Consider that the intercept form of equation of a line whose x-intercept is (a,0) and y-intercept is (0,b), is given by,
[tex]\frac{x}{a}+\frac{y}{b}=1[/tex]The equation of the line is given as,
[tex]5x+3y=15[/tex]Convert this equation into intercept form,
[tex]\begin{gathered} \frac{5x}{15}+\frac{3y}{15}=1 \\ \frac{x}{3}+\frac{y}{5}=1 \end{gathered}[/tex]Comparing with the standard equation,
[tex]\begin{gathered} a=3 \\ b=5 \end{gathered}[/tex]Thus, the x-intercept and y-intercept of the equation, respectively, are,
[tex](3,5)\text{ and }(0,5)[/tex]A game uses a single 6-sided die. To play the game, the die is rolled one time, with the following results: Even number = lose $91 or 3 = win $25 = win $12What is the expected value of the game?
The expected value of the game is $1.83.
a half cylinder with a diameter of 2 mm is 9n top of a rectangular prism. A second half cylinder with a diameter of 4 mm is on the side of the prism. All shapes are 5 mm long. What is the volume of the combined figures?
The volume will be given by:
The volume of the half cylinder on top, plus the volume of the rectangular prims, plus the volume of the half cylinder on the right:
so:
The volume of the half cylinder on top is:
[tex]\begin{gathered} V1=\frac{\pi r^2l}{2} \\ V1=\frac{\pi(1^2)5}{2}=\frac{5\pi}{2} \end{gathered}[/tex]The volume of the half cylinder on the right is:
[tex]\begin{gathered} V2=\frac{\pi r^2l}{2} \\ V2=\frac{\pi(2^2)\cdot5}{2}=10\pi \end{gathered}[/tex]The volume of the rectangular prism is:
[tex]\begin{gathered} V3=l\cdot w\cdot h \\ V3=4\cdot2\cdot5 \\ V3=40 \end{gathered}[/tex]Therefore, the total volume is:
[tex]\begin{gathered} Vt=V1+V2+V3 \\ Vt=\frac{5}{2}\pi+10\pi+40=79.3mm^3 \end{gathered}[/tex]The angle of elevation to the top of a Building in New York is found to be 11 degrees from the ground at a distance of 1 mile from the base of the building. Using this information, find the height of the building. Round to the tenths. Hint: 1 mile = 5280 feet
Your answer is __________ feet.
The height of the building is given as 1026.43 feet
What is angle of elevation?This is the term that is used to refer to the angle that is usually formed from the horizontal line to the angle of sight of a person.
We have to make use of the trig function that tells us that
tan(∅) = opposite length /adjacent length.
where ∅ = 11 degrees
adjacent length = 1
opposite length = x
When we put these values in the formula we would have
tan 11 = x / 1
0.1944 = x /1
we have to cross multiply to get x
x = 0.1944 x 1
= 0.1944
Then the height of the building would be 0.1944 x 5280 feet
= 1026.43 feet
Read more on angle of elevation here:
https://brainly.com/question/26356439
#SPJ1
Carrie sold 112 boxes of cookies, Megan sold 126 boxes of cookies, Julie sold 202 boxes of cookies, and Ashton sold 176 boxes of cookies. what was the average number of boxes of cookies sold by each individual
Answer:
154 boxes.
Explanation:
To calculate the average number of boxes of cookies sold by each individual, we use the formula:
[tex]\text{Average=}\frac{\text{Sum of all boxes sold}}{\text{Number of individuals}}[/tex]This gives:
[tex]\begin{gathered} \text{Average}=\frac{112+126+202+176}{4} \\ =\frac{616}{4} \\ =154\text{ boxes} \end{gathered}[/tex]The average number of boxes of cookies sold by each individual was 154 boxes.
The graph shows the distance a car traveled, y, in x hours: What is the rise-over-run value for the relationship represented in the graph?
