how many 3×3 cm squares would fit in a 4×6 inch rectangle​

Answers

Answer 1

Answer:2

Step-by-step explanation:

6 divided by 2 would be 3, which is the length size of the square. The height does not allow to stack, which means you can fit two squares.


Related Questions

what's the answer for proportions 7/9=b/b-10

Answers

Answer:

-35

Step-by-step explanation:

[tex]\frac{7}{9}[/tex] = [tex]\frac{b}{b - 10}[/tex]  multiply both sides by 9(b -10)

[tex]\frac{9(b - 10)}{1}[/tex]  [tex](\frac{7}{9})[/tex] = [tex]\frac{9(b -10)}{1}[/tex] [tex](\frac{b}{b-10})[/tex]  On the right side of the equation, the 9's cancel out and on the right side of the equation the (b -10) cancels out to leave

7(b -10) = 9b  Distribute the 7

7b - 70 = 9b  Subtract 7b from both sides

-70 = 2b  Divide both sides by 2

-35 = b

Which of the following are solutions to the following solutions to the following solutions?

Answers

We have to find the solutions to the equation:

[tex]|x+4|=8[/tex]

The absolute value function is in fact a piecewise function, so it may have two solutions.

We consider for the first solution that the argument inside the absolute function is positive, that is x + 4 > 0. Then, we will have:

[tex]\begin{gathered} x+4=8 \\ x=8-4 \\ x=4 \end{gathered}[/tex]

Now, we consider that the the argument is negative and is made positive by the absolute value function (it will shift the sign, which can be represented by a multiplication by -1). This means that x + 4 < 0, and the solution will be:

[tex]\begin{gathered} -(x+4)=8 \\ -x-4=8 \\ -x=8+4 \\ -x=12 \\ x=-12 \end{gathered}[/tex]

We can see it in a graph as:

Answer: the solutions are x = 4 and x = -12.

The graphs depict IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15 (as on the Wechsler IQ test).
a.find the Z score. Write that answer to the 2nd decimal place.
b. solve for x

Answers

The required Z-score with a value of 120 would be 1.33.

What is Z -score?

A Z-score is defined as the fractional representation of data point to the mean using standard deviations.

The given graph depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15.

As per the given information, the solution would be as

ц = 100

σ = 15

X = 120 (consider the value)

⇒ z-score = (X - ц )/σ₁

Substitute the values,

⇒ z-score = (120 - 100)/15

⇒ z-score = (20)/15

⇒ z-score = 1.33

Thus, the required Z-score with a value of 120 would be 1.33.

Learn more about the z-score here:

brainly.com/question/13793746

#SPJ1

A machine worked for 4hours and used 6kilowatts of electricity.What is the rate ofenergy consumed inkilowatts per hour?*Enter your answer as a decimal

Answers

4 hours ---> 6 kilowatts

1 hour -----> x kilowatts

[tex]\begin{gathered} 4\times x=1\times6 \\ 4x=6 \\ \frac{4x}{4}=\frac{6}{4} \\ x=\frac{3}{2}=1.5 \end{gathered}[/tex]

answer:

1.5 kilowatts per hour

I need help with this question please. Just do question 1 please. Also this is just apart of a homework practice

Answers

Answer:

P(x) = 1.3x² + 0.1x + 2.8

Explanation:

We need to find an equation that satisfies the relationship shown in the table. So, let's replace x by 2 and then compare whether the value of p(x) is 8.2 or not

P(x) = 1.3x³ + 0.1x² + 2.8x

P(2) = 1.3(2)³ + 0.1(2)² + 2.8(2)

P(2) = 16.4

Since P(2) is 16.4 instead of 8.2, this is not a correct option

P(x) = 1.3x² + 0.2x - 2.8

P(2) = 1.3(2)² + 0.2(2) - 2.8

P(2) = 2.8

Since 2.8 and 8.2 are distinct, this is not the correct option

P(x) = 2.3x² + 0.2x + 1.8

P(x) = 2.3(2)² + 0.2(2) + 1.8

P(x) = 11.4

Since 11.4 and 8.2 are distinct, this is not the correct option

P(x) = 1.3x² + 0.1x + 2.8

P(2) = 1.3(2)² + 0.1(2) + 2.8

P(2) = 8.2

Therefore, this is the polynomial function for the data in the table.

