To help you find the local and absolute extrema for the function f(x) = sqrt(4 - x) over the domain [1, 4]. Here are the steps:
1. Identify the function and domain: f(x) = sqrt(4 - x) over [1, 4].
2. Find the critical points by taking the derivative of the function and setting it to zero. For f(x), we have:
f'(x) = -1/(2*sqrt(4 - x))
3. Solve f'(x) = 0. However, in this case, the derivative is never equal to zero.
4. Check the endpoints of the domain, which are x = 1 and x = 4. Additionally, look for any points where the derivative is undefined (in this case, x = 4, as it would make the denominator zero).
5. Evaluate the function at these points:
f(1) = sqrt(4 - 1) = sqrt(3)
f(4) = sqrt(4 - 4) = 0
6. Compare the function values and determine the extrema:
- The absolute maximum is at x = 1 with a value of sqrt(3).
- The absolute minimum is at x = 4 with a value of 0.
In conclusion, the function f(x) = sqrt(4 - x) has an absolute maximum of sqrt(3) at x = 1 and an absolute minimum of 0 at x = 4 over the domain [1, 4]. Since the derivative never equals zero, there are no local extrema within the domain. The extrema, ordered from smallest to largest x, are as follows:
- Absolute minimum: (4, 0)
- Absolute maximum: (1, sqrt(3))
More on extrema : https://brainly.com/question/1938915
#SPJ11
Evaluate the expression (3×2−∣∣∣−5 +12∣∣∣ )+(−3) 2
Answer:
(3×2−∣∣∣−5 +12∣∣∣ )+(−3) 2 = -3/1 = -3
Step-by-step explanation:
Multiple: 3 * 2 = 6
Absolute value: abs(the result of step No. 1) = abs(6) = 6
Subtract: the result of step No. 2 - 5 = 6 - 5 = 1
Absolute value: abs(12) = 12
Multiple: the result of step No. 3 * the result of step No. 4 = 1 * 12 = 12
Absolute value: abs(the result of step No. 6) = abs(12) = 12
Exponentiation: (-3) ^ 2 = 9
Add: the result of step No. 8 + the result of step No. 9 = -12 + 9 = -3
Also yeah and just trust ig Hope it helps if it did tell me cause if it fully did
the diagram shows a triangle
The value of x in the given triangle is 24.
What is the value of x?
The value of x in the given triangle is calculated as follows;
30 + 4x + 10 + x + 20 = 180 ( sum of angles in a triangle )
Collect similar terms together as shown below;
4x + x = 180 - 30 - 10 - 20
5x = 120
divide both sides of the equation by 5;
5x/5 = 120/5
x = 24
Thus, the value of x is determined from the principle of sum of angles in a triangle.
Learn more about angles in a triangle here: https://brainly.com/question/25215131
#SPJ1
on january 1, 2021, bentley corporation issued $1,000,000 of 10-year, 8% bonds at 105, when the market rate of interest was 7%. the bonds pay interest annually on december 31. the company uses the effective interest method of amortization.
The effective interest method of amortization is a method used to allocate the cost of a bond over the bond's life, in order to determine the amount of interest expense to be recorded each period.
In the case of Bentley Corporation, since they issued $1,000,000 of 10-year, 8% bonds at 105, this means that they received $1,050,000 in cash from investors.
Since the market rate of interest was 7%, the bonds were sold at a premium, which means that the effective interest rate is less than the stated interest rate of 8%. The effective interest rate is the rate at which the present value of the bond's future cash flows equals the amount of cash received at the time of issuance.
Using the effective interest method of amortization, the premium of $50,000 will be amortized over the life of the bond, reducing the effective interest rate each year. The interest expense recorded on December 31, 2021, the first interest payment date, will be calculated as follows:
$1,050,000 x 7% = $73,500 (effective interest)
$73,500 - $80,000 (stated interest) = -$6,500 (amortization of premium)
$80,000 - $6,500 = $73,500 (interest expense)
The premium of $50,000 will be reduced by $6,500, leaving a balance of $43,500 at the end of the first year. This process will continue each year until the bond matures in 2031.