In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
point 1 (2 , 60) x1 = 2 y1 = 60
point 2 (4 , 120) x2 = 4 y2 = 120
Step 02:
slope formula
[tex]m\text{ = }\frac{y2-y1}{x2-x1}[/tex][tex]m\text{ = }\frac{120-60}{4-2}=\text{ }\frac{60}{2}=30[/tex]The answer is:
30
Sydney is making bracelets, 3 bracelets require 21 beads. The number of braclets varies directly with the number of beads.
Write an equation in the form of y = ax then find the amount o
beads needed for 32 bracelets.
Step-by-step explanation:
"varies DIRECTLY with" means there is an y = ax relationship.
y = number of bracelets
x = number of beads
3 = a×21
a = 3/21 = 1/7
now, when we have 32 bracelets
32 = 1/7 × x
32×7 = x = 224
224 beads are needed for 32 bracelets.
the client is to receive cimetidine 300mg by mouth every 6 hours. The medication is available as cimetidine 300mg/5ml. How many teaspoons should the nurse instruct the client to take?
Step 1
Given; The client is to receive cimetidine 300mg by mouth every 6 hours. The medication is available as cimetidine 300mg/5ml.
Required; How many teaspoons should the nurse instruct the client to take?
Step 2
[tex]\begin{gathered} 1\text{ teaspoon =5ml } \\ Patient\text{ takes 300mg/5ml or 300mg/teaspoon} \\ \frac{Required\text{ dosage in mg}}{Dosage\text{ in 1 teaspoon}}\times5ml \\ Required\text{ dosage in mg=300mg} \\ Dosage\text{ in 1 teaspoon=300mg} \\ \frac{300mg}{300mg}\times5ml=5ml \\ From\text{ the table 5ml is the equivalent of 1 teaspoon .} \end{gathered}[/tex]Thus, the client takes 300mg every six hours. This means that the nurse will instruct the client to take 1 teaspoon every 6 hours.
Answer;
[tex]1\text{ teaspoon every 6 hours}[/tex]Plot the point given by the following polar coordinates on the graph below. Each circular grid line is 0.5 units apart.230(2.5. -,
Solution:
Given:
[tex](2.5,-\frac{2\pi}{3})[/tex]In ABC, B = 51°, b = 35, and a = 36. What are the two possible values for angle A to the nearest tenth of a degree?Select both correct answers.
Using the law of sines:
[tex]\frac{a}{\sin(A)}=\frac{b}{\sin (B)}[/tex]Solve for A using the data provided:
[tex]\begin{gathered} \sin (A)=\frac{\sin (B)\cdot a}{b} \\ A=\sin ^{-1}(\frac{\sin (51)36}{35}) \\ A\approx53.1 \\ or \\ A\approx126.9 \end{gathered}[/tex]How far is the bottom of the ladder from thebottom of the wall? Use the PythagoreanTheorem to determine the solution. Explain howyou found your answer.
The Pythagorean Theorem is
[tex]c^2=a^2+b^2[/tex]where
c=hypotenuse=13
a=12
b=x
then we substitute the values
[tex]13^2=12^2+x^2[/tex]then we isolate the x
[tex]\begin{gathered} x=\sqrt[]{13^2-12^2} \\ x=\sqrt[]{169-144} \\ x=\sqrt[]{25} \\ x=5 \end{gathered}[/tex]The bottom of the ladder is 5m far from the bottom of the wall
Solve the system withelimination.1-2x + y = 813x + y = -2([?],[?]
Now we substitute the value of x into the first equation to get the value of y
[tex]\begin{gathered} -2\cdot-2+y=8 \\ 4+y=8 \\ y=8-4=4 \end{gathered}[/tex]Finally the solution is (-2,4)
Solve graphically by the intersection method. Give the solution in interval notation.5x+2<2x−4
The green line represents 5x + 2
The purple line represents 2x - 4
The orange-colour line represents the intersection of the lines above, which is the solution to the inequality:
5x + 2 < 2x - 4
The intersection is represented by a broken line, to signify the strict < in the equation
f(9) =
(Simplify your answer. Type an integer or a fraction.)
