In the given triangle, α is equal to 67.36°.
What is a triangle's definition?
A triangle is a two-dimensional closed geometric form that has three sides, three angles, and three vertices (corners). It is the most basic polygon, produced by joining any three non-collinear points in a plane. The sum all angles of a triangle is always 180°. Triangles are classed according to their side length (equilateral, isosceles, or scalene) and angle measurement (acute, right, or obtuse).
Now,
Using Trigonometric functions
We can use the sine function
So,
Sin α=Perpendicular/Hypotenuse
Sin α = 12/13
α=67.36°
Hence,
The value of α will be 67.36°.
To know more about triangles visit the link
brainly.com/question/2773823
#SPJ1
2. Which sequence of transformations takes the graph of y = k(x) to the graph of
y=-k(x + 1)?
A. Translate 1 to the right, reflect over the x-axis, then scale vertically by a factor of 1/2
B. Translate 1 to the left, scale vertically by 1/2 , then reflect over the y-axis.
C. Translate left by 1/2, then translate up 1.
D. Scale vertically by 1/2, reflect over the x-axis, then translate up 1.
The correct answer is option B. Translate 1 to the left, scale vertically by 1/2, then reflect over the y-axis.
What does term "transformation of a graph" means?The process of modifying the shape, location, or features of a graph is often referred to as graph transformation. Graphs are visual representations of mathematical functions or data point connections, often represented on a coordinate plane.
Translations, reflections, rotations, dilations, and other changes to the look of a graph are examples of graph transformations.
For the given problem, Transformation to get the desired result can be carried out as:
Translate '1' to the left: The transformation "x + 1" in "-k(x + 1)" shifts the graph horizontally to the left by 1 unit.Scale vertically by '1/2' : The 1/2 factor in "-k(x + 1)" vertically scales the graph, compressing it vertically.Reflect over the y-axis: The minus sign before "k" in "-k(x + 1)" reflects the graph over the y-axis, flipping it horizontally.Hence, to convert the graph of "y = k(x)" to the graph of "y = -k(x + 1)," the correct sequence of transformations is to translate 1 unit to the left, scale vertically by 1/2, and then reflect across the y-axis, which is option B.
Learn more about Graph Transformation here:
https://brainly.com/question/10059147
#SPJ1
Help solve this! ASAP
Answer:
2
Step-by-step explanation:
You want the average rate of change of f(x) = -x² -2x +6 on the interval [-7, 3].
Average rate of changeThe average rate of change of f(x) on the interval [a, b] is computed as ...
m = (f(b) -f(a))/(b -a)
For the given function f(x), this is ...
m = (f(3) -f(-7))/(3 -(-7)) = (-9 -(-29))/10 = 20/10 = 2
The average rate of change of f(x) on the interval [-7, 3] is 2.
__
Additional comment
The derivative of the function is f'(x) = -2x -2. The midpoint of the interval is x = (-7 +3)/2 = -2. The value of the derivative at the midpoint is equal to the average rate of change on the interval:
-2(-2) -2 = 4 -2 = 2 . . . . average slope between x=-7 and x=3.
<95141404393>
A tram moved downward 12 meters in 4 seconds at a constant rate. What was the change in the tram's elevation each second?
Therefore , the solution of the given problem of unitary method comes out to be during the 4-second period, the tram's elevation changed by 3 metres every second.
What is an unitary method?To complete the assignment, use the iii . -and-true basic technique, the real variables, and any pertinent details gathered from basic and specialised questions. In response, customers might be given another opportunity to sample expression the products. If these changes don't take place, we will miss out on important gains in our knowledge of programmes.
Here,
By dividing the overall elevation change (12 metres) by the total time required (4 seconds),
it is possible to determine the change in the tram's elevation every second. We would then have the average rate of elevation change per second.
=> Elevation change equals 12 metres
=> Total duration: 4 seconds
=> 12 meters / 4 seconds
=> 3 meters/second
As a result, during the 4-second period, the tram's elevation changed by 3 metres every second.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
Lin notices that the number of cups of red paint is always 2/5 of the total number of cups. She writes the equation r = 2/5 to describe the relationship.
In the given equation r = 2/5 t "r" is the dependent variable.
Dependent variables:In mathematics, a variable is a symbol that represents a quantity that can take on different values. In many cases, variables can be divided into two types: dependent variables and independent variables.
An independent variable is a variable that can be changed freely, and its value is not dependent on any other variable in the equation.
A dependent variable is a variable whose value depends on the value of one or more other variables in the equation
Here we have
Lin notices that the number of cups of red paint is always 2/5 of the total number of cups.
