The linear correlation coefficient of 0.3 indicates a moderate positive correlation between the two variables.
This suggests that when one variable increases, the other variable tends to increase too. However, there is not a strong linear relationship between the two variables, meaning that the increase in one variable does not guarantee a predictable change in the other variable.
When interpreting the findings of a correlation study, it is important to note the strength of the relationship between the two variables. A linear correlation coefficient of 0.3 indicates a moderate positive correlation, meaning that the two variables increase together but there is not a strong linear relationship between the two variables.
This means that the increase in one variable does not guarantee a predictable change in the other variable. To put it another way, the strength of the correlation means that when one variable increases, it is likely that the other will increase as well, but it is not guaranteed.
Therefore, caution should be used when making predictions based on the results of a correlation study.
To know more about linear correlation coefficient click on below link:
https://brainly.com/question/24881420#
#SPJ11
What would be the new coordinates of W' after a dilation of 3? W
The new coordinates would be
W' (12 , 6)
X'( 24 , 18 )
Z'(24 ,6 )
What exactly does coordinate geometry mean?
The term "coordinate geometry" refers to the study of geometry using coordinate points (or analytic geometry). Calculating distances between points, segmenting lines into m:n pieces, finding a line's midpoint, figuring out a triangle's area in the Cartesian plane, and other operations are all achievable with coordinate geometry.
Remember that the rule for a dilation by a factor of k about the origin is
(x,y) = (kx, ky)
Identify the coordinates of the points W, X and Z. Then, apply a dilation by a factor of 3 about the origin to find W', X' and Z', the new coordinates after the dilation.
w = (4,2)
x = ( 8, 6 )
z = ( 8,2)
Apply a dilation by a factor of 3:
W(4,2) ⇒ W'(3 * 4, 3 * 2) = W' (12 , 6)
X(8 ,6 ) ⇒ X'(3 * 8 , 3 * 6 ) = X' ( 24 , 18 )
Z(8 , 2 ) ⇒ Z'(3*8 , 3 * 2) = Z'(24 ,6 )
Therefore, the new coordinates would be
W' (12 , 6)
X'( 24 , 18 )
Z'(24 ,6 )
Learn more about Coordinate geometry
brainly.com/question/18269861
#SPJ1
we learned in exercise 3.25 that about 69.7% of 18-20 year olds consumed alcoholic beverages in 2008. we now consider a random sample of fifty 18-20 year olds. a) how many people would you expect to have consumed alcoholic beverages? do not round your answer.
Rounding off the value of X to the nearest whole number, we get that approximately 35 people would be expected to have consumed alcoholic beverages among 50 randomly selected 18-20 year-olds.
In exercise 3.25, it was learned that about 69.7% of 18-20 year-olds consumed alcoholic beverages in 2008.
Now, consider a random sample of fifty 18-20 year-olds.
It is required to calculate the number of people who would be expected to have consumed alcoholic beverages.
Let X be the number of people who have consumed alcoholic beverages out of 50 randomly selected 18-20 year-olds.
Let p be the proportion of 18-20 year-olds who consumed alcoholic beverages in 2008.
Therefore, the sample proportion is given as \hat{p}
Hence, p=0.69 \hat{p}=X/50
Now, by the properties of the sample proportion, E(\hat{p})=p
Therefore,
E(\hat{p})=E(X/50)
Thus, p=E(X/50) Or, X=50p
Substituting the value of p, we have
X=50(0.697)=34.85
For similar question on approximately.
https://brainly.com/question/26355510
#SPJ11
Find the value of x.
In the figure of circle provided. the value of x is
161 degreesHow to find the value of xIn a circle, equal chords subtends equal arc length.
In the problem it was given that:
chord SU is equal to chord ST hence we have that
x + x + 38 = 360 (angle in a circle)
collecting like terms
2x + 38 = 360
2x = 360 - 38
2x = 322
Isolating x by dividing both sides by 2
2x / 2 = 322 / 2
x = 161
Learn more about arc measures at:
https://brainly.com/question/30543683
#SPJ1
Work out the length of side BC in each triangle
Give your answers correct to 3 significant figures
In triangle ABC as per given measurements the measure side length BC is equal to 7.26cm (Rounding to three significant figures).
In triangle ABC,
Measure of angle A = 36 degrees
Measure of angle B = 90 degrees
length of AB = 8.7cm
Use trigonometry to solve for the length of BC.
First, Measure of angle C,
In triangle ABC,
Measure of (Angle A + Angle B + Angle C ) = 180
⇒ 36 + 90 + Measure of angle C = 180
⇒ Measure of angle C = 54 degrees
Now , use the sine function to solve for BC,
sin(C) = opposite side /hypotenuse
Substitute the values we have,
⇒ sin(54) = BC/AB
⇒BC = AB × sin(54)
⇒ BC = 8.7 × 0.834
⇒ BC = 7.2558
Rounding to three significant figures, we get,
BC ≈ 7.26 cm.