Answer:
9f
Step-by-step explanation:
f(9) = f * (9)
a) Multiply.
f * (9) = 9f
the drop down menus choices are: two imaginary solutionstwo real solutionsone real solution
Given a quadratic equation of the form:
[tex]ax^2+bx+c=0[/tex]The discriminant is:
[tex]D=b^2-4ac[/tex]And we can know the number of solutions with the value of the discriminant:
• If D < 0, the equation has 2 imaginary solutions.
,• If D = 0, the equation has 1 real solution
,• If D > 0, the equation has 2 real solutions.
Equation One:
[tex]x^2-4x+4=0[/tex]Then, we calculate the discriminant:
[tex]D=(-4)^2^-4\cdot1\cdot4=16-16=0[/tex]D = 0
There are 1 real solution.
Equation Two:
[tex]-5x^2+8x-9=0[/tex]
Calculate the discriminant:
[tex]D=8^2-4\cdot(-5)\cdot(-9)=64-20\cdot9=64-180=-116[/tex]D = -116
There are 2 imaginary solutions.
Equation Three:
[tex]7x^2+4x-3=0[/tex]
Calculate the discriminant:
[tex]D=4^2-4\cdot7\cdot(-3)=16+28\cdot3=16+84=100[/tex]D = 100
There are 2 real solutions.
Answers:
Equation 1: D = 0, One real solution.
Equation 2: D = -116, Two imaginary solutions.
Equation 3: D = 100, Two real solutions.
Find the critical value z a/2 that corresponds to the confidence level 96%
To find the Z a/2 for the 96% confidence. We write the confidence level in decimal form, in this case 0.96.
Now:
[tex]\alpha=1-0.96=0.04[/tex]and then:
[tex]\frac{\alpha}{2}=0.02[/tex]Now we subtract this value to 0.5 to know the value we need to find in the Z table:
[tex]0.5-0.02=0.48[/tex]Now we look at the Z table for this value, by finding we notice that this happens when Z=2.05.
Therefore the Z a/2 value is 2.05
What is the equation of a line with slope 7/12 and y-intercept -3?
The equation of a line in the slope intercept form is expressed as
y = mx + c
where
m represents slope
c represents y intercept
Given that m = 7/12 and c = - 3, the equation of the line would be
y = 7x/12 - 3
In a recent poll, 13% of all respondents said that they were afraid of heights. Suppose this percentage is true for allAmericans. Assume responses from different individuals are independent.
write a word problem in which you divide two fractions into mixed numbers or a mixed number and a fraction solve your word problem and show how you found the answer
Jade share 4 1/3 cups of chocolate by 1/3 among his friends
The mixed fraction = 4 1/3
Fraction = 1/3
[tex]\begin{gathered} \text{Firstly, we n}eed\text{ to convert the mixed fraction into an improper fraction} \\ 4\frac{1}{3}\text{ = }\frac{(3\text{ x 4) + 1}}{3} \\ 4\frac{1}{3}\text{ = }\frac{12\text{ + 1}}{3} \\ 4\frac{1}{3}\text{ = }\frac{13}{3} \\ \text{Divide }\frac{13}{3}\text{ by 1/3} \\ =\text{ }\frac{13}{3}\text{ / }\frac{1}{3} \\ \text{ According to mathematics, once the numerator and denominator of the LHS is interchanged then the order of operator changes from division to multiplication} \\ =\text{ }\frac{13}{3}\text{ x }\frac{3}{1} \\ =\text{ }\frac{13\text{ x 3}}{3} \\ \text{= }\frac{39}{3} \\ =\text{ 13} \end{gathered}[/tex]Therefore, the answer is 13
An 18-foot ribbon is attached to the top of a pole and is located on the ground 10 feet awayfrom the base of the pole. Suppose Mateo has a second ribbon that will be located anadditional 23 feet away past that point.Find the measure of the angle formed by Mateo's ribbon and the ground. Round the angle tothe nearest tenth of a degree.a10 ft18 ft23 ft8
To begin we need to find the value of a
We apply the Pythagorean theorem
[tex]\begin{gathered} 18^2=a^2+10^2 \\ a^2=18^2-10^2 \\ a=\sqrt{18^2-10^2} \\ a=4\sqrt{14} \end{gathered}[/tex]Now we find theta
Here we use the tangent that is the oppositive side over the adjacent side
[tex]\begin{gathered} \tan\theta=\frac{4\sqrt{14}}{33} \\ \\ \theta=\tan^{-1}(\frac{414}{33})=24.39\degree \end{gathered}[/tex]Graph the line with the given slope m and y-intercept b.
