I have question 3 and need to know a b and c

I Have Question 3 And Need To Know A B And C

Answers

Answer 1

a) Recall that:

[tex]-1\le\cos \theta\le1.[/tex]

Therefore:

[tex]\begin{gathered} -1\le\cos (30^{\circ}\times t)\le1, \\ -12\le12\cos (30^{\circ}\times t)\le12, \\ -12+16\le12\cos (30^{\circ}\times t)+16\le12+16, \\ 4\le12\cos (30^{\circ}\times t)+16\le28. \end{gathered}[/tex]

Therefore the minimum height of the Ferris wheel above the ground is 4 meters.

b) Recall that to evaluate a function at a given value, we substitute the variable by the given value, then, evaluating the given function at t=3 we get:

[tex]12\cos (30^{\circ}\times3)+16.[/tex]

Simplifying the above result we get:

[tex]\begin{gathered} 12\cos (90^{\circ})+16, \\ 12\cdot0+16, \\ 0+16, \\ 16. \end{gathered}[/tex]

Therefore, the height of the Ferris wheel above the ground after 3 minutes is 16 meters.

(c) Let x be the time in minutes the Ferris wheel takes to complete one full rotation, then we can set the following equation:

[tex]30^{\circ}\times x=360^{\circ}.[/tex]

Therefore:

[tex]30x=360.[/tex]

Dividing the above equation by 30 we get:

[tex]\begin{gathered} \frac{30x}{30}=\frac{360}{30}, \\ x=12. \end{gathered}[/tex]

Answer:

(a) 4 meters.

(b) 16 meters.

(c) 12 minutes.


Related Questions

What is 5,435,778 expressed in scientific notation?A.5.435778 x 10*7B.5.435778 x 10*3C.5.435778 x 10*6D.5.435778 x 10*5

Answers

Given the number

[tex]5,435,778[/tex]

We can express it in scientific notation below;

Scientific notation is a way of writing very large or very small numbers. A number is written in scientific notation when a number between 1 and 10 is multiplied by a power of 10. For example, 650,000,000 can be written in scientific notation as 6.5 ✕ 10^8.

Therefore, in the given question, we will have;

[tex]5,435,778=5.435778\times10^6[/tex]

Answer: Option C

I need help question 10 b and c

Answers

Part b.

In this case, we have the following function:

[tex]y=5(2.4)^x[/tex]

First, we need to solve for x. Then, by applying natural logarithm to both sides, we have

[tex]\log y=\log (5(2.4^x))[/tex]

By the properties of the logarithm, it yields

[tex]\log y=\log 5+x\log 2.4[/tex]

By moving log5 to the left hand side, we have

[tex]\begin{gathered} \log y-\log 5=x\log 2.4 \\ \text{which is equivalent to} \\ \log (\frac{y}{5})=x\log 2.4 \end{gathered}[/tex]

By moving log2.4 to the left hand side, we obtain

[tex]\begin{gathered} \frac{\log\frac{y}{5}}{\log2.4}=x \\ or\text{ equivalently,} \\ x=\frac{\log\frac{y}{5}}{\log2.4} \end{gathered}[/tex]

Therfore, the answer is

[tex]f^{-1}(y)=\frac{\log\frac{y}{5}}{\log2.4}[/tex]

Part C.

In this case, the given function is

[tex]y=\log _{10}(\frac{x}{17})[/tex]

and we need to solve x. Then, by raising both side to the power 10, we have

[tex]\begin{gathered} 10^y=10^{\log _{10}(\frac{x}{17})} \\ \text{which gives} \\ 10^y=\frac{x}{17} \end{gathered}[/tex]

By moving 17 to the left hand side, we get

[tex]\begin{gathered} 17\times10^y=x \\ or\text{ equivalently,} \\ x=17\times10^y \end{gathered}[/tex]

Therefore, the answer is

[tex]f^{-1}(y)=17\times10^y[/tex]

what is 0.024 ÷ 0.231​

Answers

Answer:

0.10389610389

Step-by-step explanation:

Hi!

I plugged it into a calculator:

0.024 ÷ 0.231​ = 0.10389610389

Have a great day! :)

What is the seventy-seven is forty-six more than r

Answers

Answer: 77 = 46 + r, r = 31

Step-by-step explanation:

      We will write an equation to represent this situation. Then, we will solve for r by isolating the variable.

  Seventy-seven is forty-six more than r.

77 is forty-six more than r.

77 = forty-six more than r.

77 = 46 more than r.