She writes the equation r = 2/5 t to describe the relationship.
In the equation, r = 2/5 t, "t" represents the total number of cups, while "r" represents the number of cups of red paint.
Here "t" is the independent variable because it represents the total number of cups, which can be changed arbitrarily.
The value of "r" depends on the value of "t" because the number of cups of red paint is always 2/5 of the total number of cups.
Therefore,
In the given equation r = 2/5 t "r" is the dependent variable.
Learn more about Variables at
https://brainly.com/question/1479694
#SPJ1
Complete Question:
Lin notices that the number of cups of red paint is always 2/5 of the total number of cups. She writes the equation r = 2/5 t to describe the relationship. Which is the independent variable? Which is the dependent variable? Explain how you know.
a kite flying in the air has a 94- string attached to it, and the string is pulled taut. the angle of elevation of the kite is . find the height of the kite. round your answer to the nearest tenth.
The height of the kite is approximately 68.4 ft.
To solve the problem, we can use trigonometry. We know that the string is the hypotenuse of a right triangle, with the height of the kite as one of the legs. The angle of elevation, which is the angle between the string and the ground, is also given. We can use the tangent function to find the height of the kite:
tan(46°) = height / 94
Solving for height, we get:
height = 94 * tan(46°)
Using a calculator, we get:
height ≈ 68.4 ft
Therefore, the height of the kite is approximately 68.4 ft.
We use the given angle of elevation and the length of the string to set up a right triangle with the height of the kite as one of the legs. Then, we use the tangent function to relate the angle to the height of the kite. Finally, we solve for the height using a calculator and round to the nearest tenth as requested.
Learn more about the height
https://brainly.com/question/28122539
#SPJ4
Complete Question:
A kite flying in the air has a 94-ft string attached to it, and the string is pulled taut. The angle of elevation of the kite is 46 °. Find the height of the kite. Round your answer to the nearest tenth.
PLEASE HELP DUE TODAY!!!!!!!
Consider the functions g(x) = 2x + 1 and h(x) = 2x + 2 for the domain 0 < x < 5
a. Without evaluating or graphing the functions, how do the ranges compare?
b. graph the 2 functions and describe each range over the given interval
Answer:
see the images and explanation
Step-by-step explanation:
for the graph:
the domain 0 < x < 5
the range for each functions:
g(x) = 2x + 1
g(x) = y , 1 < y < 11
h(x) = 2x + 2 , 2 < y < 12
Which statement is true?
Please help
A bottle of water that is 80°F is placed in a cooler full of ice. The temperature of the water decreases by 0. 5°F every minute. What is the temperature of the water, in degrees Fahrenheit, after 5 1/2
minutes? Express your answer as a decimal
After 5 and a half minutes, the temperature of the water will be 77°F.
In this scenario, we are given that the initial temperature of the water is 80°F. We also know that the temperature of the water decreases by 0.5°F every minute. We want to find out what the temperature of the water will be after 5 and a half minutes.
To solve this problem, we need to use a bit of math. We know that the temperature of the water is decreasing by 0.5°F every minute. So after 1 minute, the temperature of the water will be 80°F - 0.5°F = 79.5°F. After 2 minutes, the temperature will be 79.5°F - 0.5°F = 79°F. We can continue this pattern to find the temperature after 5 and a half minutes.
After 5 minutes, the temperature of the water will be 80°F - (0.5°F x 5) = 77.5°F. And after another half minute (or 0.5 minutes), the temperature will decrease by another 0.5°F, so the temperature will be 77.5°F - 0.5°F = 77°F.
To know more about temperature here
https://brainly.com/question/11464844
#SPJ4
WILL MARK AS BRAINLEIST!!
Question in picture!!
Note: The graph above represents both functions “f” and “g” but is intentionally left unlabeled
Answer:
f(x) is the blue graph, g(x) is the red graph.
x^2 - 3x + 17 - (2x^2 - 3x + 1) = 16 - x^2
16 - x^2 = 0 when x = -4, 4
So the area between these two graphs is (using the TI-83 graphing calculator):
fnInt (16 - x^2, x, -4, 4) = 85 1/3
in a(n) , the scale questions are divided into two parts equally and the resulting scores of both parts are correlated against one another.
The main topic is the split-half reliability test used in psychological research to assess the internal consistency of a scale.
How to test the psychological research?In psychological research, reliability is a crucial aspect of measuring constructs or attributes. One commonly used method for assessing the reliability of a scale is the split-half reliability test.
In this test, the scale questions are divided into two parts equally, and the resulting scores of both parts are correlated against one another.