Know more about amortization here:
https://brainly.com/question/24232991
#SPJ11
Assume that blood pressure readings are normally distributed with a mean of 125 and a standard deviation 4 probability that their mean blood pressure will be less than 127. a) 0.0070 b) 0.6681 c) 0.8245 d) 0.9930
This value is the same as the value found in the z-table: P(X < 127) = 0.6915 The closest answer to this value is option (b) 0.6681.
We'll use the z-score formula and a standard normal table (z-table) to find the probability.
The given terms are: - Mean (μ) = 125 - Standard deviation (σ) = 4 - Target blood pressure (X) = 127
Step 1: Calculate the z-score using the formula: z = (X - μ) / σ z = (127 - 125) / 4 z = 2 / 4 z = 0.5
Step 2: Use a z-table to find the probability that corresponds to the z-score. In this case, the z-score is 0.5. The value found in the z-table for a z-score of 0.5 is approximately 0.6915.
Step 3: The probability that the mean blood pressure will be less than 127 is the area to the left of the z-score (0.5) in the standard normal distribution.
This value is the same as the value found in the z-table: P(X < 127) = 0.6915 The closest answer to this value is option (b) 0.6681.
Learn more about z-score,
https://brainly.com/question/28000192
#SPJ11
Bethany uses the equation d=3. 75h to find the distance, d, she travels while walking for h number of hours. What is the constant of proportionality between d and h? show your work
The constant of proportionality between d and h is 3.75
Any function in which the dependent variable (y) is obtained by multiplying the independent variable (x) by a constant value is called the direct proportionality function. This function is also expressed in the form [tex]( y = m * x)[/tex] and is more commonly called a linear function.
The value m is a constant and is known as the constant of proportionality or the slope of the line. It represents the inclination of the line to the abscissa axis, that is, the x-axis. If we talk about graphic representation, this linear function is a line with slope m that passes through the origin of coordinates, that is, the point 0 in x and 0 in y, which is the point (0,0).
Bethany finds the distance d with the help of equation d = 3.75*h, she travels this distance while walking for h number of hours. When we compare it with the direct proportionality function y = m * x, then y is represented by the distance d, x is represented by the number of hours h, and slope m or the constant of proportionality is the number 3.75.
So, the constant of proportionality between d and h is 3.75.
To learn more about the constant of proportionality;
https://brainly.com/question/27598477
#SPJ4
If a penny is tossed four times and comes up heads all four times, the probability of heads on the fifth trial is
a. 0.5
b. 1/32
c. zero
d. larger than the probability of tails
Each coin toss is an independent event, meaning that the outcome of the previous toss does not affect the outcome of the next toss. Therefore, the probability of getting heads on the fifth toss is still 0.5.
The scenario you've described involves a series of independent events, which means the outcome of one toss does not affect the outcome of the others. In this case, you are interested in the probability of heads on the fifth trial after obtaining heads four times in a row.
Since the outcome of the fifth trial is independent of the previous four, the probability of getting heads on the fifth trial remains unchanged. The probability of obtaining heads or tails when flipping a penny is always 0.5 (or 1/2) for each side, as there are only two possible outcomes.
Therefore, the correct answer is:
a. 0.5
To learn more about probability, click here:
brainly.com/question/30034780
#SPJ11
How would you write the equation for the graph f(x)=x^2 after it has been shifted to the left 7 and down 4
Step-by-step explanation:
Shift to the L 7 units ( x+7)^2
Shift down 4 (x+7)^2 - 4
Question 1 of 40 < > - / 1 III View Policies Current Attempt in ProgressDetermine whether each set equipped with the given operations is a vector space. For those that are not vector spaces identify the vector space axioms that fail. The set of all triples of real numbers with the standard vector addition but with scalar multiplication defined by k(x, y, z) = (k+x, k? y, kłz) a. Vis not a vector space, by Axiom 8 fails to hold. b. V is a vector space. c. Vis not a vector space, by Axioms 4 - 7 fail to hold. d. Vis not a vector space, by Axiom 9, 10 fails to hold. e. Vis not a vector space, by Axioms 1, 2, 3 fail to hold. e
A vector space is a collection of objects, called vectors, that can be added together and multiplied by scalars (usually real numbers or complex numbers) to produce new vectors, while satisfying a set of axioms or rules, such as associativity, commutativity, distributivity, and the existence of a zero vector and additive inverses.