So, the answer is P(x) = 1.3x² + 0.1x + 2.8

let f(x)=8x+5 and g(x)=9x-2. find the function.f - g(f - g) (x) =find the domain.

Answers

Answer:

(f - g)( x ) = -x + 7

Domain;

[tex](-\infty,\infty)[/tex]

Explanation:

Given the below functions;

[tex]\begin{gathered} f(x)=8x+5 \\ g(x)=9x-2 \end{gathered}[/tex]

To find (f - g)( x ), all we need to do is subtract g(x) from f(x) as shown below;

[tex]\begin{gathered} (f-g)\mleft(x\mright)=(8x+5)-(9x-2) \\ =8x+5-9x+2 \\ =8x-9x+5+2 \\ =-x+7 \end{gathered}[/tex]

The domain of the function will be all values from negative infinity to positive infinty, written as;

[tex](-\infty,\infty)[/tex]

5. What is the area of triangle ABC? (lesson 10.2)AN10 ftD 6 ftСA 15 square feetB 16 square feet© 30 square feetD 32 square feet

Answers

[tex]\begin{gathered} A=\frac{l\cdot h}{2} \\ l=6ft \\ h=10ft \\ A=\frac{6\cdot10ft^2}{2}=\frac{60}{2}ft^2=30ft^2 \end{gathered}[/tex]

The answer is C, 30 square feet

The value of an IBM share one day was $ 74.50 more than the value of an AT&T share.

Answers

An algebraic expression we can use to compare the price of IBM shares as being $74.50 more than AT&T shares is x + 74.50, where x is the value of AT&T shares.

What is an algebraic expression?

An algebraic expression consists of variables, terms, constants, and mathematical operations, including addition, subtraction, multiplication, division, and others.

The five algebraic expressions include monomial, polynomial, binomial, trinomial, multinomial.

We can also describe algebraic expressions as falling under the following categories:

Elementary algebraAdvanced algebraAbstract algebraLinear algebraCommutative algebra.

An example of an algebraic expression is 2x + 3y.

Let the value of AT&T share = x

Let the value of IBM share = x + 74.50

Thus, we can, algebraically, conclude that AT&T's share price is x while the price of IBM's share is x + 74.50 on that particular day.

Learn more about algebraic expressions at https://brainly.com/question/4541471

#SPJ1

Given: Circle PB52°РMAD =mBD =mBAC =:: 52°.: 90°:: 128°:: 142°.: 232°:: 308°

Answers

From the circle given, it can be observed that AC is the diameter of the circle and it divides the circle into two equal parts. The total angle in a semi-circle is 180°. It then follows that

[tex]arcAD+arcDC=arcAC[/tex][tex]\begin{gathered} \text{note that} \\ arcAC=180^0(\text{angle of a semicircle)} \\ arcDC=90^0(\text{given)} \end{gathered}[/tex][tex]\begin{gathered} \text{Therefore,} \\ arcAD+arcDC=arcAC \\ arcAD+90^0=180^0 \\ arcAD=180^0-90^0 \\ arcAD=90^0 \end{gathered}[/tex][tex]\begin{gathered} \text{From the circle, it can be seen that:} \\ arcBD=arcBA+arcAD \\ \text{note that } \\ arcBA=52^0(\text{given)} \\ arcAD=90^0(\text{calculated earlier)} \end{gathered}[/tex][tex]\begin{gathered} \text{Therefore,} \\ arcBD=52^0+90^0 \\ arcBD=142^0 \end{gathered}[/tex][tex]\begin{gathered} \text{From the given circle, it can be seen that} \\ arcBA+arcAD+arcDC=arc\text{BAC} \end{gathered}[/tex][tex]\begin{gathered} \text{Therefore,} \\ 52^0+90^0+90^0=\text{arcBAC} \\ 232^0=\text{arcBAC} \end{gathered}[/tex]