Therefore, the measure of length BC in triangle ABC is equal to 7.26cm.
Learn more about triangle here
brainly.com/question/13664253
#SPJ4
The above question is incomplete, the complete question is:
ABC is a right-angled triangle. Angle B = 90. Angle A = 36. AB = 8.7 cm. Work out the length of BC. Give your answer correct to 3 significant figures.
a box contains 4 white and 6 red chips. one chip is drawn at random and, without looking at its color, is discarded. a second chip is then drawn and the color is recorded. a. what is the probability that the second chip drawn is red?
The probability that the second chip drawn is red is 1/3.
The probability of drawing a red chip on the first draw is 6/10, or 3/5. After one chip is discarded, there are 9 chips remaining, 3 of which are red. So the probability of drawing a red chip on the second draw, given that a chip has already been discarded, is 3/9, or 1/3.
Therefore, the probability that the second chip drawn is red is 1/3. This is because the first chip drawn could be either white or red, so there are two possible scenarios. If the first chip drawn is white, there will be 6 red chips and 3 white chips left, so the probability of drawing a red chip on the second draw will be 6/9 or 2/3. If the first chip drawn is red, there will be 5 red chips and 4 white chips left, so the probability of drawing a red chip on the second draw will be 5/9. To get the overall probability of drawing a red chip on the second draw, we need to take the average of these two probabilities, weighted by the probability of the first chip being white or red, respectively.
The probability of the first chip being white is 4/10, or 2/5, and the probability of the first chip being red is 6/10, or 3/5. So the overall probability of drawing a red chip on the second draw is
(2/5) x (2/3) + (3/5) x (5/9) = 4/15 + 1/3 = 3/9 = 1/3.
Learn more about probability here
brainly.com/question/11234923
#SPJ4
Write an equation for line t. Show or explain how you determined your equation.
Enter your equation and your work or explanation in the box provided.
Answer:
[tex]y - 3 = \frac{2}{3} (x - 3)[/tex]
[tex]y = \frac{2}{3} x + 1[/tex]
[tex]2x - 3y = - 3[/tex]
Step-by-step explanation:
[tex]m = \frac{ - 5 - 3}{ - 9 - 3} = \frac{ - 8}{ - 12} = \frac{2}{3} [/tex]
[tex]y - 3 = \frac{2}{3} (x - 3)[/tex]
[tex]y - 3 = \frac{2}{3} x - 2[/tex]
[tex]y = \frac{2}{3} x + 1[/tex]
[tex]3y = 2x + 3[/tex]
[tex] - 2x + 3y = 3[/tex]
[tex]2x - 3y = - 3[/tex]
in the inspection of tin plate by continous electrolytic process, .15 imperfections are spotted on one minute average. find the probability that three imperfection plates are spottwd in three minutes
The probability of spotting 3 imperfections plates in 3 minutes is .3352.
The probability of spotting 3 imperfections plates in 3 minutes can be calculated using the binomial probability formula. This formula is used to calculate the probability of getting a certain number of successes in a certain number of trials (n), given a certain probability of success (p) for each trial.
In this case, the probability of success (p) is .15 and the number of trials (n) is 3. The formula for this is:
[tex]P(X = 3) = 3C3(.15)^3(1-.15)^(3-3)[/tex]
P(X = 3) = .3352
Therefore, the probability of spotting 3 imperfections plates in 3 minutes is .3352.
Learn more about probability here:
https://brainly.com/question/30034780
#SPJ4
A plane is 148 mi north and 167 mi east of an airport. Find x, the angle the pilot should turn in order to fly directly to the airport. Round your answer to the nearest tenth of a degree
Therefore, the pilot should turn by approximately 41.8 degrees to fly directly to the airport.
What is trigonometry?Trigonometry is a branch of mathematics that deals with the study of the relationships between the sides and angles of triangles. It has applications in various fields, such as engineering, physics, architecture, and astronomy. Trigonometry is based on the use of six fundamental trigonometric functions, which are sine, cosine, tangent, cosecant, secant, and cotangent. These functions are defined in terms of the ratios of the sides of a right triangle. In a right triangle, one angle is a right angle, which measures 90 degrees, and the other two angles are acute angles, which are less than 90 degrees. The three sides of a right triangle are called the hypotenuse, the adjacent side, and the opposite side. The hypotenuse is the longest side, and it is always opposite to the right angle. The adjacent side is the side that is adjacent to the angle of interest, and the opposite side is the side that is opposite to the angle of interest.
Here,
We can use trigonometry to find the angle x that the pilot should turn in order to fly directly to the airport.
First, let's draw a diagram of the situation:
A(airport)
|\
| \
| \
| \
| \
| \
| \
| \
| \
| \
| \
P x mi
In the diagram, P represents the position of the plane, which is 148 miles north and 167 miles east of the airport A. The line labeled "x mi" represents the distance that the plane needs to fly in order to reach the airport, and the angle x is the angle between the line x mi and the line representing the eastward direction.