The set of all triples of real numbers with the standard vector addition but with scalar multiplication defined by k(x, y, z) = (k+x, k*y, k*z) is not a vector space. This is because Axiom 8 fails to hold.
Axiom 8 states that 1 * (x, y, z) should equal (x, y, z) for any vector (x, y, z). However, with the given scalar multiplication, 1 * (x, y, z) = (1+x, 1*y, 1*z) = (x+1, y, z), which is not equal to (x, y, z). Therefore, this set does not form a vector space due to the violation of Axiom 8.
To learn more about vector spaces visit : https://brainly.com/question/11383
#SPJ11
At a particular restaurant, each slider has 350 calories and each onion ring has 70 calories. A combination meal with onion rings and sliders is shown to have 1400 total calories and 8 more onion rings than sliders. Graphically solve a system of equations in order to determine the number of sliders in the combination meal, x, and the number of onion rings in the combination meal, y.
please help
Answer:
y = 8 + x
350x + 70y = 1,400----->5x + y = 20
5x + 8 + x = 20
6x + 8 = 20
6x = 12
x = 2, y = 10
2 sliders, 10 onion rings
Adriel has $0.60 worth of nickels and dimes. He has a total of 7 nickels and dimes altogether. Determine the number of nickels, ,x, and the number of dimes, ,y, that Adriel has.Adriel has nickels and dimes.
The question is solved using two linear equations. By analyzing the money value and number of coins, it is determined that Adriel has 2 nickels and 5 dimes.
Explanation:In this problem, you need to understand that a nickel is worth 0.05 dollars (or 5 cents) and a dime is worth 0.10 dollars (or 10 cents). Adriel has a total of $0.60. Define x as the nickels and y as the dimes. You can set up the following two equations based on the information:
0.05x + 0.10y = 0.60 (This represents the total amount of money Adriel has)x + y = 7 (This represents the total number of nickels and dimes Adriel has)If we multiply the second equation by 0.05, we get 0.05x + 0.05y = 0.35. Subtract this from the first equation, which gives 0.05y = 0.25 and solving this gives y = 5. Substituting y = 5 into x + y = 7, we get x = 2. Therefore, Adriel has 2 nickels and 5 dimes.
Learn more about Linear Equations here:https://brainly.com/question/32634451
#SPJ2
Complete the table shown to the right for the population growth model for a certain
country.
(Round to four decimal places as needed.)
The population growth rate is given as follows:
k = 0.0213.
How to obtain the population growth rate?The exponential function modeling the population after t years is given as follows:
P(t) = P(0)e^(kt).
In which:
P(0) is the population in the reference year.k is the growth rate, as a decimal.Considering the population in 2007, the initial population is given as follows:
P(0) = 46.8.
21 years later, we have that:
P(21) = 73.2.
Hence the rate is obtained as follows:
46.8e^(21k) = 73.2
e^(21k) = 73.2/46.8
21k = ln(73.2/46.8)
k = ln(73.2/46.8)/21
k = 0.0213.
More can be learned about exponential functions at https://brainly.com/question/2456547
#SPJ1
A web designer charges a $200 fee plus $50 per hour to build a website. Which equation represents the total cost, y, to a customer based on the number of hours, x, it takes to buld the website?
200 + 50x = y
this works because you have to add the original cost (200) and then 50 per hour (x) if you do a letter and a number it represents multiplication, then = y because y is the total cost
A bell shaped distribution will have approximately 68% of thedata within what number of standard deviations of the main?a. One standard deviationb. Two standard deviationc. Three standard deviatio
The correct answer is a. One standard deviation.