  77 = 46 + r

  77 = 46 + r

(77) - 46 = (46 + r) - 46

31 = r

  r = 31

How to find the area of a regular hexagon with a radius of 12 inches? Please help

Answers

[tex]\begin{gathered} In\text{ this case, as a regular hexagon} \\ \text{radius = side} \\ Area\text{ =}3\cdot\frac{\sqrt[]{3}side^2}{2} \\ \text{side}=12in \\ side^2=144in^2 \\ Area\text{ =}3\cdot\frac{\sqrt[]{3}\cdot(144in^2)}{2} \\ \\ \text{Area}=374.1in^2 \\ \text{The regular hexagon's area is }374.1in^2 \end{gathered}[/tex]

The variables x and y vary directly. Use values to write an equation that relates x and y. y=25;x=5And y=20;x=12

Answers

A lineal equation has the next form:

[tex]y=mx+b[/tex]

where m is the slope and is calculated as follow:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

For this case

y1=20

y2= 25

x1=12

x2= 5

so:

[tex]m=\frac{25-20}{5-12_{}}=\frac{5}{-7}=-\frac{5}{7}[/tex]

then the equation will be:

[tex]y=(-\frac{1}{7})x+b[/tex]

Using one of the points we calculate the b

we are going to use y=25 x=5

[tex]25=(-\frac{5}{7})5+b[/tex]

Clearing the b we get:

[tex]25-\frac{25}{7}=b\Rightarrow\frac{200}{7}=b[/tex]

b=200/7 or b=28.57

So the final equation is:[tex]y=-\frac{1}{7}x+\frac{200}{7}[/tex]

A lineal equation has the next form:

[tex]y=mx+b[/tex]

where m is the slope and is calculated as follow:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

For this case

y1=20

y2= 25

x1=12

x2= 5

so:

[tex]m=\frac{25-20}{5-12_{}}=\frac{5}{-7}=-\frac{5}{7}[/tex]

then the equation will be:

[tex]y=(-\frac{1}{7})x+b[/tex]

Using one of the points we calculate the b

we are going to use y=25 x=5

[tex]25=(-\frac{5}{7})5+b[/tex]

Clearing the b we get:

[tex]25-\frac{25}{7}=b\Rightarrow\frac{200}{7}=b[/tex]

b=200/7 or b=28.57

So the final equation is:[tex]y=-\frac{1}{7}x+\frac{200}{7}[/tex]

Use the change of base formula and a calculator to evaluate the logarithm

Answers

The change of base formula states that:

[tex]\log _bx=\frac{\ln x}{\ln b}[/tex]

this means that we can caculate any logarithm using the natural logarithm if we make the quotient of the natural logarithm of the original value and the natural logarithm of the original base.

In this case we have:

[tex]\begin{gathered} x=14 \\ b=\sqrt[]{3} \end{gathered}[/tex]

Then, using the change of base formula, we have:

[tex]\log _{\sqrt[]{3}}14=\frac{\ln 14}{\ln \sqrt[]{3}}[/tex]

Once we have the expression we just evaluate the expression on the right to get the appoximation we need:

[tex]\log _{\sqrt[]{3}}14=\frac{\ln14}{\ln\sqrt[]{3}}\approx4.804[/tex]

Need help figuring out if the following is Real or Complex Question number 10

Answers

Explanation:

We have the expression:

[tex]i^3[/tex]

where i represents the complex number i defined as follows:

[tex]i=\sqrt{-1}[/tex]

To find if i^3 is real or complex, we represent it as follows:

[tex]i^3=i^2\times i[/tex]

And we find the value of i^2 using the definition of i:

[tex]i^2=(\sqrt{-1})^2[/tex]

Since the square root and the power of 2 cancel each other

[tex]\imaginaryI^2=-1[/tex]

And therefore, using this value for i^2, we can now write i^3 as follows:

[tex]\begin{gathered} \imaginaryI^3=\imaginaryI^2\times\imaginaryI \\ \downarrow \\ \imaginaryI^3=(-1)\times\imaginaryI \end{gathered}[/tex]

This simplifies to -i

[tex]\imaginaryI^3=-\imaginaryI^[/tex]

Because -i is still a complex number, that means that i^3 is a complex number.

Answer: Complex

Can someone help me with this math question. I just need to see the work.
pic of question below

Answers

The polar coordinates for each point are given as follows:

a. [tex](r, \theta) = \left(2\sqrt{5}, \frac{7\pi}{4}\right)[/tex]

b. [tex](r, \theta) = \left(6, \frac{\pi}{3}\right)[/tex]

Polar coordinates

Suppose we have a point with Cartesian coordinates given as follows:

(x,y).

The polar coordinates will be found as follows:

r² = x² + y².θ = arctan(y/x).

For item a), the Cartesian coordinates are as follows:

(-4, 4).

Hence the polar coordinates will be given as follows:

r² = (-4)² + (4)² -:> r =  sqrt(32) = 2sqrt(5).θ = arctan(-4/4) = arctan(-1) = -45º = 2pi - pi/4 = 7pi/4.

For item a), the Cartesian coordinates are as follows:

(3, 3sqrt(3)).

Hence the polar coordinates will be given as follows:

r² = (3)² + (3sqrt(3))² = 9 + 27 = 36 -> r = sqrt(36) = 6.θ = arctan(3sqrt(3)/3) = arctan(sqrt(3)) = 60º = pi/3.