To find x, we can use the trigonometric ratio for tangent (tan):
tan(x) = opposite/adjacent
In this case, the opposite side is 148 miles (the distance north of the airport) and the adjacent side is 167 miles (the distance east of the airport). Therefore:
tan(x) = 148/167
Using a calculator, we can find that:
tan(x) ≈ 0.8868
To find x, we need to take the arctangent (tan⁻¹) of both sides:
x = tan⁻¹(0.8868)
Using a calculator, we find that:
x ≈ 41.8°
To know more about trigonometry,
https://brainly.com/question/26719838
#SPJ1
plot four different points whose -coordinates are half their -coordinates. do these points lie on a line?
The four points with y-coordinates half their x-coordinates are (0,0), (2,1), (4,2), and (6,3). These points do lie on a line, as they all satisfy the linear equation y = x/2.
To plot four points whose y-coordinates are half their x-coordinates, we can choose any four values of x and then compute the corresponding values of y using the equation y = x/2. For example
If x = 0, then y = 0/2 = 0, so the first point is (0,0).
If x = 2, then y = 2/2 = 1, so the second point is (2,1).
If x = 4, then y = 4/2 = 2, so the third point is (4,2).
If x = 6, then y = 6/2 = 3, so the fourth point is (6,3).
We can plot these points on a coordinate plane
As we can see from the plot, the four points do lie on a straight line. This is because the equation y = x/2 is the equation of a linear function with slope 1/2 and y-intercept 0. Therefore, any two points on this line will have a constant slope between them, and thus the four points will be collinear.
Learn more about coordinates plane here
brainly.com/question/24134413
#SPJ4
Elyse has a gift card to a local movie theater. the graph shows the amount of money remaining on her gift card based on the number of movies she has seen.
a. write an equation to represent the situation.
b. interpret the slope and y-intercept in the context of the situation.
a. The equation to represent the situation is y = -12x + 120, where x is the number of movies and y is the amount of money remaining on the gift card.
What is money?Money is a medium of exchange that is widely accepted as a way to pay for goods and services or to settle debts. Money also serves as a store of value, providing a way for people to save for the future. Money is generally created through government-backed fiat currencies, such as the U.S. dollar, which are issued and regulated by central banks. Money can also be created in the form of crypto-currencies, such as Bitcoin, which are not issued by any single government or central bank. Money is essential for economic growth and stability, as it allows for efficient exchanges of goods and services. Money can also be a source of financial security, providing people with a way to manage their finances and plan for the future.
b. The slope of -12 indicates that for every movie that Elyse sees, she will spend $12 from her gift card. The y-intercept of 120 indicates that if Elyse has not seen any movies, she will have $120 remaining on her gift card.
To learn more about money
https://brainly.com/question/30279568
#SPJ1
The situation is,
a) The line equation is [tex]y = -3x - 6[/tex]
b) The line's y-intercept is -6, which indicates that when the amount of movies x = 0 , the amount on gift y = -6
c) The slope of the line is -3, indicating that as the number of movies x increases, the rate of change of the amount on the gift is declining.
What is an Equation of a line?a). The equation provides the line's slope.
Slope,
[tex]m=\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]
Changing the numbers indicated in the slope equation,
Slope,
[tex]m=\frac{(6-12)}{(4-2)}[/tex]
Slope m = -6/2
Slope m = -3
The slope is -3
The equation of the line is,
[tex]y - y_1 = m ( x - x_1 )[/tex]
Substitute the given values in the equation,
[tex]y - 12 = -3 ( x - 2 )[/tex]
Simplify the equation,
[tex]y - 12 = -3x + 6[/tex]
Adding 12 on both sides
[tex]y = -3x - 6[/tex]
The equation of line is [tex]y = -3x - 6[/tex]
b). The y-intercept of the equation of line [tex]y = -3x - 6[/tex] is [tex]-6[/tex], when [tex]x=0[/tex]
c). The slope of the line [tex]y = -3x - 6[/tex] is [tex]m = -3[/tex] and the value is decreasing
To know more about Slope, visit:
https://brainly.com/question/16949303
#SPJ1
The completr question and graph attached below,
c. What is the slope, and what does it mean in the context of the situation?
Polygon ABCD with vertices at A(−4, 6), B(−2, 2), C(4, −2), and D(4, 4) is dilated using a scale factor of one eighth to create polygon A′B′C′D′. If the dilation is centered at the origin, determine the vertices of polygon A′B′C′D′.