Hence, arcAD = 90°, arc BD = 142°, and arc BAC = 232°

The position of an open-water swimmer is shown in the graph. The shortest route to the shoreline is one that is perpendicular to the sh Ay 10 00 6 water 4 shore |(2, 1) swimmer 19 -2 2 1 3 4 5X N -2 An equation that represents the shortest path is y=

Answers

Answer:

Explanation:

From the graph, we ca

x+y+z=12x+4y+2z = -6-x+9y-3z=-49 Can someone please help me solve this system of equation?

Answers

Let's begin by listing out the information given to us:

[tex]\begin{gathered} x+y+z=1 \\ 2x+4y+2z=-6 \\ -x+9y-3z=-49 \end{gathered}[/tex]

To solve this 3 variable equation, let's eliminate one of the variables

add equation 1 & 3, we have:

[tex]\begin{gathered} x-x+y+9y+z-3z=1-49 \\ 10y-2z=-48 \\ Make\text{ z the }subject,we\text{ have:} \\ -2z=-10y-48 \\ divide\text{ through by -2} \\ z=5y+24 \end{gathered}[/tex]

Substitute z into equation 1, 2 & 3

[tex]\begin{gathered} x+y+5y+24=1 \\ x+6y=1-24 \\ x+6y=-23 \end{gathered}[/tex]

[tex]\begin{gathered} 2x+4y+2\left(5y+24\right)=-6 \\ 2x+4y+10y+48=-6 \\ 2x+14y=-6-48 \\ 2x+14y=-54 \end{gathered}[/tex]

[tex]\begin{gathered} -x+9y-3\left(5y+24\right)=-49 \\ -x+9y-15y-72=-49 \\ -x-6y=-49+72 \\ -x-6y=23 \end{gathered}[/tex]

Solve as a simultaneous equation, we have:

[tex]\begin{gathered} x+6y=-23 \\ 2x+14y=-54 \\ \text{Multiply the top equation by 2 \& subtract it from the bottom equation} \\ 2\cdot(x+6y=-23)\Rightarrow2x+12y=-46 \\ 2x+14y=-54-(2x+12y=-46) \\ 2x-2x+14y-12y=-54-(-46) \\ 2y=-8 \\ y=-4 \end{gathered}[/tex]

Substitute y = -4 into x + 6y = -23, we have:

[tex]\begin{gathered} x+6\left(-4\right)=-23 \\ x-24=-23 \\ x=-23+24 \\ x=1 \end{gathered}[/tex]

Substitute y = -4 into z = 5y + 24, we have:

[tex]\begin{gathered} z=5\left(-4\right)+24 \\ z=-20+24 \\ z=4 \end{gathered}[/tex]

The first 19 terms of the sequence 9, 2, -5, -12,... find the sum of the arithmetic sequence

Answers

To find the sum of the ari

Analyze the equations in the graphs to find the slope of each equation the y-intercept of each equation in the solution for the system of equations equation 1: y = 50x + 122

Answers

Given:

[tex]y=50x+122\ldots\text{ (1)}[/tex][tex]y=1540-82x\ldots\text{ (2)}[/tex]

The general equation is

[tex]y=mx+c[/tex]

m is a slope and c is the y-intercept.

From equation (1),

[tex]\text{Slope = 50 and y intercept is 122}[/tex]

From equation (2)

[tex]\text{Slope = -82 and yintercept is }1540[/tex]

From equation (1) and (2)

Substitute equation (2) in (1)

[tex]1540-82x=50x+122[/tex][tex]50x+82x=1540-122[/tex][tex]132x=1418[/tex][tex]x=\frac{1418}{132}[/tex][tex]x=44[/tex]

Substitute in (2)

[tex]undefined[/tex]

Show your work Round to the nearest whole number if needed

Answers

Given:

Radius, r = 6

Let's find the chance of hitting the shaded area by finding the ratio.