For example, if a scale had 20 items, the items could be randomly split into two groups of 10 items each.
Scores are then calculated for each group, and the scores are correlated with each other to determine the degree of consistency between the two halves.
The correlation coefficient obtained from this analysis provides an estimate of the internal consistency of the scale.
A high correlation coefficient indicates a high level of internal consistency, indicating that the two halves of the scale are measuring the same construct or attribute.
Conversely, a low correlation coefficient suggests that the two halves of the scale are not measuring the same construct or attribute, and the scale may need to be revised or abandoned.
Overall, the split-half reliability test provides a quick and efficient method for evaluating the reliability of a scale.
However, it is important to note that this method does have some limitations, such as the possibility of unequal difficulty or discrimination of the items in each half of the scale.
Therefore, researchers often use other methods, such as Cronbach's alpha, in conjunction with the split-half reliability test to provide a more comprehensive assessment of the reliability of a scale
Learn more about reliability test
brainly.com/question/27873337
#SPJ11
The function V(t) = 30000(0.85) value V(t) represents the values v(t) of Nancy's car after t years. What is the depreciation rate of Nancy's car?
The depreciation rate of Nancy is 15%.
What is known by depreciation?Depreciation is the reduction in the value of an asset over time due to wear and tear, obsolescence, or other factors. It is a non-cash expense that is recorded on a company's income statement, which reflects the decrease in the asset's value during its useful life. Depreciation is commonly used in accounting to allocate the cost of an asset over its useful life, and it helps businesses to accurately reflect the true value of their assets on their financial statements.
Define function?In mathematics, a function is a relation between a set of inputs and a set of possible outputs with the property that each input is related to exactly one output.
The given function V(t) = [tex](30000*0.85)^{t}[/tex]represents the value of Nancy's car after t years.
Depreciation rate is the rate at which the value of an asset decreases over time. In this case, the depreciation rate of Nancy's car is 1 - 0.85 = 0.15 or 15%.
Learn more about depreciation here:
https://brainly.com/question/17827672
#SPJ1
compute the residuals. (round your answers to two decimal places.) xi yi residuals 6 6 11 7 15 12 18 20 20 30 (c) develop a plot of the residuals against the independent variable x. do the assumptions about the error terms seem to be satisfied?
The estimated regression equation for the given data is y = -30.7 + 3.409x
To develop an estimated regression equation for the given data, we need to use the method of least squares.
The formula for the slope of the regression line is given by:
b = ∑(xi - x)(yi - y) / ∑(xi - x)²
where xi and yi are the individual values of the two variables, x and y are their respective means.
The formula for the intercept of the regression line is given by:
a = y - b × x
where a is the intercept and b is the slope.
Using the given data, we can calculate the values of x, y, b, and a as follows
x = (6 + 11 + 15 + 18 + 20) / 5 = 14
y = (7 + 9 + 12 + 21 + 30) / 5 = 15.8
∑(xi - x)(yi - y) = (6 - 14)(7 - 15.8) + (11 - 14)(9 - 15.8) + (15 - 14)(12 - 15.8) + (18 - 14)(21 - 15.8) + (20 - 14)(30 - 15.8) = 306.8
∑(xi - x)² = (6 - 14)² + (11 - 14)² + (15 - 14)² + (18 - 14)² + (20 - 14)² = 90
b = ∑(xi - x)(yi - y) / ∑(xi - x)² = 306.8 / 90 = 3.409
a = y - b × x = 15.8 - 3.409 × 14 = -30.7
Learn more about regression equation here
brainly.com/question/14184702
#SPJ4
The given question is incomplete, the complete question is:
Given are data for two variables, x and y. Develop an estimated regression equation for these data.
brainlist
show all steps nd i will make u brainlist
Step-by-step explanation:
Again, using similar triangle ratios
7.2 m is to 2.4 m
as AB is to 12.0 m
7.2 / 2.4 = AB/12.0 Multiply both sides of the equation by 12
12 * 7.2 / 2.4 = AB = 36.0 meters
call a positive integer kinda-prime if it has a prime number of positive integer divisors. if there are $168$ prime numbers less than $1000$, how many kinda-prime positive integers are there less than $1000$?
There are 173 kinda-prime positive integer less than 1000.
To find the number of kinda-prime positive integer less than 1000, we'll follow these steps:
1. Understand the definition of a kinda-prime number: A positive integer is kinda-prime if it has a prime number of positive integer divisors.