A′(3.5, −5.25), B′(1.75, −1.75), C′(−3.5, 1.75), D′(−3.5, −3.5)
A′(3.2, −4.8), B′(1.6, −1.6), C′(−3.2, 1.6), D′(3.2, 3.2)
A′(−0.5, 0.75), B′(−0.25, 0.25), C′(0.5, −0.25), D′(0.5, 0.5)
A′(−12, 14), B′(−10, 10), C′(12, −14), D′(12, 12)
The vertices of polygon A'B'C'D' are A′(−0.5, 0.75), B′(−0.25, 0.25), C′(0.5, −0.25), D′(0.5, 0.5).
What is Dilation:In geometry, dilation is a transformation that changes the size of a figure but not its shape. It is a type of similarity transformation.
When a figure is dilated, each point of the figure moves away or towards the center of dilation by a certain scale factor.
Here we have
Polygon ABCD with vertices at A(−4, 6), B(−2, 2), C(4, −2), and D(4, 4) is dilated using a scale factor of one-eighth to create polygon A′B′C′D′.
To dilate polygon ABCD using a scale factor of one-eighth i.e 1/8 multiply the coordinates of each vertex by the scale factor of 1/8.
The coordinates of A are (-4, 6), multiply each coordinate by 1/8
A' = (-4/8, 6/8) = (-1/2, 3/4) = (-0.5, 0.75)
The coordinates of B are (-2, 2), multiplying each coordinate by 1/8
B' = (-2/8, 2/8) = (-1/4, 1/4) = (-0.25, 0.25)
The coordinates of C are (4, -2), multiplying each coordinate by 1/8
C' = (4/8, -2/8) = (1/2, -1/4) = (0.5, - 0.25)
The coordinates of D are (4, 4). Multiplying each coordinate by 1/8
D' = (4/8, 4/8) = (1/2, 1/2) = (0.5, 0.5)
Therefore,
The vertices of polygon A'B'C'D' are A′(−0.5, 0.75), B′(−0.25, 0.25), C′(0.5, −0.25), D′(0.5, 0.5).
Learn more about Dilation at
https://brainly.com/question/29170800
#SPJ1
GIVING BRAINLIEST FOR RIGHT ANSWER (provide proof please i need to know how you got the answer)
Answer:
x>7
Step-by-step explanation:
The circle is open so seven is not included which eliminates the second and fourth choice.
x<7 means x is less than seven which is wrong.
x> means x is greater than seven.
Answer:
x > 7
Step-by-step explanation:
We see that the arrow is going to the right, signaling greater than.
We know that it is not greater than or equal to, since the dot is not shaded.
So, the answer is x > 7.
I need the answer help pls
Answer:
Step-by-step explanation:
math help needed detailed explanation
The percentage of 8th graders who send more than 50 texts is 56.15%
How to find the percentage?Here we want to find the percentage of eight grades who send more than 50 texts, and to get that we need to use the values in the table.
The formula for that percentage is:
P = 100%*(number that send more than 50 texts)/(total number)
On the table we can see that the total number of 8th gradesr is 130, and the number that send more than 50 messages is 73, then the percentage is:
P = 100%*(73/130)
P = 56.15%
Learn more about percentages at:
https://brainly.com/question/843074
#SPJ1
Two landing points, A and B, lie on the straight bank of a river and are separated by 50 meters. Find the distance from each landing point to a boat pulled ashore on the opposite bank at a point C if
The distance from point A to the boat is approximately 23.3 meters, and the distance from point B to the boat is approximately 26.7 meters, rounded to the nearest foot.
Describe Distance?Distance can be calculated using a variety of methods, depending on the context. For example, the distance between two points in a straight line can be calculated using the Pythagorean theorem in two dimensions or the distance formula in three dimensions. In more complex situations, such as when the two points are not in a straight line, distance may be calculated using other mathematical methods or by estimating the distance based on contextual information.
Distance is often used in everyday life to describe how far apart objects or locations are from each other, such as the distance between two cities, the distance from home to work, or the distance between two landmarks. It is also used in many scientific fields to describe the separation between celestial objects, the distances traveled by particles in a chemical reaction, or the distances between neurons in the brain.
We can solve this problem using the Law of Sines, which states that for any triangle with sides a, b, and c and opposite angles A, B, and C:
a/sin A = b/sin B = c/sin C
Let's label the distance from point A to the boat as a, the distance from point B to the boat as b, and the distance from point C to the opposite bank as c. We are given that AB = 50 meters, angle ABC = 68 degrees, and angle BCA = 73 degrees. We want to find a and b.
First, we can find the measure of angle ACB by using the fact that the sum of angles in a triangle is 180 degrees:
angle ACB = 180 - angle ABC - angle BCA
angle ACB = 180 - 68 - 73
angle ACB = 39 degrees
Next, we can use the Law of Sines to find a and b:
a/sin 68 = c/sin 39
b/sin 73 = c/sin 39
Solving for c in both equations gives:
c = a sin 39 / sin 68
c = b sin 39 / sin 73
We can set these two equations equal to each other and solve for b:
a sin 39 / sin 68 = b sin 39 / sin 73
b = a (sin 39 / sin 73) * (sin 68 / sin 39)
b = a (sin 68 / sin 73)
We know that a + b = 50, so we can substitute the expression for b into this equation:
a + a (sin 68 / sin 73) = 50
Solving for a gives:
a = 50 / (1 + sin 68 / sin 73)
a ≈ 23.3 meters
Substituting this value of a into the expression for b gives:
b ≈ 26.7 meters
So the distance from point A to the boat is approximately 23.3 meters, and the distance from point B to the boat is approximately 26.7 meters, rounded to the nearest foot.