Question is about a bell-shaped distribution and the percentage of data within a certain number of standard deviations of the mean. A bell-shaped distribution will have approximately 68% of the data within one standard deviation of the mean.
Standard deviation is a statistic that measures the dispersion of a dataset relative to its mean and is calculated as the square root of the variance. The standard deviation is calculated as the square root of variance by determining each data point's deviation relative to the mean.
So, the correct answer is a. One standard deviation.
To know more about standard deviation
https://brainly.com/question/14004763
#SPJ11
PLSS HELP ME ION UNDERSTAND
The area of the donut ta that is left is 16.485 inches².
We have,
Donuts:
Diameter = 5 inches
Radius = 5/2 inches
The area of the donuts.
= πr²
= 3.14 x 5/2 x 5/2
= 19.625 inches²
Now,
The diameter of the hole in the donut = 2 inches
Radius = 2/2 = 1 inch
Area of the donut hole.
= 3.14 x 1 x 1
= 3.14 inches²
Now,
The area of the donut ta that is left.
= 19.625 - 3.14
= 16.485 inches²
Thus,
The area of the donut ta that is left is 16.485 inches².
Learn more about circle here:
https://brainly.com/question/11833983
#SPJ1
Least common multiple of 3 and 13
Answer: 39
Step-by-step explanation:
First, we will list some multiples of 3.
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, [tex]\boxed{39}[/tex], 42, 45, 48, 51, 54, etc.
Next, we will list some multiples of 13.
13, 26, [tex]\boxed{39}[/tex], 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, etc.
We see that the least common multiple of 3 and 13 is 39. This is the smallest value that shows up in both lists.
What is a multiple?
A multiple is a number that can be divided with that number without a reminder.
PLEASE QUICK A line is defined by the equation 2 x + y = 4. Which shows the graph of this line? On a coordinate plane, a line goes through points (negative 2, 0) and (0, 4). On a coordinate plane, a line goes through points (0, 1) and (2, 5). On a coordinate plane, a line goes through points (0, 4) and (2, 0). On a coordinate plane, a line goes through points (0, 2) and (2, 0).
The graph of the given line 2 x + y = 4 is a straight line and the coordinates present above the line will be ( 0, 4) and ( 2, 0) hence option (C) will be correct.
We know, that,
A line section that can connect two places is referred to as a segment.
In other words, a line segment is just part of a big line that is straight and going unlimited in bdirections.
The line is here! It extends endlessly in both directions and has no beginning or conclusion.
A coordinate that is present in the line will always satisfy the equation of the line.
In the given option the coordinate (0, 4) and (2, 0) is satisfying the given equation by substituting the value 2 x + y = 4 hence option (C) will correct.
For more about line segment
brainly.com/question/25727583
#SPJ1
Seth bought a pair of shorts. The original cost was $21, but the store was having a sale of 25% off. Seth also had a coupon for 15% off any purchase at checkout. How much did Seth pay for the pair of shorts?
Answer:
13.65
Step-by-step explanation:
25% + 15% = 35%
35% of 21 = 7.35
21 - 7.35 = 13.65
hope this helps :)
HELP
The table below shows the values of f(x) and g(x) for different values of x. One of the functions is a quadratic function, and the other is an exponential function. Which function is most likely increasing exponentially?
x f(x) g(x)
1 3 3
2 6 9
3 11 27
4 18 81
5 27 243
f(x), because it eventually exceeds g(x)
g(x), because it eventually exceeds f(x)
f(x), because it eventually intersects g(x)
g(x), because it will not intersect f(x)
The function g(x) increases faster than the function f(x).