Since the radius of the cirlce is 6, the length of one side of the square is the diameter:

s = 6 x 2 = 12

To find the ratio divide the area of the circle by area of the square. The area of the circle is the shaded area while the area of the square is the total possible area.

Thus,we have:

[tex]\text{ Area of circle = }\pi r^2=3.1416\ast6^2=3.1416\ast36=113.0976\text{ square units}[/tex][tex]\text{ Area of square = }s^2=12^2=12\ast12=144\text{ square units}[/tex][tex]\text{ Ratio=}\frac{shaded\text{ area}}{total\text{ possible area}}=\frac{area\text{ of circle}}{area\text{ of square}}=\frac{113.0976}{144}=0.7854\approx0.79[/tex][tex]\text{ Percentage ratio = 0.7854 }\ast\text{ 100=}78.54\text{ \%}[/tex]

Therefore, the chance of hitting the shaded region is 78.54%

ANSWER:

78.54%

An object moves in simple harmonic motion with period 6 seconds and amplitude 4cm. At time =t0 seconds, its displacement d from rest is 0cm, and initially it moves in a negative direction. Give the equation modeling the displacement d as a function of time t.

Answers

The general function for describing the displacement from the mean position in harmonic motion is:

[tex]d(t)=A\cdot\sin (\frac{2\pi}{T}\cdot t+\phi)\text{.}[/tex]

Where:

• A is the amplitude,

,

• T is the period,

,

• φ is initial phase displacement.

From the statement, we know that:

• the amplitude is 4 cm,

,

• at time t = 0 its displacement d from the rest is 0 → d(t = 0) = 0,

,

• initially, it moves in a negative direction.

s

Fifteen strips, 11/4" wide, are to be ripped from a sheet of plywood. If 1/8" is lost with each cut, how much of the plywood sheet is used in making the 15 strips? (Assume 15 cuts are necessary.)

Answers

The size of the plywood sheet used is;

[tex]\frac{37}{8}^{\doubleprime}[/tex]

Here, we want to get the size of the part of the plywood sheet lost

From the question, we are told that 1/8 inches is lost

The size lost would be;

[tex]\frac{1}{8}\times\text{ 15 = }\frac{15}{8}[/tex]

This is the size that was lost

To get the total part of the plywood used, we simply add the width of all the strips to the amount of the plywood lost

We have this as;

[tex]\frac{11}{4}\text{ + }\frac{15}{8}\text{ = }\frac{22+15}{8}\text{ = }\frac{37}{8}[/tex]

Yoko plans to watch 2 movies each month. Write an equation to represent the total number of movies n that she will watch in m months.

Answers

Answer:

2m because 2 times the months will tell us how many she has watched for example in 2 months she will watch 4 because 2*2 is 4

Write an addition equation and a subtraction equation
to represent the problem using? for the unknown.
Then solve.
There are 30 actors in a school play. There are
10 actors from second grade. The rest are from third
grade. How many actors are from third grade?
a. Equations:
b. Solve

Answers

The Equation is 10 + x= 30 and 20 actors are from third grade.

What is Equation?

Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side. It demonstrates the equality of the relationship between the expressions printed on the left and right sides. LHS = RHS is a common mathematical formula.

Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.

Given:

There are 30 actors in a school play.

There are 10 actors from second grade.

The rest are from third grade.

let the actors in third grade is x.