2. Determine the number of prime numbers less than 1000: There are 168 prime numbers less than 1000, as given.
3. Determine the possible prime number of divisors: Since 168 is not too large, we only need to consider 2 and 3 as possible prime numbers of divisors for a kinda-prime number.
4. Analyze the cases:
Case 1: Kinda-prime numbers with 2 divisors (prime numbers)
All prime numbers have exactly 2 divisors (1 and itself). Thus, all 168 prime numbers less than 1000 are kinda-prime.
Case 2: Kinda-prime numbers with 3 divisors
Let N be a kinda-prime number with 3 divisors. Then, N = p^2 for some prime number p. To find the suitable prime numbers p, we need[tex]p^2 < 1000[/tex]. The prime numbers that meet this condition are 2, 3, 5, 7, and 11 (since 13^2 = 169 > 1000). Therefore, there are 5 additional kinda-prime numbers ([tex]2^2, 3^2, 5^2, 7^2, and 11^2[/tex]).
5. Add the total number of kinda-prime numbers from both cases: 168 + 5 = 173.
Learn more about integer here:
https://brainly.com/question/17118150
#SPJ11
[tex]$(\pi(1000)-1)+11=\boxed{177}$[/tex] "kind a-prime" positive integers less than $1000$.
Let [tex]$n$[/tex] be a positive integer with[tex]$k$[/tex] positive integer divisors.
If [tex]$k$[/tex] is prime, then.
[tex]$n$[/tex] is a "kind a-prime" integer.
[tex]$k$[/tex] must be of the form.
[tex]$k=p$[/tex] or [tex]$k=p^2$[/tex] for some prime [tex]$p$[/tex].
If [tex]$k=p$[/tex], then [tex]$n$[/tex] must be of the form.
[tex]$p^{p-1}$[/tex] for some prime [tex]$p$[/tex]. Since [tex]$p < 1000$[/tex], there are.
[tex]$\pi(1000)$[/tex]possible values of [tex]$p$[/tex].
[tex]$p=2$[/tex] gives [tex]$2^1$[/tex], which is not prime, so we have to subtract.
[tex]$1$[/tex] from [tex]$\pi(1000)$[/tex] to get the number of possible.
[tex]$p$[/tex].
[tex]$\pi(1000)-1$[/tex] values of [tex]$p$[/tex] that give a "kind a-prime" integer of this form.
If [tex]$k=p^2$[/tex], then [tex]$n$[/tex] must be of the form.
[tex]$p^{p^2-1}$[/tex] for some prime[tex]$p$[/tex].
There are.
[tex]$\pi(31)=11$[/tex] primes less than [tex]$31$[/tex], and each of them gives a different "kind a-prime" integer of this form.
Since [tex]$31^5 > 1000$[/tex], no primes larger than [tex]$31$[/tex]can be used to form a "kind a-prime" integer of this form.
[tex]$11$[/tex] possible values of [tex]$p$[/tex] that give a "kind a-prime" integer of this form.
For similar questions on Positive Integer
https://brainly.com/question/16952898
#SPJ11
what is the 4th term/number of (a+b)^9, pascal’s triangle?
Step-by-step explanation:
hope this will help you Thanks
1. Find the square root of each of the following numbers: (i) 152.7696
cuantos números
primos son a la vez la suma y la diferencia
Answer: there is only one number
Answer:
Solo hay un número primo que se puede escribir como suma de dos números primos y también como diferencia de dos números primos.
Espero haber ayudado :D
Write the functions in standard form:
h(x)=2(x-3)²-9
h(x)=
p(x) = -5(x + 2)² + 15
p(x)=
Answer:
[tex]h(x)=2x^2-12x+9[/tex], [tex]p(x)=-5x^2-20x-5[/tex]
Step-by-step explanation:
To get to the standard form of a quadratic equation, we need to expand and simplify. Recall that standard form is written like so:
[tex]ax^2+bx+c[/tex]
Where a, b, and c are constants.
Let's expand and simplify h(x).
[tex]2(x-3)^2-9=\\2(x^2+9-6x)-9=\\2x^2+18-12x-9=\\2x^2+9-12x=\\2x^2-12x+9[/tex]
Thus, [tex]h(x)=2x^2-12x+9[/tex]
Let's do the same for p(x).
[tex]-5(x+2)^2+15=\\-5(x^2+4+4x)+15=\\-5x^2-20-20x+15=\\-5x^2-5-20x=\\-5x^2-20x-5[/tex]
Thus, [tex]p(x)=-5x^2-20x-5[/tex]
the profit p (in dollars) generated by selling x units of a certain commodity is given by the function p ( x ) = - 1500 + 12 x - 0.004 x ^ 2 What is the maximum profit, and how many units must be sold to generate it?