We know, the quadratic function f(x) will be
f(x) = ax² + bx + c
At x = 1, f(x) will be 3
So, a + b + c = 3 ...(1)
and x = 2, f(x) will be 6
4a + 2b + c = 6 ... (2)
and, x = 3, f(x) will be 11
9a + 3b + c = 11 ... (3)
On solving equations we get
a = 1, b = 0, and c = 2
So, the quadratic function will be
f(x) = x² + 2
Now, The exponential function g(x) will be given as
g(x) = abˣ
At x = 1, g(x) will be 3
ab = 3 .....(4)
and, x = 2, g(x) will be 9
ab² = 9 ...(5)
From equations 4 and 5 we get
a = 1 and b = 3
So, the exponential function will be
g(x) = [tex]3^x[/tex]
Learn more about function here:
brainly.com/question/5245372
#SPJ1
Telescoping Series: Given the series n(n - 1) "=2 Part 1 Find a formula for the nth partial sum, Sn that depends only on n. Sn = _________ Part 2 Evaluate the following limit to determine whether the given series converges or diverges. lim Sn _________ Therefore the series _________ to _________. Note: If the series diverges, type 'inf' in the last blank:
The formula for the nth partial sum of the series n(n-1) is Sn = n(n+1)(2n-1)/6 and the series diverges.
Part 1: The formula for the nth partial sum, Sn, for the series n(n-1), can be found by using the formula for the sum of the first n natural numbers, which is given by Sn = n(n+1)/2. To find the sum of n(n-1), we can rewrite it as n^2 - n and use the formula for the sum of the first n squares, which is given by n(n+1)(2n+1)/6. Therefore, the formula for Sn is Sn = n(n+1)(2n-1)/6.
Part 2: To determine whether the given series converges or diverges, we need to evaluate the limit of Sn as n approaches infinity. Taking the limit of the formula for Sn, we get lim Sn = lim [n(n+1)(2n-1)/6] = lim (2n^3/6) = lim (n^3/3) = inf. Since the limit of Sn is infinity, the series diverges.
In conclusion, the formula for the nth partial sum of the series n(n-1) is Sn = n(n+1)(2n-1)/6 and the series diverges as the limit of Sn approaches infinity. This means that the sum of the series does not converge to a finite value and grows without bound as n increases.
To learn more about Partial sums, visit:
https://brainly.com/question/30339367
#SPJ11
A comet travels at an average speed of 266,000 km/h. It takes 7 days for the comet to reach Earth. Find the distance, in km, the comet travelled.
Answer:
v=d/delta t
d=v×delta t
=266 000km/h×168h
=44,688,000.km
T/F Synergy is obtained when the value created by two divisions operated separately and independently is greater than the value that would be created by two divisions cooperating.
Synergy is obtained when the value created by two divisions operated separately and independently is greater than the value that would be created by two divisions cooperating. The given statement is False.
The statement is false. Synergy is a term used to describe the benefits that can be achieved when two or more parts of a business work together to create more value than they could on their own. In other words, when two divisions cooperate and work together, the combined value they create is greater than the value that would be created if they worked independently and separately.
For example, if a company has a marketing division and a sales division, these two divisions could work independently to achieve their goals. However, if they work together and share information, resources, and expertise, they can create more value by developing more effective marketing strategies that lead to increased sales. In this case, the combined value of the marketing and sales divisions working together is greater than the value they could create if they worked independently.
Therefore, it is incorrect to say that synergy is obtained when two divisions operate separately and independently to create greater value than they would if they cooperated.
To learn more about working visit:
https://brainly.com/question/21724760
#SPJ11
When tossing a two-sided, fair coin with one side colored yellow and the other side colored green, determine P(yellow).
yellow over green
green over yellow
2
one half
The calculated value of the probability P(yellow) is 0.5 i.e. one half
How to determine P(yellow).From the question, we have the following parameters that can be used in our computation:
Sections = 2
Color = yellow, and green
Using the above as a guide, we have the following:
Yellow = 1
When the yellow section is selected, we have
P(yellow) = yellow/section
The required probability is
P(yellow) = 1/2
Evaluate
P(yellow) = 0.5
Hence, the value is 0.5
Read more probability at
https://brainly.com/question/24756209
#SPJ1
Find the equation of a line that passes through the point, (3, -4) abd is perpendicular to the line y=1/5x-2
The equation of a line is : y = -5x + 11
What is the slope of a straight line?The slope of a line is the measure of the tangent of the angle made by the line with the x-axis. The slope is constant throughout a straight line. The slope-intercept form of a straight line can be given by y = mx + b. The slope is represented by the letter m, and is given by, m = tan θ = (y2 - y1)/(x2 - x1)
The slope of line is:
y = 1/5x -2 , m = 1/5
The slope of the line perpendicular to line is m ' = -1/m , -5
The equation of line having slope m and passing through the point (a, b) is given by y − b = m (x − a)
Therefore, the equation of line having slope m ′ = -5and passing through the point (3,-4) is given by:
y - (-4) = -5(x -3)
y + 4 = -5(x -3)
y + 4 = -5x + 15
y = -5x + 15 -4
y = -5x + 11
Learn more about Slope of line at:
https://brainly.com/question/14511992
#SPJ1
Find the value of x if mCD = 56° and mAB = 44º.