Equation is:

Actors from second grade + Actors from third grade = Total actors

10 + x= 30

Now, solving

Subtract 10 from both side

10 +x - 10 = 30 - 10

x = 20

Learn more about equation here:

brainly.com/question/10413253

#SPJ1

Find the tangent of each angle that is not the right angle. Drag and drop the numbers into the boxes to show the tangent of each angle. B 76 tan ZA tan ZB 2.45 0.38 0.93

Answers

From the trignometric ratio of right angle triangle :

The ratio for the tangent of any angle of right angle triangle is the ratio of the side Opposite to that angle to the adjacent side of that angle :

[tex]\tan \theta=\frac{Opposite\text{ Side}}{Adjacent\text{ Side}}[/tex]

In the given triangle :The side opposite to the angle A is BC and the adjacent side AC

So,

[tex]\begin{gathered} \tan \theta=\frac{Opposite\text{ Side}}{Adjacent\text{ Side}} \\ \tan A=\frac{BC}{AC} \end{gathered}[/tex]

In the figure : we have AC = 76, BC = 31 and AB = 82.1

Substitute the value and simplify :

[tex]\begin{gathered} \tan A=\frac{BC}{AC} \\ \tan A=\frac{31}{76} \\ \tan A=0.407 \\ \tan A=0.41 \end{gathered}[/tex]

Thus, tan A = 0.41

Now, the side opposite to the angle B is AC and the adjacent side is BC

thus :

[tex]\begin{gathered} \tan \theta=\frac{Opposite\text{ Side}}{Adjacent\text{ Side}} \\ \tan B=\frac{AC}{BC} \end{gathered}[/tex]

In the figure : we have AC = 76, BC = 31 and AB = 82.1

Substitute the value and simplify :

[tex]\begin{gathered} \tan B=\frac{AC}{BC} \\ \tan B=\frac{76}{31} \\ \tan B=2.451 \end{gathered}[/tex]

tan B = 2.451

Answer :

tanA = 0.41

tanB = 2.45

Number 14. Directions in pic. And also when you graph do the main function in red and the inverse in blue

Answers

Question 14.

Given the function:

[tex]f(x)=-\frac{2}{3}x-4[/tex]

Let's find the inverse of the function.

To find the inverse, take the following steps.

Step 1.

Rewrite f(x) for y

[tex]y=-\frac{2}{3}x-4[/tex]

Step 2.

Interchange the variables:

[tex]x=-\frac{2}{3}y-4[/tex]

Step 3.

Solve for y

Add 4 to both sides:

[tex]\begin{gathered} x+4=-\frac{2}{3}y-4+4 \\ \\ x+4=-\frac{2}{3}y \end{gathered}[/tex]

Multply all terms by 3:

[tex]\begin{gathered} 3x+3(4)=-\frac{2}{3}y\ast3 \\ \\ 3x+12=-2y \end{gathered}[/tex]

Divide all terms by -2:

[tex]\begin{gathered} -\frac{3}{2}x+\frac{12}{-2}=\frac{-2y}{-2} \\ \\ -\frac{3}{2}x-6=y \\ \\ y=-\frac{3}{2}x-6 \end{gathered}[/tex]

Therefore, the inverse of the function is:

[tex]f^{-1}(x)=-\frac{3}{2}x-6[/tex]

Let's graph both functions.

To graph each function let's use two points for each.

• Main function:

Find two point usnig the function.

When x = 3:

[tex]\begin{gathered} f(3)=-\frac{2}{3}\ast3-4 \\ \\ f(3)=-2-4 \\ \\ f(3)=-6 \end{gathered}[/tex]

When x = 0:

[tex]\begin{gathered} f(0)=-\frac{2}{3}\ast(0)-4 \\ \\ f(-3)=-4 \end{gathered}[/tex]

For the main function, we have the points:

(3, -6) and (0, -4)

Inverse function:

When x = 2:

[tex]\begin{gathered} f^{-1}(2)=-\frac{3}{2}\ast(2)-6 \\ \\ f^{-1}(2)=-3-6 \\ \\ f^1(2)=-9 \end{gathered}[/tex]

When x = -2:

[tex]\begin{gathered} f^{-1}(-2)=-\frac{3}{2}\ast(-2)-6 \\ \\ f^1(-2)=3-6 \\ \\ f^{-1}(2)=-3 \end{gathered}[/tex]

For the inverse function, we have the points:

(2, -9) and (-2, -3)

To graph both functions, we have:

ANSWER:

[tex]\begin{gathered} \text{ Inverse function:} \\ f^{-1}(x)=-\frac{3}{2}x-6 \end{gathered}[/tex]

cell phone company A charges a fee of $50 per month plus an additional $0.10 for every minute talked. cell phone company B computes its monthly charge by using the equation y=$0.05 + $75 where y is the total cost and X is the number of minutes talked.

Answers

We will first write A equation

Let x be the number of minutes

y = 0.10x + 50

Comparing the above with y=mx + b where m is the rate of change

m = 0.10

Company B

y = 0.05x + 75

comparing with y =mx + b

rate of change (m) = 0.05

Hence, company A has a higher rate of change at $0.10

Please find the square root. Round your answer to the nearest tenth. [tex] \sqrt{58 } = [/tex]

Answers

Determine the square root of 58.

[tex]\begin{gathered} \sqrt[]{58}=7.615 \\ \approx7.6 \end{gathered}[/tex]

So answer is 7.6.

Find the complement requested angle of 10% A/ 350B/20C/170D/80

Answers

The complementary angles are angles in which the sum of them is equal to 90º

So: 90º-10º=80º

So, the complementary angle is 80º

The width of a rectangle is 6 less than twice its length. If the area of the rectangle is 170 cm2 , what is the length of the diagonal?The length of the diagonal is cm.Give your answer to 2 decimal places.Submit QuestionQuestion 25

Answers

The formula to find the area of a rectangle is:

[tex]\begin{gathered} A=l\cdot w \\ \text{ Where} \\ \text{ A is the area} \\ l\text{ is the length} \\ w\text{ is the width} \end{gathered}[/tex]

Since the rectangle area is 170cm², we can write the following equation.

[tex]170=l\cdot w\Rightarrow\text{ Equation 1}[/tex]

On the other hand, we know that the width of the rectangle is 6 less than twice its length. Then, we can write another equation.

[tex]\begin{gathered} w=2l-6\Rightarrow\text{ Equation 2} \\ \text{ Because} \\ 2l\Rightarrow\text{ Twice length} \\ 2l-6\Rightarrow\text{ 6 less than twice length} \end{gathered}[/tex]

Now, we solve the found system of equations.

[tex]\begin{cases}170=l\cdot w\Rightarrow\text{ Equation 1} \\ w=2l-6\Rightarrow\text{ Equation 2}\end{cases}[/tex]

For this, we can use the substitution method.

Step 1: we replace the value of w from Equation 2 into Equation 1. Then, we solve for l.

[tex]\begin{gathered} 170=l(2l-6) \\ \text{Apply the distributive property} \\ 170=l\cdot2l-l\cdot6 \\ 170=2l^2-6l \\ \text{ Subtract 170 from both sides} \\ 0=2l^2-6l-170 \end{gathered}[/tex]

We can use the quadratic formula to solve the above equation.

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}\Rightarrow\text{ Quadratic formula} \\ \text{ For }ax^2+bx+c=0 \end{gathered}[/tex]

Then, we have:

[tex]\begin{gathered} a=2 \\ b=-6 \\ c=-170 \\ l=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ l=\frac{-(-6)\pm\sqrt[]{(-6)^2-4(2)(-170)}}{2(2)} \\ l=\frac{6\pm\sqrt[]{1396}}{4} \\ \end{gathered}[/tex]

There are two solutions for l.

[tex]\begin{gathered} l_1=\frac{6+\sqrt[]{1396}}{4}\approx10.84 \\ l_2=\frac{6-\sqrt[]{1396}}{4}\approx-7.84 \\ \text{ The symbol }\approx\text{ is read 'approximately'.} \end{gathered}[/tex]

Since the value of l can not be negative, the value of l is 10.84.