The profit (p) is $7500 generated by selling 1500 units of a certain commodity is given by the function p ( x ) = - 1500 + 12 x - 0.004 x²
To maximize our profit, we must locate the vertex of the parabola represented by this function. The x-value of the vertex indicates the number of units that must be sold to maximize profit.
We may use the formula for the x-coordinate of a parabola's vertex:
x = -b/2a
where a and b represent the coefficients of the quadratic function ax² + bx + c. In this situation, a = -0.004 and b = 12, resulting in:
x = -12 / 2(-0.004) = 1500
This indicates that when 1,500 units are sold, the profit is maximized.
To calculate the greatest profit, enter x = 1500 into the profit function:
P(1500) = -1500 + 12(1500) - 0.004(1500)^2
P(1500) = -1500 + 18000 - 9000
P(1500) = $7500
Therefore, the maximum possible profit is $7,500 and it is generated when 1,500 units are sold.
Learn more about Profit maximization:
https://brainly.com/question/30436087
#SPJ4
To achieve this maximum profit, exactly 1500 units must be sold.
To find the maximum profit and the number of units needed to generate it, we can use the given profit function p(x) = -1500 + 12x - 0.004x^2. We need to find the vertex of the parabola represented by this quadratic function, as the vertex will give us the maximum profit and the corresponding number of units.
Step 1: Identify the coefficients a, b, and c in the quadratic function.
In p(x) = -1500 + 12x - 0.004x^2, the coefficients are:
a = -0.004
b = 12
c = -1500
Step 2: Find the x-coordinate of the vertex using the formula x = -b / (2a).
x = -12 / (2 * -0.004) = -12 / -0.008 = 1500
Step 3: Find the maximum profit by substituting the x-coordinate into the profit function p(x).
p(1500) = -1500 + 12 * 1500 - 0.004 * 1500^2
p(1500) = -1500 + 18000 - 0.004 * 2250000
p(1500) = -1500 + 18000 - 9000
p(1500) = 7500
So, the maximum profit is $7,500, and 1,500 units must be sold to generate it.
To learn more about parabola: brainly.com/question/8227487
#SPJ11
at a booth at the school carnival in past years, they've found that 22% of students win a stuffed toy ($3.60), 16% of students win a jump rope ($1.20), and 6% of students win a t-shirt ($7.90). the remaining students do not win a prize. if 150 students play the game at the booth, how much money should the carnival committee expect to pay for prizes for that booth?: *
For a percentage data of students who play the different game and win the prize, the expected amount to pay for prizes for that booth by the carnival committee is equals to the $218.70.
We have a booth of school carnival in past years, The percentage of students win a stuffed toy = 22%
The percentage of students win a jump rope = 16%
The percentage of students win a t-shirt
= 6%
The winning amount for stuffed toy game = $ 3.60
The winning amount for jump rope game = $1.20
The winning amount for t-shirt game
= $7.90
The remaining students do not win a prize. Now, total number of students play the game at the booth = 150
So, number of students who win stuffed toy = 22% of 150 = 33
Number of students who win jump rope = 16% of 150 = 24
Number of students who win stuffed toy
= 6% of 150 = 9
For determining the expected pay using the simple multiplication formula. Total expected pay for prizes for that booth is equals to the sum of resultant of multiplcation of number of students who play a particular game into pay amount for that game. That is total excepted pay in dollars = 3.60 × 33 + 1.20 × 24 +7.90 × 6
= 218.7
Hence required value is $218.70.
For more information about percentage, visit:
https://brainly.com/question/843074
#SPJ4
Hello solve this, what is 9 x 5/7
Answer: 6 3/7
Step-by-step explanation:
9/1 x 5/7
If we multiply the numerators and denominators, we get 45/7 or 6 3/7 as a mixed number.
Answer:
[tex]\frac{45}{7}[/tex] or 6.4285
Step-by-step explanation:
First, multiply 9 and 5, which gives you 45.
9(5)=45
Then, divide 45 by 7.
45/7=6.4285
That gives you [tex]\frac{45}{7}[/tex] or 6.4285
Hope this helps!