=
A
bor
B
D
C
The value of angle x for the two chords intersecting at the center is 50⁰.
What is the value of angle x?The value of angle x is calculated by applying intersecting chord theorem as shown below;
For a vertex inside angle, the angle formed by the intersection of two chords inside a circle is equal to half of the sum of the two arc angles.
The value of angle x for the two chords intersecting at the center is calculated as;
x = ¹/₂ (arc DC + arc AB )
x = ¹/₂ (56⁰ + 44⁰ )
x = 50⁰
Learn more about chord angles here: brainly.com/question/23732231
#SPJ1
TIME REMAINING
51:59
On a coordinate plane, 2 triangles are shown. Triangle D E F has points (6, 4), (5, 8) and (1, 2). Triangle R S U has points (negative 2, 4), (negative 3, 0), and (2, negative 2).
Triangle DEF is reflected over the y-axis, and then translated down 4 units and right 3 units. Which congruency statement describes the figures?
ΔDEF ≅ ΔSUR
ΔDEF ≅ ΔSRU
ΔDEF ≅ ΔRSU
ΔDEF ≅ ΔRUS
Answer:
(b) ΔDEF ≅ ΔSRU
Step-by-step explanation:
Given point coordinates D(6, 4), E(5, 8), F(1, 2), you want the congruence statement for ∆DEF, given points R(-2, 4), S(-3, 0), U(2, -2) and the fact that ∆DEF is reflected across the y-axis and translated (3, -4).
GraphThe attached graph plots the given points. It is pretty clear that corresponding vertices are (D, S), (E, R), (F, U).
∆DEF ≅ ∆SRU
TransformationReflection across the y-axis is described by ...
(x, y) ⇒ (-x, y)
Translation right 3 and down 4 is described by ...
(x, y) ⇒ (x +3, y -4)
Taken together, the transformation is ...
(x, y) ⇒ (-x +3, y -4)
Applied to points D, E, F, we have ...
D(6, 4) ⇒ D'(-3, 0) . . . . matches S
E(5, 8) ⇒ E'(-2, 4) . . . . matches R
These two matches are sufficient to tell us that point F will be transformed to point U, and the congruence statement is ...
∆DEF ≅ ∆SRU
Answer:
ΔDEF ≅ ΔSRU
Step-by-step explanation:
The answer above is correct.
Pete's yard is 52.7 feet wide. The length is 30.4 feet greater than the width.
What is the perimeter of Pete's yard in feet?
Answer:166.2 feet^2
Step-by-step explanation:
By assuming that Pete's yard is a rectangle, we can get the perimeter by using an equation that looks like this:
perimeter = l+l+w+w
Where l = length, and w = width.
This is because you are adding the measures of every side together, which is the definition of the value of a perimeter.
Furthermore, to get the area of the figure, you would need to multiply 52.7 by 30.4, which would be 1602.08 feet^2
1. What is the surface area of the cylinder?
Apply the formula SA = 2πr² + 2πrh. Use
3.14 for #, and round to the nearest tenth.
4 cm
11 cm
2wi
re
SA
The surface area of the given cylinder is 200.96 square centimeters.
Given that the radius of the cylinder is 4 cm and the height of the cylinder is also 4 cm,
The surface area of the cylinder can be found using the formula:
SA = 2πr² + 2πrh, where r is the radius of the circular base and h is the height of the cylinder.