Step 2: We replace the value of l into any of the equations of the system to find the value of w. For example, in Equation 1.

[tex]\begin{gathered} 170=l\cdot w\Rightarrow\text{ Equation 1} \\ 170=10.84\cdot w \\ \text{ Divide by 10.84 from both sides} \\ \frac{170}{10.84}=\frac{10.84\cdot w}{10.84} \\ 15.68\approx w \end{gathered}[/tex]

Now, the long side, the wide side and the diagonal of the rectangle form a right triangle.

Then, we can use the Pythagorean theorem formula to find the length of the diagonal.

[tex]\begin{gathered} a^2+b^2=c^2 \\ \text{ Where} \\ a\text{ and }b\text{ are the legs} \\ c\text{ is the hypotenuse} \end{gathered}[/tex]

In this case, we have:

[tex]\begin{gathered} a=10.84 \\ b=15.68 \\ a^2+b^2=c^2 \\ (10.84)^2+(15.68)^2=c^2 \\ 117.51+245.86=c^2 \\ 363.37=c^2 \\ \text{ Apply square root to both sides of the equation} \\ \sqrt[]{363.37}=\sqrt[]{c^2} \\ 19.06=c \end{gathered}[/tex]

Therefore, the length of the diagonal of the given rectangle is 19.06 cm rounded to 2 decimal places.

Zachary is designing a new board game, and is trying to figure out allthe possible outcomes. How many different possible outcomes arethere if he spins a spinner with three equal-sized sections labeledWalk, Run, Stop, spins a spinner with four equal-sized sections labeledRed, Green, Blue, Orange, and spins a spinner with 5 equal-sizedsections labeled Monday, Tuesday, Wednesday, Thursday, Friday?

Answers

ANSWER

60 possible outcomes

EXPLANATION

If he spins the 3-section spinner, there are 3 possible outcomes: Walk, Run, Stop.

If he spins the 4-section spinner, there are 4 possible outcomes: red, green, blue, orange.

If he spins the 5-section spinner, there are 5 possible outcomes: Monday, Tuesday, Wednesday, Thursday, Friday.

If he has to spin the three spinners, the total possible outcomes is the product of the possible outcomes of each spinner: 3x4x5 = 60.

4/7 X 1/2 = in fraction

Answers

Consider the given expression,

[tex]P=\frac{4}{7}\times\frac{1}{2}[/tex]

The product of fractions is obtained in the form of a fraction whose numberator is the product of numerators of fractions, and the denominator of the product is the product of denominators of the given fractions,

[tex]\begin{gathered} P=\frac{4\times1}{7\times2} \\ P=\frac{4}{14} \end{gathered}[/tex]

Thus, the product of the given fractions is 4/14 .

how do you find the domain in a range of number 2?

Answers

The domain is all the x values included in the function, while the range are all the y values included in the function.

Based on the graph:

Answer:

• Domain:

[tex](-\infty,\text{ }\infty)[/tex]

• Range:

[tex](0,\infty)[/tex]

Find the prime factorization of the following number write any repeated factors using exponents

Answers

Notice that 100=10*10, and 10=2*5. 2 and 5 are prime numbers; therefore,

[tex]\begin{gathered} 100=10\cdot10=(2\cdot5)(2\cdot5)=2\cdot2\cdot5\cdot5=2^2\cdot5^2 \\ \Rightarrow100=2^2\cdot5^2 \end{gathered}[/tex]

The answer is 100=2^2*5^2

Given that the two triangles are similar find the unknowns length of the side labeled in

Answers

Answer:

The unknown length of the side labeled n is 10.5 units

Explanation:

Given:

Two similar triangles with one unknown

To find:

the unknown length of the side labelled n

For two triangles to be similar, the ratio of their corresponding sides will equal