Show that cosh2x−sinh2x=1 � � � ℎ 2 � − � � � ℎ 2 � = 1 Differentiate with respect to x � e3xx2+1 � 3 � � 2 + 1 y=secx � = sec � y=tanx2 � = tan � 2 Differentiate with respect to x � y=ln(x+sinx) � = ln ( � + sin � ) y=cosxx2 � = cos � � 2 Find dydx � � � � given siny+x2y3−cosx=2y sin � + � 2 � 3 − cos � = 2 � Differentiate from first principles y=cosx � = cos � x3+2x2+3x+4 � 3 + 2 � 2 + 3 � + 4 Find d2ydx2 � 2 � � � 2 Given 3x3−6x2+2x−1 3 � 3 − 6 � 2 + 2 � − 1
We can conclude that cosh2x−sinh2x=1.
What is equation?An equation is a mathematical statement that states that two expressions are equal. It is typically written as a comparison between two expressions and consists of an equal sign (=). Equations are used to solve mathematical problems, to understand the relationships between different quantities, and to describe the behavior of a physical system. In addition, equations are used to calculate various quantities, such as the area of a circle or the speed of an object.
To show that cosh2x−sinh2x=1, we can use the identities for cosh2x and sinh2x. The identity for cosh2x is cosh2x=2cosh2x−1 and the identity for sinh2x is sinh2x=2sinh2x−1.
Substituting these identities into the equation cosh2x−sinh2x=1 yields 2cosh2x−1−2sinh2x−1=1. Simplifying this equation yields cosh2x−sinh2x=1, as required. Thus, we can conclude that cosh2x−sinh2x=1.
To know more about equation click-
http://brainly.com/question/2972832
#SPJ1
Simplifying this equation yields [tex]\cosh^2x-sinh^2x=1[/tex], as required. Thus, we can conclude that [tex]\cosh^2x-sinh^2x=1[/tex].
What is equation?An equation is a mathematical statement that states that two expressions are equal. It is typically written as a comparison between two expressions and consists of an equal sign (=). Equations are used to solve mathematical problems, to understand the relationships between different quantities, and to describe the behavior of a physical system. In addition, equations are used to calculate various quantities, such as the area of a circle or the speed of an object.
We will show that [tex]\cosh^2x-sinh^2x=1[/tex].
Let us consider the expression [tex]\cosh^2x-sinh^2x.[/tex]
Then, [tex]\cosh^2x=(e^2x+e^{-2}x)/2[/tex] and [tex]sinh^2x=(e^2x+e^{-2}x)/2[/tex]
Substituting, we get [tex]\cosh^2x -\sinh^2x=(e^2x+e^{-2}x)/2\ -(e^2x+e^{-2}x)/2[/tex]
Simplifying, we have [tex]\cosh^2x -\sinh^2x=e^2x+e^{-2}x-e^2x+e^{-2}x[/tex]
[tex]=2e^{-2}x\\\\=2(e^{-2}x)\\\\=2[/tex]
Hence, [tex]cosh^2x-sinh^2x=1[/tex]
Therefore, we have shown that [tex]cosh^2x-sinh^2x=1[/tex]
To know more about equation click-
brainly.com/question/2972832
#SPJ1
The correct form of question is Show that cosh2x−sinh2x=1 .
which of the following null hypothesis statistical tests require calculating degrees of freedom? group of answer choices all of the above two-sample t-test chi-squared one-sample t-test
The two null hypothesis that are correct answer are two-sample t-test and one-sample t-test.
Among the group of answer choices provided, the tests that require calculating degrees of freedom are the two-sample t-test and the one-sample t-test. Both of these tests belong to the t-test family and involve using degrees of freedom to determine the critical t-value.
In summary:
- Null hypothesis: The assumption that there is no significant difference between the sample and population or between two samples.
- T-test: A statistical test used to determine if there is a significant difference between the means of two groups or between a sample and population mean.
- Degrees of freedom: A value used in statistical tests that represents the number of independent values in a data set, which can affect the outcome of the test.
So answer is: two-sample t-test and one-sample t-test.
Learn more about null hypothesis here:
https://brainly.com/question/28920252
#SPJ11
The null hypothesis statistical tests that require calculating degrees of freedom are the two-sample t-test and the one-
sample t-test. The degrees of freedom are necessary to calculate the t-value for these tests. The chi-squared test also
requires degrees of freedom, but it is not a test for a null hypothesis.
The correct answer is: all of the above.
All these tests require calculating degrees of freedom:
1. Two-sample t-test:
Degrees of freedom are calculated using the formula (n1 + n2) - 2, where n1 and n2 are the sample sizes of the two
groups being compared.
2. Chi-squared test:
Degrees of freedom are calculated using the formula (rows - 1) * (columns - 1), where rows and columns represent the
number of categories in the data.
3. One-sample t-test:
Degrees of freedom are calculated using the formula n - 1, where n is the sample size.