Substitute given values into the formula to get:
SA = 2π(4)² + 2π(4)(4)
= 2π(16) + 2π(16)
= 32π + 32π
= 64π
= 64(3.14)
= 200.96
Therefore, the surface area of the cylinder is 200.96 square centimeters.
Learn more about the surface area of the cylinder here:
https://brainly.com/question/27983648
#SPJ1
The complete question is as follows
What is the surface area of the cylinder?
Here, the radius of the cylinder is 4 cm and the height of the cylinder is 4 cm
Apply the formula SA = 2πr² + 2πrh.
Using The Chi-Square Distribution Table, find the values for Xict and Right of the following. Part: 0/5 Part 1 of 5 х 5 = (a) When a = 0.01 and n= 31, Ket Light
When a = 0.01 and n = 31, the Xict value for the Chi-Square Distribution is 53.672.
To find the values for Xict and Right using the Chi-Square Distribution Table, we need to follow these steps:
Step 1: Identify the degrees of freedom (df). In this case, since n=31, the degrees of freedom will be df = n-1 = 31-1 = 30.
Step 2: Identify the significance level (α). In this case, α = 0.01.
Step 3: Locate the row corresponding to the degrees of freedom in the Chi-Square Distribution Table.
Step 4: Locate the column corresponding to the significance level in the Chi-Square Distribution Table.
Step 5: Find the intersection of the row and column identified in steps 3 and 4. This value is your Xict.
For Part 1 of 5 (a), with α = 0.01 and df = 30, using a Chi-Square Distribution Table, you will find the Xict value as 53.672. This means that when a = 0.01 and n = 31, the Xict value for the Chi-Square Distribution is 53.672.
To know more about chi-square distribution visit:
https://brainly.com/question/30764634
#SPJ11
Find f(x) if f(2) = 2 and the tangent line at x has slope (x - 1) 2x
The function f(x) is [tex]\frac{2}{3}x^3 - 76x^2 + 150x + 2.67[/tex].
To find f(x), we need to integrate the given slope (x-1)(2x-150) with respect to x, because the slope of a tangent line to a function is the derivative of that function. A line's slope is a gauge of its steepness. Between any two points on the line, it is calculated as the ratio of the change in the vertical coordinate (rise) to the change in the horizontal coordinate (run).
So, we have:
f'(x) = (x-1)(2x-150)
Integrating both sides with respect to x:
[tex]f(x) = ∫(x-1)(2x-150) dx[/tex]
[tex]f(x) = \int (2x^2 - 152x + 150) dx[/tex]
[tex]f(x) = \frac{2}{3}x^3 - 76x^2 + 150x + C[/tex]
where C is an arbitrary constant of integration.
To determine the value of C, we can use the given condition f(2) = 2:
[tex]f(2) = \frac{2}{3}(2)^3 - 76(2)^2 + 150(2) + C = 2[/tex]
Simplifying:
C = 2 - (8/3) + 304 - 300 = 2.67
Therefore, the function f(x) is:
f(x) = [tex]\frac{2}{3}x^3 - 76x^2 + 150x + 2.67[/tex].
To learn more about tangent line
https://brainly.com/question/31326507
#SPJ4
ANSWER THIS QUESTION QUICKLY PLS!
There are 54 phones in an office building.
How many unique connections between two of these phones can be made?
Answer:
1431
Step-by-step explanation:
The number of unique connections between two phones can be found using the formula for combinations.
Since we want to find the number of ways to choose two phones out of 54 phones, we can use the following formula:
nCk = n! / (k! * (n-k)!)
where n is the total number of phones (54), and k is the number of phones we want to choose (2).
nCk = 54! / (2! * (54-2)!)
= 54! / (2! * 52!)
= (54 * 53) / 2
= 1,431
Therefore, there are 1,431 unique connections that can be made between two phones in the office building.
I swear I hope I did this correctly t-t
Answer: 1431
Step-by-step explanation: i took the quiz