To know more about expression visit:
https://brainly.com/question/17248750
#SPJ1
The complete question is
Two landing points, A and B, lie on the straight bank of a river and are separated by 50 meters. Find the distance from each landing point to a boat pulled ashore on the opposite bank at a point C if angle ABC=68 degree and angle BCA=73 degree. Round to the nearest foot.
in practice, the most frequently encountered hypothesis test about a population variance is a .
In practice, the most frequently encountered hypothesis test about a population variance is an F-test.
In statistics, hypothesis tests provide us with a tool to evaluate evidence about a population. Hypothesis testing is a crucial part of statistical inference, in which an analyst tests hypotheses using statistical methods such as t-tests, chi-squared tests, and analysis of variance (ANOVA).
In practice, the most commonly used hypothesis test for population variance is the F-test. This test can be used to test the null hypothesis that two population variances are equal. F-tests have a wide range of uses, including in quality control, financial analysis, engineering, and more. The F-test statistic is calculated by dividing the sample variance of one sample by the sample variance of another sample. The F-test requires that the data come from populations that follow normal distributions, and it is sensitive to outliers in the data.
Therefore, in practice, the most frequently encountered hypothesis test about a population variance is an F-test.
To learn more about “hypothesis test” refer to the https://brainly.com/question/4232174
#SPJ11
.
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHelp
Answer:
first box (pies): 3, 6, 9, 12, 15, 18, 33
-> increments of 3
2nd box [cost ($)]: 11, 22, 33, 44, 55, 66, 121
-> increment of 11
Step-by-step explanation:
$44 ÷ 12 pies = $3.67 per 1 pie
3 × $3.67 = $11.01
same process: (number of pies) × $3.67 ≈ COST
Answer:
Step-by-step explanation:
So start off with 66 x 33. That will equal 2,178. Divide 2,178 by 18, like this: 2,178/18. That will equal 121. that will mean that 33 = 121. So 9 = 33 because 9 x 44 = 396 so you will divide that by 12 meaning that 9 equals 33. So now you will multiply 9 and 22 and then divide that answer by 33 making 6 = 22. now divide 22 by 6. That will equal 3.67. So 3.67 is the cost of one pie.
For the boxes above 12 and 44 it will be 16 = 59.
I hope it helped
9r subtract three fifths greater than 3 and 9 tenths
the baker needs 15 gallons of milk to make 80 chocolate pies for the community festival. To translate the phrase "9r subtract three fifths greater than 3 and 9 tenths" into an expression, we first need to understand what it's asking us to do.
"Three fifths greater than 3 and 9 tenths" means we need to add 3 and 9 tenths to three fifths of 3. Three fifths of 3 is 1.8 (since 3/5 * 3 = 9/5 = 1.8), so we can write:
3 + 9/10 + 1.8
We can simplify this to a single mixed number by adding the whole numbers and the fractions separately:
3 + 1 + 8/10 + 8/5
= 4 + 1 3/5
= 5 3/5
So "three fifths greater than 3 and 9 tenths" is equal to 5 3/5.
Now we can subtract this value from 9r:
9r - 5 3/5
We can simplify this expression further by converting 5 3/5 to a fraction with a common denominator of 5:
9r - 5 3/5 = 9r - (28/5) = (45/5)r - (28/5) = (9r - 28) / 5
So the final expression is:
(9r - 28) / 5
In summary, "9r subtract three fifths greater than 3 and 9 tenths" can be translated to the expression (9r - 28) / 5. This expression represents a quantity that is 9 times "r" minus 5 3/5. We can simplify this expression further by converting the mixed number to an improper fraction and combining the terms, as shown above.
To know more about common denominator click here:
brainly.com/question/29775115
#SPJ4
PLEASEEEEE HELPPPPPPP!!!!!!!
A line segment contains endpoints A(-1, 2) and B(2, 5).
Determine the point that partitions line segment AB into a 3: 6 ratio.
A 4,5/3
B 0,3
C 1/3,3
D -2,1
Answer:
We can find the point that partitions line segment AB into a 3:6 ratio by using the formula for finding a point that divides a line segment into two parts in a given ratio.