m = 4,b=-5
The graph of the linear equation can be seen in the image at the end.
How to graph the linear equation?
The general linear equation is.
y = m*x + b
Where m is the slope and b is the y-intercept.
Here we know that m = 4 and b = -5, so we have:
y = 4*x - 5
To graph this line, we need to find two points.
Evaluating in x = 0 we get:
y = 4*0 - 5 = -5
Evaluating in x = 2 we get:
y = 4*2 - 5 = 8 - 5 = 3
So we have the points (0, -5) and (2, 3), so now we need to graph these points and connect them with a line, the graph can be seen below:
Learn more about linear equations:
https://brainly.com/question/1884491
#SPJ1
The following table shows a company's annual income over a 6-year period. The equation y=60000(1.2)x describes the curve of best fit for the company's annual income (y). Let x represent the number of years since 2001.
Given that the annual income of a company over a 6-year period is described by the equation:
[tex]\begin{gathered} y=60000(1.2)^x \\ \text{where} \\ x\text{ is the number of years since 2001} \end{gathered}[/tex]The annual income at the end of each year since 2001 is as shown in the table below:
Required: To evaluate the company's approximate annual income in 2009.
Solution:
Given the annual income described as
[tex]y=60000(1.2)^x[/tex]The number of years between 2001 and 2009 is evaluated as
[tex]x\text{ = 2009 -2001 = 8 years}[/tex]thus, it's been 8 years since 2001.
The annual income in 2009 is thus evaluated by substituting 8 for the value of x in the annual income function.
This gives
[tex]\begin{gathered} y=60000(1.2)^x \\ x\text{ = 8} \\ \text{thus,} \\ y\text{ = 60000}\times(1.2)^8 \\ =\text{ 60000}\times4.29981696 \\ y=\text{ }257989.0176 \\ \Rightarrow y\approx258000 \end{gathered}[/tex]Hence, the company's approximate annual income in the year 2009 will be $ 258000.
The third option is the correct answer.
I need help with this practice problem If you can, show your work step by step so I can take helpful notes
The given geometric series is
[tex]120-80+\frac{160}{3}-\frac{320}{9}+\cdots[/tex]In a geometric series, there is a common ratio between consecutive terms defined as
[tex]r=\frac{-80_{}}{120_{}}=-\frac{2}{3}[/tex]The sum of the first n terms of a geometric series is given by
[tex]S_n=\frac{a(1-r^n)}{1-r},r<1[/tex]Where a is the first term.