The null hypothesis statistical tests that require calculating degrees of freedom are the two-sample t-test and the one-
sample t-test. The degrees of freedom are necessary to calculate the t-value for these tests. The chi-squared test also
requires degrees of freedom, but it is not a test for a null hypothesis.
for such more question on null hypothesis
https://brainly.com/question/4436370
#SPJ11
Quilt squares are cut on the diagonal to form triangular quilt pieces. The hypotenuse of the resulting triangles is 20 inches long. What is the side length of each piece?
1. 10√2
2. 20√2
3. 10√3
4. 20√3
Answer:
The correct answer is:
10√2
Explanation:
In a right triangle, the hypotenuse is the side opposite the right angle and is also the longest side. The other two sides are called the legs.
In this problem, the hypotenuse of the resulting triangles is given as 20 inches. Since the quilt squares are cut on the diagonal to form triangular quilt pieces, the hypotenuse of each triangle is formed by the diagonal cut of a square.
Let's denote the side length of each square as "s" inches.
According to the Pythagorean Theorem, which relates the sides of a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two legs.
In this case, the hypotenuse is 20 inches, so we have:
20^2 = s^2 + s^2 (since the two legs of the right triangle are the sides of the square)
400 = 2s^2
Dividing both sides by 2, we get:
200 = s^2
Taking the square root of both sides, we get:
s = √200
Since we are looking for the side length of each piece in simplified radical form, we can further simplify √200 as follows:
√200 = √(100 x 2) = 10√2
So, the side length of each quilt piece is 10√
The side length of each piece of the triangular pieces of quilt cut from squares will be 10√2 inches.
This is a simple mathematics problem that can be solved using the Pythagoras theorem. This theorem states that in a right-angled triangle, the square root of the sum of the two perpendicular sides (p,b) is equal to the longest side, called the hypotenuse (h).
[tex]h = \sqrt{p^2 + b^2}[/tex]
Since the triangle pieces have been cut from a square, they will be right-angled triangles, and the two perpendicular sides will be equal, i.e., p = b.
20 = √2p² (since p and b are equal, b can be taken as p)
On squaring both sides,
400 = 2p²
p² = 400/2
p² = 200
p = √200
p = 10√2 = b
To know more about Pythagoras theorem,
https://brainly.com/question/28981380
which of the following is a correct statement regarding the null hypothesis? the null hypothesis is sometimes called the alternative hypothesis. the null hypothesis is the one the researcher cares the most about. the null hypothesis claims the opposite of what the researcher believes. the null hypothesis is usually more accurate than the research hypothesis.
The correct statement regarding the null hypothesis is: the null hypothesis claims the opposite of what the researcher believes.
The null hypothesis is the claim that no relationship exists between two sets of data or variables being analyzed. The
null hypothesis is that any experimentally observed difference is due to chance alone, and an underlying causative
relationship does not exist, hence the term "null".
In research, the null hypothesis is a statement of no effect or no relationship between variables, while the alternative
hypothesis represents the effect or relationship the researcher is interested in demonstrating.
The purpose of statistical testing is to determine whether there is enough evidence to reject the null hypothesis in
favor of the alternative hypothesis.
for such more question on null hypothesis
https://brainly.com/question/25263462
#SPJ11
if x is a matrix of centered data with a column for each field in the data and a row for each sample, how can we use matrix operations to compute the covariance matrix of the variables in the data, up to a scalar multiple?
To compute the covariance matrix of the variables in the data, the "matrix-operation" which should be used is ([tex]X^{t}[/tex] × X)/n.
The "Covariance" matrix is defined as a symmetric and positive semi-definite, with the entries representing the covariance between pairs of variables in the data.
The "diagonal-entries" represent the variances of individual variables, and the off-diagonal entries represent the covariances between pairs of variables.
Step(1) : Compute the transpose of the centered data matrix X, denoted as [tex]X^{t}[/tex]. The "transpose" of a matrix is found by inter-changing its rows and columns.
Step(2) : Compute the "dot-product" of [tex]X^{t}[/tex] with itself, denoted as [tex]X^{t}[/tex] × X.
The dot product of two matrices is computed by multiplying corresponding entries of the matrices and summing them up.
Step(3) : Divide the result obtained in step(2) by the number of samples in the data, denoted as "n", to get the covariance matrix.
This step scales the sum of the products by 1/n, which is equivalent to taking the average.
So, the covariance matrix "C" of variables in "centered-data" matrix X can be expressed as: C = ([tex]X^{t}[/tex] × X)/n.