Let's call the point we're looking for "P". According to the formula, the coordinates of point P can be found using the following equations:
x-coordinate of P = [(6 * x-coordinate of A) + (3 * x-coordinate of B)] / 9
y-coordinate of P = [(6 * y-coordinate of A) + (3 * y-coordinate of B)] / 9
Using the coordinates of points A and B given in the problem, we can plug them into these equations and simplify to find the coordinates of point P:
x-coordinate of P = [(6 * -1) + (3 * 2)] / 9 = 0
y-coordinate of P = [(6 * 2) + (3 * 5)] / 9 = 3.33 (rounded to two decimal places)
Therefore, the point that partitions line segment AB into a 3:6 ratio is approximately (0, 3.33), which is closest to option A: 4,5/3.
The rate of the jetstream is 300 mph traveling with the jetstream an airplane can fly 3000 miles in the same amount of time as it takes to fly 1000 miles against the jetstream. What is the airplanes, average rate in calm air?
The airplane's average rate in calm air is 600 mph.
What is an average?
In mathematics, the average is a measure of the central tendency of a set of numerical values, which is computed by adding all the values in the set and dividing them by the total number of values. The average is also known as the mean, and it is one of the most commonly used measures of central tendency in statistics
Let's denote the airplane's average rate in calm air by x mph.
When the airplane is flying with the jetstream, its ground speed (speed relative to the ground) is x + 300 mph. We know that it can fly 3000 miles in the same amount of time it takes to fly 1000 miles against the jetstream, so we can set up the following equation:
3000 / (x + 300) = 1000 / (x - 300)
We can cross-multiply to simplify:
3000(x - 300) = 1000(x + 300)
Expanding the brackets gives:
3000x - 900000 = 1000x + 300000
Simplifying and rearranging terms gives:
2000x = 1200000
x = 600
Therefore, the airplane's average rate in calm air is 600 mph.
To learn more about averagevisit the link:
https://brainly.com/question/130657
#SPJ9
A dental student is conducting a study on the number of people who visit their dentist regularly. Of the 520 people surveyed, 312 indicated that they had visited their dentist within the past year.Find the population proportion, as well as the mean and standard deviation of the sampling distribution for samples of size n=60.Round all answers to 3 decimal places.p=Up=Op=
Answer:
Step-by-step explanation:
312/520 equals 60%
other people 40%
DUE FRIDAY WELL WRITTEN ANSWERS ONLY!!!!!!!!!!!
Complete the table
All the trigonometric values for sin θ, cos θ and tan θ are valued below. Each trigonometric value is mentioned.
sin θ has boundaries from 0 to 1.
sin [tex]-\pi /2[/tex] = -1
sin [tex]-\pi /3[/tex] = -0.87
sin [tex]-\pi /6[/tex] = -0.5
sin 0 = 0
sin [tex]\pi /6 \\[/tex] = 0.5
sin [tex]\pi /3[/tex] = 0.87
sin [tex]\pi /2[/tex] = 1
sin [tex]2\pi /3[/tex] = [tex]\sqrt{3}/2[/tex]
sin [tex]5\pi /6[/tex] = 1/2
sin [tex]\pi[/tex] = 1
sin [tex]7\pi /6[/tex] = -0.5
sin [tex]4\pi /3[/tex] = -0.87
sin [tex]3\pi /2[/tex] = -1
sin [tex]5\pi /3[/tex] = -0.87
sin [tex]11\pi /6[/tex] = -0.5
sin [tex]2\pi[/tex] = 0
Similarly cos θ has boundaries.
cos [tex]-\pi /2[/tex] = 0
cos [tex]-\pi /3[/tex] = 0.5
cos [tex]-\pi /6[/tex] = 0.87
cos 0 = 1
cos [tex]\pi /6 \\[/tex] = 0.87
cos [tex]\pi /3[/tex] = 0.5
cos [tex]\pi /2[/tex] = 0
cos [tex]2\pi /3[/tex] = -0.5
cos [tex]5\pi /6[/tex] = -0.87
cos [tex]\pi[/tex] = -1
cos [tex]7\pi /6[/tex] = -0.87
cos [tex]4\pi /3[/tex] = -0.5
cos [tex]3\pi /2[/tex] = 0
cos [tex]5\pi /3[/tex] = 0.5
cos [tex]11\pi /6[/tex] = 0.87
cos [tex]2\pi[/tex] = 1
But tan θ has no boundaries.
tan [tex]-\pi /2[/tex] = undefined
tan[tex]-\pi /3[/tex] = -0.8
tan [tex]-\pi /6[/tex] = -1.73
tan 0 = 0
tan[tex]\pi /6 \\[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex]
tan [tex]\pi /3[/tex] = [tex]\sqrt{3}[/tex]
tan [tex]\pi /2[/tex] = undefined
tan [tex]2\pi /3[/tex] = -3
tan [tex]5\pi /6[/tex] = -0.5774
tan [tex]\pi[/tex] = undefined
tan [tex]7\pi /6[/tex] = -1.73
tan[tex]4\pi /3[/tex] = 1.73
tan [tex]3\pi /2[/tex] = undefined
tan [tex]5\pi /3[/tex] = -1.73
tan [tex]11\pi /6[/tex] = -0.58
tan [tex]2\pi[/tex] = 0
Hence, all the values mentioned in the table, were written above.
