tex] and [tex]y[/tex] have length units ([tex][l][/tex]) and [tex]t[/tex] have time units ([tex][t][/tex]). Then, we get that:
[tex][l] = A\cdot [l]^{3}[/tex] (Eq. 1)
[tex][l] = B\cdot [t][/tex] (Eq. 2)
Now we finally clear each constant:
[tex]A = \frac{[l]}{[l]^{3}}[/tex]
[tex]A = \frac{1}{[l]^{2}}[/tex]
[tex]B = \frac{[l]}{[t]}[/tex]
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
a car is moving eastward and speeding up. the momentum of the car is
Astronomers have proposed the existence of a ninth planet in the distant solar system. Its semi-major axis is suggested to be approximately 600 AU. If this prediction is correct, what is its orbital period in years
Answer:
T = 1.4696 10⁴ years
Explanation:
For this exercise we must use Kepler's laws, specifically the third law which is the application of the universal law of gravitation to Newton's second law
F = ma
G m M / r² = m a_c = m v² / r
G M / r = v²
the speed of the circular orbit is
v = 2π r / T
we substitute
G M / r = 4π² r² / T²
T² = (4π² / G M) r³
Kepler proved that this expression is the same if the radius is changed by the semi-major axis of an ellipse
T² = (4π² /GM) a³
the constant is worth
(4π² / GM) = 2.97 10⁻¹⁹ s² / m³
let's reduce the distance to SI units
AU is the distance from the Earth to the Sun
a = 600 AU = 600 AU (1.496 10¹¹ m / 1 AU)
a = 8.976 10¹³ m
T² = 2.97 10⁻¹⁹ (8.976 10¹³)³
T² = 21.4786 10²²
T = 4.63 10¹¹ s
Let's reduce to years
T = 4.63 10¹¹s (1 h / 3600s) (1 day / 24 h) (1 year / 365 days)
T = 1.4696 10⁴ years