[tex]\begin{gathered} side\text{ with 36 corresponds to side with 27} \\ side\text{ with 14 corresponds to side with n} \\ The\text{ ratio:} \\ \frac{14}{n}\text{ = }\frac{36}{27} \end{gathered}[/tex]

[tex]\begin{gathered} crossmultiply: \\ 14(27)\text{ = 36\lparen n\rparen} \\ 36n\text{ = 378} \\ \\ divide\text{ both sides by n:} \\ \frac{36n}{36}\text{ = }\frac{378}{36} \\ n\text{ = 10.5} \end{gathered}[/tex]

The unknown length of the side labeled n is 10.5 units

Find the value of each variable.All answers must be in simplest radical form

Answers

Radical

x = √10 • tan 45° = √10• 1 = √10

then

x= √10

y= √x^2 + 10 = √ 10 +10 = √20

Then answer is

x=√10

y= √20

Other Questions
Mya Mya has 3 kyats of money. Mya Mya bought apple and she only has 1 kyat of money left. Find the value of that apple. Find the volume of the figure round to the nearest 10th if needed I inserted a picture because it was too much to type but please, if you answer try and do it fast. It's homework. two boxes of the same mass are connected by a string of negligible mass and pulled across a level tabletop with negligible friction by another horizontal string. the force applied by the leading string is f. m m t f a how does the magnitude of the force t exerted by the string connecting the boxes compare to the magnitude f? Please helppp as fast as possible 25 POINTS**FIND THE DOMAIN & RANGE OF THE FUNCTIONg(x)=|x + 4|Please helppp as fast as possible The coordinates of point F are (8,4) and the coordinates of point G are (-4,9). What is the slope of the line that is perpendicular to line FG. Enter the answer as a simplified fraction. Cisco Enterprises in Ontario purchased the following in a single month all-inclusive of taxes:16,000 units of network routers at $79.25 each Write three paragraphs that explain the importance of Justinians political, social, and architectural achievements. Explain what his achievements were in each area, and provide examples of each. (PLease do this for mee please please please) This is algebra 2 (Parabola Transformation) . I have no clue on how to do this and Im failing because of this missing assignment. Please help me. Please. The oil tank in your car is leaking at a rate of 1.2 oz per mile driven you drove 15 miles how many cups of oil did your car leak Which of the following would be a reasonable conclusion if hair was found to have a drug in the root but not in the rest of the hair strand? Drug use is not identified. Drug use is currently happening. Drug use stopped several weeks ago. Drug use has occurred for several months. What is the volume of this cone round to the nearest hundreth Some powers are shared by both the federal and state governments. All of the following are concurrent powers except for which one below? like the power to tax, the power to hold elections, and the power to establish courts. These are examples of concurrent powers.Power to establish courts.Power to hold elections.Power to create treaties with foreign nations.Power to tax. Gabrielle is 8 years older than Mikhail. The sum of their ages is 104. What is Mikhail's age? Question 3 4.5 pts At the honor roll party, students had the choice of cheese or pepperoni pizza and coke or sprite. Of the 125 students that made the honor roll 64% had cheese pizza. There were 48 students that had cheese pizza and a coke. 5 more students chose to have a Coke rather than Sprite. Complete the table below. Write expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions. The perimeter of a rectangle is 48 centimeters. The relationship between the length, the width, and the perimeter of the rectangle can be described with the equation 2length+2width=48. Find the length, in centimeters, if the width is w centimeters A tent pole that is 9 feet tall is secured to the ground with a piece of rope that is 15 feet long from the top of the tent pole to the ground. Determine the number of feet from the tent pole to the rope along the ground. Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. [tex]x^2+y^2=400[/tex]a) find dy/dt given x=16, y=12 and dy/dt=7b) find dx/dt given x=16, y=12, and dy/dt =-3 you have invested 20 pecent of you portfolio in homer, inc, 40 percent in marge co., and 20 percent in bart resources. what is the expected return of your portfolio