Learn more about Trigonometric values:
https://brainly.com/question/29069676
#SPJ1
what is the area of the composite figure to the nearest square centimeter?
Based on the information in the image, we can infer that the surface area is 863.5cm³.
How to find the surface of the figure?To find the surface of the figure we must divide the figure in two, into the cone and the cylinder and find the surface of each one separately and then add it.
Cylinder surface area:
To calculate the surface area of a cylinder we must apply the following formula:
[tex]A = 2\pi r h ++ 2 \pi r^{2} \\A = 2 * \pi * 5 * 15 + 2 * \pi * 5^{2} \\A = 471 + 157\\A = 628cm^{3}[/tex]
Cone surface area:
[tex]A = \pi rh + \pi r^{2} \\A = \pi * 5 * 10 + \pi * 5^{2} \\A = 157 + 78.5 \\A = 235.5 cm^{3}[/tex]
Surface area of the entire figure:
A = 235.5 + 628A = 863.5Learn more about square centimeters in: https://brainly.com/question/27798844
#SPJ1
What is fifteen divided by two hundred and eighty nine?
15 divided by 289 is approximately equal to 0.0519 or 519/10000. Fifteen divided by two hundred and eighty nine is a division problem that involves dividing 15 by 289. To solve this problem, we can use long division or a calculator.
Using long division, we start by dividing the first digit of the dividend (2) by the divisor (15). Since 2 is less than 15, we add a decimal point and a zero to the dividend and continue the process. We bring down the next digit (8) and divide 28 by 15, which gives us a quotient of 1 with a remainder of 13. We add a decimal point after the quotient and bring down the next digit (9) to get 139 as the new dividend. We divide 139 by 15, which gives us a quotient of 9 with a remainder of 4. We add a decimal point after the quotient and bring down the last digit (0) to get 40 as the new dividend. We divide 40 by 15, which gives us a quotient of 2 with a remainder of 10. Finally, we add a decimal point after the last quotient and write the remainder as a fraction over the divisor to get the final answer:
15 divided by 289 is approximately equal to 0.0519 or 519/10000.
In summary, fifteen divided by two hundred and eighty nine is a division problem that can be solved using long division or a calculator. The answer is a decimal or a fraction, depending on how the division is carried out.
To know more about division problem click here:
brainly.com/question/28785787
#SPJ4
in 2005 the population of a district was 35,700 with a continuous annual growth rate of approximately 4%, what will the population be in 2030 according to the exponential growth function?
The population of a district in 2005 was 35,700 with a continuous annual growth rate of approximately 4%. the population in 2030 will be approximately 97,209 according to the exponential growth function.
The formula for the continuous exponential growth is given by the formula:
P = Pe^(rt)
where,P is the population in the future.
P0 is the initial population.
t is the time.
r is the continuous interest rate expressed as a decimal.
e is a constant equal to approximately 2.71828.In this problem, the initial population P0 is 35,700. The rate r is 4% or 0.04 expressed as a decimal. We want to find the population in 2030, which is 25 years after 2005.
Therefore, t = 25.We will now use the formula:
P = Pe^(rt)P = 35,700e^(0.04 × 25)P = 35,700e^(1)P = 35,700 × 2.71828P = 97,209.09.
for such more question on population
https://brainly.com/question/25630111
#SPJ11
Answer: I got 97,042.7
Step-by-step explanation:
Find the x-intercept of 3 tan(3x) over the interval (pi/6,3pi/6)
Express your answer in terms of pi.
The x-intercepts of the function 3 tan(3x) over the interval (π/6, 3π/6) are:
x = π/3 and x = 2π/3
What is function ?
A function is a mathematical object that takes one or more inputs, called the arguments or variables, and produces a unique output. The output is determined by a set of rules that specify how the function operates on the inputs. In other words, a function is a relationship between inputs and outputs.
Functions are typically denoted by a symbol or a name, such as f(x) or g(t). The input is usually represented by a variable, such as x or t, while the output is represented by the function value, such as f(x) or g(t).
Functions are used extensively in mathematics, science, engineering, and many other fields. They provide a way to model and analyze real-world phenomena, and they are essential tools for solving many problems in these fields. Examples of functions include polynomial functions, exponential functions, trigonometric functions, and logarithmic functions.
To find the x-intercept of the function 3 tan(3x) over the given interval, we need to find the values of x where the function equals zero.