From the given series
a = 120
Hence, the sum of the first 8 terms is
[tex]S_8=\frac{120(1-(-\frac{2}{3})^8)}{1-(-\frac{2}{3})}[/tex]Simplify the brackets
[tex]S_8=\frac{120(1-\frac{2^8}{3^8}^{})}{1+\frac{2}{3}}[/tex]Simplify further
[tex]\begin{gathered} S_8=\frac{120(1-\frac{256}{6561})}{\frac{3+2}{3}} \\ S_8=\frac{120(\frac{6561-256}{6561})}{\frac{5}{3}} \\ S_8=\frac{120(\frac{6305}{6561})}{\frac{5}{3}} \\ S_8=\frac{120\times6305}{6561}\div\frac{5}{3} \\ S_8=\frac{120\times6305}{6561}\times\frac{3}{5} \\ S_8=\frac{120\times6305}{6561}\times\frac{3}{5} \\ S_8=\frac{8\times6305}{729} \\ S_8=\frac{50440}{729} \end{gathered}[/tex]Therefore, the sum of the first 8 terms is
[tex]\frac{50440}{729}[/tex]24) The radius of a circle is 6 inches. What is the area of a sector that has a central angle of 100 degrees 
Answer
Area of the sector = 31.42 square inches
Explanation
The area of a sector that has a central angle, θ, in a circle of radius r, is given as
[tex]\begin{gathered} \text{Area of a sector = }\frac{\theta}{360\degree}\times(Area\text{ of a circle)} \\ \text{Area of a circle =}\pi\times r^2 \\ \text{Area of a sector = }\frac{θ}{360°}\times\pi\times r^2 \end{gathered}[/tex]For this question,
θ = central angle = 100°
π = pi = 3.142
r = radius = 6 inches
[tex]\begin{gathered} \text{Area of a sector = }\frac{θ}{360°}\times\pi\times r^2 \\ \text{Area of a sector = }\frac{100\degree}{360\degree}\times3.142\times6^2=31.42\text{ square inches} \end{gathered}[/tex]Hope this Helps!!!
to rent a van a moving company charges $40.00 plus $0.50per miles
The problem talks about the cost for renting a van, which can be calculated adding $40.00 plus $0.50 for each mile.
The problem asks to wirte an explicit equation in slope-intercept form which can represent the cost of renting a van depending on the amount of miles. Then, the problem asks to find the cost if you drove 250 miles.
What will be the coordinates of the vertex s of this parallelogram? Which answer choice should I pick A B C or D?
Answer:
A
Step-by-step explanation:
the opposite sides of a parallelogram are parallel
then QT is parallel to RS
Q → T has the translation
(x, y ) → (x + 2, y- 7 ) , so
R → S has the same translation from R (0, 3 )
S = (0 + 2, 3 - 7 ) → S (2, - 4 )
Determine whether the graph shown is the graph of a polynomial function
the given graph is smooth and its domain is containing all real numbers
so it is a polynomial function.
In scalene triangle ABC shown in the diagram below, m2C = 90°.B.Which equation is always true?sn A = sin Bcos sn A = cos BCanAB4 5 678 9 1011
inNote: To know which equation is true, then we will have to TEST for each of the choices we are to pick from.
From the tirangle in the image.
[tex]\begin{gathered} 1)\sin \text{ A =}\frac{\text{ Opp}}{\text{Hyp}}\text{ = }\frac{a}{c} \\ \cos \text{ B = }\frac{\text{ADJ}}{\text{HYP}}\text{ = }\frac{a}{c} \\ So\text{ from the above, we can s}ee\text{ that: SinA = Cos B :This mean the choice are equal} \\ \end{gathered}[/tex][tex]\begin{gathered} 2)\text{ To test for the second choice we have..} \\ \text{ Cos A = Cos B} \\ \text{for Cos A =}\frac{\text{Adj}}{\text{Hyp}}\text{ =}\frac{b}{c} \\ \\ \text{for Cos B = }\frac{Adj}{\text{Hyp}}\text{ = }\frac{a}{c} \\ \text{from here we can s}ee\text{ that Cos A }\ne\text{ Cos B : meaning Cos A is not equal to Cos B} \\ \end{gathered}[/tex]3) To test for the third choice: Sin A = Cos A
[tex]\begin{gathered} \sin \text{ A=}\frac{opp}{\text{Hyp}}\text{ = }\frac{a}{c} \\ \cos \text{ A = }\frac{Adj}{\text{Hyp}}\text{ = }\frac{b}{c} \\ we\text{ can s}ee\text{ that sinA }\ne\text{ cos }A,\text{ This mean they are not equal} \end{gathered}[/tex][tex]\begin{gathered} 4)\text{ To test if: tan A = sin B} \\ \text{ }tan\text{ A = }\frac{opp}{\text{Adj}}\text{ = }\frac{a}{b} \\ \\ \text{ sin B = }\frac{Opp}{\text{Hyp}}\text{ = }\frac{b}{c} \\ so\text{ from what we have, w can s}ee\text{ that tan A }\ne\text{ sinB: Meaning they are not equal.} \end{gathered}[/tex]Meaning the first choice is the answer that is sin A = CosB
In Square ABCD, AE = 3x + 5 and BD = 10x + 2.What is the length of AC?