Learn more about Covariance Matrix here
https://brainly.com/question/30481066
#SPJ4
The given question is incomplete, the complete question is
Let X be a matrix of centered data with a column for each field in the data and a row for each sample. Then, not including a scalar multiple, how can we use matrix operations to compute the covariance matrix of the variables in the data?
A triangle has two legs measuring 21 cm and 20 cm. Which of the following leg measurement will make a right triangle?
The leg measurement will make a right triangle is 21 cm.
What is hypotenous?The longest side of a right-angled triangle, i.e. the side opposite the right angle, is called the hypotenuse in geometry.
Pythagorean theorem :
If p be the length of the hypotenuse of a right-angled triangle, q and r be the lengths of the other two sides, then
p² = q² + r²
The lengths of the other two sides of the given right-angled triangle are 20 cm and 21 cm. Put these values in the above theorem to get the desired result.
Now, p² = (20)² + (21)²
= 400 + 441 = 841
i.e. p = √(841) = 29
Therefore the length of the hypotenuse is 29 cm. The right angle traingle is 21 cm.
Learn more about hypotenuse, here:
https://brainly.com/question/28946097
#SPJ1
A $2 coin with a diameter of 25. 75 mm. How many turns does such a piece make if you roll it on the edge for 1. 34 m?
The coin makes approximately 16.53 turns when rolled on its edge for 1.34 m.
How to find the number of turns the coin makes?The circumference of the coin can be calculated as follows to determine the number of turns it makes:
C = πd
where C is the circumference, d is the diameter, and π is the mathematical constant pi (approximately equal to 3.14159).
So, for the given $2 coin with a diameter of 25.75 mm, the circumference is:
C = πd = 3.14159 x 25.75 mm ≈ 80.926 mm
Divide the distance traveled by the coin's circumference to determine the number of turns it makes when rolled on its edge for 1.34 meter:
Number of turns = distance traveled / circumference of the coin
Number of turns = 1.34 m / 0.080926 m
Number of turns ≈ 16.53
Therefore, the coin makes approximately 16.53 turns when rolled on its edge for 1.34 m.
know more about circumference visit :
https://brainly.com/question/28757341
#SPJ1
how many intervals (or 'bins' or 'classes') should be chosen when creating a histogram? question 1 options: most often, about 8-10. eleven. it can vary - it really depends on the distribution of the variable. a minimum of 5.
"It can vary - it really depends on the distribution of the variable."
The number of intervals, or bins, to choose when creating a histogram can vary depending on the distribution of the variable.
Most often, about 8-10 intervals are used, but there is no set rule. It is generally recommended to have at least 5 intervals, but if the data is highly skewed or has outliers, more intervals may be needed to accurately represent the distribution.
Ultimately, the goal is to choose a number of intervals that provides a clear visual representation of the data without oversimplifying or overcomplicating the histogram.
The number of intervals or bins to be chosen when creating a histogram can vary and it really depends on the distribution of the variable.
While most often, about 8-10 bins are used, there is no hard and fast rule for the number of bins to be used in a histogram.
In general, the number of bins should be large enough to display the shape of the distribution clearly, but not so large that it obscures important features of the distribution or leads to overfitting.
A minimum of 5 bins is recommended to display the basic shape of the distribution, but more bins may be necessary for complex or multi-modal distributions.
Depending on the distribution of the variable, a histogram's number of intervals or bins can be altered.
There is no established guideline, however 8–10 intervals are typically utilized.
A minimum of five intervals are often advised, however if the data is extremely skewed or contains outliers, more intervals could be required to correctly depict the distribution.
For similar questions on variable.
https://brainly.com/question/27894163
#SPJ11
hat is the maximum speed of a point on the outside of the wheel, 15 cm from the axle?
It depends on the rotational speed of the wheel. To calculate this speed, we need to know the angular velocity of the wheel.
The maximum speed of a point on the outside of the wheel, 15 cm from the axle, if we assume that the wheel is rotating at a constant rate, we can use the formula v = rω, where v is the speed of the point on the outside of the wheel, r is the radius of the wheel (15 cm in this case), and ω is the angular velocity of the wheel. Therefore, the maximum speed of a point on the outside of the wheel would be directly proportional to the angular velocity of the wheel.
The formula to calculate the maximum linear speed (v) is:
v = ω × r
where v is the linear speed, ω is the angular velocity in radians per second, and r is the distance from the axle (15 cm, or 0.15 meters in this case).
Once you have the angular velocity (ω) of the wheel, you can plug it into the formula and find the maximum speed of a point on the outside of the wheel.
Learn more about rotational speed here: brainly.com/question/17025846
#SPJ11