Let's first simplify the function:
3 tan(3x) = 0
tan(3x) = 0
We know that tan(π/2) is undefined and that tan(π) = 0. Since the period of the tangent function is π, we can say that:
tan(3x) = 0 --> 3x = nπ for n ∈ ℤ
Now we solve for x:
3x = nπ
x = nπ/3
Since the interval is (π/6, 3π/6), we need to find the values of x that satisfy:
π/6 < x < 3π/6
π/6 < nπ/3 < 3π/6
1/2 < n < 3/2
So the values of x that satisfy the given condition are:
x = π/3 and x = 2π/3
Therefore, the x-intercepts of the function 3 tan(3x) over the interval (π/6, 3π/6) are:
x = π/3 and x = 2π/3
Expressed in terms of π, the x-intercepts are:
π/3π and 2π/3π, which simplify to:
x = 1/3 and x = 2/3.
To know more about Trigonometry visit :-
https://brainly.com/question/13729598
#SPJ1
What is 4.8 x 0.1 ?
Question :
4.8 x 0.1 =
Answer: 0.48
Step-by-step explanation:
× 0.1 = ÷10
÷ 0.1 = ×10
× 0.01 = ÷100
÷ 0.01 = ×100
So, we do=
4.8 x 0.1 = 4.8 ÷ 10
= 0.48
So our answer is 0.48
find a basis for the subspace of consisting of all vectors such that . hint: notice that this single equation counts as a system of linear equations; find and describe the solutions. answer:
A basis for the subspace of all vectors satisfying the equation x + y + z = 0 is {(-1, 0, 1), (0, 1, -1)}.
SOLUTION:
A basis for the subspace of all vectors (x, y, z) satisfying the single equation x + y + z = 0 can be found by solving this system of linear equations.
Step 1: Choose two variables to express in terms of the remaining variable.
Let's express x and y in terms of z. From the given equation, we get:
x = -y - z
y = -x - z
Step 2: Choose two independent vectors that satisfy the equations.
We can choose two independent vectors by setting z = 1 and z = -1:
When z = 1:
x = -y - 1
y = -x - 1
Let y = 0, then x = -1, so one vector is (-1, 0, 1).
When z = -1:
x = -y + 1
y = -x + 1
Let x = 0, then y = 1, so the other vector is (0, 1, -1).
Therefore, a basis for the subspace of all vectors satisfying the equation x + y + z = 0 is {(-1, 0, 1), (0, 1, -1)}.
To know more about Linear Equations:
https://brainly.com/question/11897796
#SPJ11
jordan wants to create an equiangular octagon whose side lengths are exactly the first 8 positive integers, so that each side has a differetn length. how many such octagons can jordan create
There is only one equiangular octagon that Jordan can create with side lengths as the first 8 positive integers.
To create an equiangular octagon with side lengths as the first 8 positive integers, each side must have a different length. The sum of the interior angles of an octagon is 1080 degrees, so each angle in the octagon must measure 135 degrees.
If we arrange the 8 integers in decreasing order, we can label the longest side as a and the remaining sides as b1, b2, b3, b4, b5, b6, in descending order. Then, we must have:
a + b1 + b2 = a + b2 + b3 = a + b3 + b4 = a + b4 + b5 = a + b5 + b6 = a + b6 + b1 = 135 degrees
Simplify each equation, we get:
b1 - b3 = b2 - b4 = b3 - b5 = b4 - b6 = b5 - b1 = b6 - a
Since all the side lengths are different, we can use these equations to find all possible combinations of side lengths. By inspection, we can see that there is only one set of side lengths that satisfies these conditions, namely:
a = 8
b1 = 7
b2 = 6
b3 = 5
b4 = 4
b5 = 3
b6 = 2
Learn more about integers here:
https://brainly.com/question/10930045
#SPJ4
The angle of elevation to an airplane viewed from the air traffic control tower is 7 degrees. The tower is 200 feet tall, and the plane is at an altitude of 5127 feet. How far is the plane from the air traffic control tower?
The plane is approximately 44,197 feet away from the air traffic control tower.
What does elevation angle mean?An illustration of an angle of elevation
Between the horizontal line and the line of sight, an angle called the angle of elevation is created. When the line of sight is upward from the horizontal line, an angle of elevation is created.
Trigonometry can be used to resolve this issue. Let's illustrate:
P (plane)
/|
/ |
/ | h = altitude of plane = 5127 ft
/ |
/ θ |
T-----X
d = ?
In the illustration, T stands for the air traffic control tower, P for the aircraft, for the angle of elevation, X for the location on the ground directly beneath the aircraft, and d for the desired distance.
We can see that the tower, the spot on the ground just beneath the plane, and the actual plane itself make up the right triangle TPX. The triangle's opposite and adjacent sides can be related to the angle by using the tangent function:
tan θ = h / d
where d is the desired distance and h is the plane's altitude.
To find d, we can rearrange this equation as follows:
d = h / tan θ
Inputting the values provided yields:
d = 5127 feet / 7° of tan
Calculating the answer, we obtain:
d ≈ 44,197 ft
Thus, the distance between the aircraft and the air traffic control tower is 44,197 feet.
To know more about angle of elevation visit:
https://brainly.com/question/8817610
#SPJ1