Let's begin by identifying key information given to us:
We have square ABCD
[tex]\begin{gathered} AE=3x+5 \\ BD=10x+2 \\ BD=2\cdot AE \\ 10x+2=2(3x+5) \\ 10x+2=6x+10 \\ \text{Put like terms together, we have:} \\ 10x-6x=10-2 \\ 4x=8 \\ \text{Divide both sides by ''4'', we have:} \\ \frac{4x}{4}=\frac{8}{4} \\ x=2 \\ \\ \end{gathered}[/tex]For a square, the diagonals are equal, AC = BD
[tex]\begin{gathered} AC=BD \\ AC=10x+2 \\ x=2 \\ AC=10(2)+2=20+2 \\ AC=22 \end{gathered}[/tex]12"retest: CirclesOASelect the correct answerArc XY located on circle A has a length of 40 centimeters. The radius of the circle is 10 centimeters. What is the measure of the correspondingcentral angle for XY in radians?O B.OC.OD. 34TResetSubmit TestNextReader Tools
step 1
Find out the circumference
[tex]C=2\pi r[/tex]where
r=10 cm
substitute
[tex]\begin{gathered} C=2\pi(10) \\ C=20\pi\text{ cm} \end{gathered}[/tex]Remember that
The circumference subtends a central angle of 2pi radians
so
Applying proportion
Find out the central angle by an arc length of 40 cm
[tex]\begin{gathered} \frac{2\pi}{20\pi}=\frac{x}{40} \\ \\ x=4\text{ rad} \end{gathered}[/tex]therefore
The answer is 4 radians Option Bhelp meeeeeeeeee pleaseee !!!!!
The values of the functions are:
a. (f + g)(x) = x² + 3x + 5
b. (f - g)(x) = x² - 3x + 5
c. (f * g)(x) = 3x³ + 15x
d. (f/g)(x) = (x² + 5)/3x.
How to Determine the Value of a Given Function?For any given function, we can evaluate the function by plugging in the equation of each of the functions in the given expression.
Thus, we have the following given functions:
f(x) = x² + 5
g(x) = 3x
a. Find the value of the function for the expression (f + g)(x).
We are required here to add the expression for each of the functions, f(x) and g(x) together, which is:
(f + g)(x) = (x² + 5) + (3x)
(f + g)(x) = x² + 3x + 5
b. Evaluate (f - g)(x) by subtracting the function g(x) from f(x):
(f - g)(x) = (x² + 5) - (3x)
(f - g)(x) = x² - 3x + 5
c. Find (f * g)(x):
(f * g)(x) = (x² + 5) * (3x)
(f * g)(x) = x²(3x) + 5(3x)
(f * g)(x) = 3x³ + 15x
d. Find (f/g)(x):
(f/g)(x) = (x² + 5)/3x
Learn more about evaluating functions on:
https://brainly.com/question/14723549
#SPJ1