More can be learned about polar coordinates at https://brainly.com/question/7009095

#SPJ1

Find the volume of this triangular prism.Be sure to include the correct unit in your answer.8 cm7 cm→5 cm

Answers

The formula to find the volume of a triangular prism is the following:

[tex]V=\frac{1}{2}h\cdot b\cdot w[/tex]

where:

h - height

b - base length

w - width

for this problem:

h = 8 cm

b = 5 cm

w = 7 cm

then

[tex]V=\frac{1}{2}8\cdot5\cdot7[/tex]

solving this, we obtain that the volume of the triangular prism is 140 cm^3 or cubic centimeters

(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) And determine the quadrants of A+B and A-B.

Answers

Given that:

[tex]\cos A=\frac{5}{13}[/tex]

Where:

[tex]0And:[tex]\cos B=\frac{3}{5}[/tex]

Where:

[tex]0You need to remember that, by definition:[tex]\theta=\cos ^{-1}(\frac{adjacent}{hypotenuse})[/tex]

Therefore, applying this formula, you can find the measure of angles A and B:

[tex]A=\cos ^{-1}(\frac{5}{13})\approx67.38\text{\degree}[/tex][tex]B=\cos ^{-1}(\frac{3}{5})\approx53.13\text{\degree}[/tex]

(a) By definition:

[tex]\sin \mleft(A+B\mright)=sinAcosB+cosAsinB[/tex]

Knowing that:

[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex]

You can substitute the known values into the equation in order to find the opposite side for angle A:

[tex]\begin{gathered} \sin (67.38\text{\degree)}=\frac{opposite}{13} \\ \\ 13\cdot\sin (67.38\text{\degree)}=opposite \\ \\ opposite\approx12 \end{gathered}[/tex]

Now you know that:

[tex]\sin A=\frac{12}{13}[/tex]

Using the same reasoning for angle B, you get:

[tex]\begin{gathered} \sin (53.13\text{\degree)}=\frac{opposite}{5} \\ \\ 5\cdot\sin (53.13\text{\degree)}=opposite \\ \\ opposite\approx4 \end{gathered}[/tex]

Now you know that:

[tex]\sin B=\frac{4}{5}[/tex]

Substitute values into the Trigonometric Identity:

[tex]\begin{gathered} \sin (A+B)=sinAcosB+cosAsinB \\ \\ \sin (A+B)=(\frac{12}{13})(\frac{3}{5})+(\frac{5}{13})(\frac{4}{5}) \end{gathered}[/tex]

Simplifying, you get:

[tex]\begin{gathered} \sin (A+B)=\frac{36}{65}+\frac{20}{65} \\ \\ \sin (A+B)=\frac{36+20}{65} \end{gathered}[/tex][tex]\sin (A+B)=\frac{56}{65}[/tex]

(b) By definition:

[tex]\sin \mleft(A-B\mright)=sinAcosB-cosAsinB[/tex]

Knowing all the values, you get:

[tex]\begin{gathered} \sin (A-B)=(\frac{12}{13})(\frac{3}{5})-(\frac{5}{13})(\frac{4}{5}) \\ \\ \sin (A-B)=\frac{36-20}{65} \\ \\ \sin (A-B)=\frac{16}{65} \end{gathered}[/tex]

(c) By definition:

[tex]\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A\cdot\tan B}[/tex]

By definition:

[tex]\tan \theta=\frac{opposite}{adjacent}[/tex]

Therefore, in this case:

- For angle A:

[tex]\tan A=\frac{12}{5}[/tex]

- And for angle B:

[tex]\tan B=\frac{4}{3}[/tex]

Therefore, you can substitute values into the formula and simplify:

[tex]\tan (A+B)=\frac{\frac{12}{5}+\frac{4}{3}}{1-(\frac{12}{5}\cdot\frac{4}{3})}[/tex][tex]\tan (A+B)=\frac{\frac{56}{15}}{1-\frac{48}{15}}[/tex][tex]\tan (A+B)=\frac{\frac{56}{15}}{-\frac{11}{5}}[/tex][tex]\tan (A+B)=-\frac{56}{33}[/tex]

(d) By definition:

[tex]\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A\cdot\tan B}[/tex]

Knowing all the values, you can substitute and simplify:

[tex]\tan (A-B)=\frac{\frac{12}{5}-\frac{4}{3}}{1+(\frac{12}{5}\cdot\frac{4}{3})}[/tex][tex]\tan (A-B)=\frac{\frac{16}{15}}{\frac{21}{5}}[/tex][tex]\tan (A-B)=\frac{16}{63}[/tex]

(e) Knowing that:

[tex]\sin (A+B)=\frac{56}{65}[/tex][tex]\tan (A+B)=-\frac{56}{33}[/tex]

Remember the Quadrants:

By definition, in Quadrant II the Sine is positive and the Tangent is negative.

Since in this case, you found that the Sine is positive and the Tangent negative, you can determine that this angle is in the Quadrant II:

[tex]A+B[/tex]

Find 2 given that =−4/5 and < < 3/2

Answers

Find 2 given that =

−4/5 and < < 3/2

we know that

sin(2x) = 2 sin(x) cos(x)

so

step 1

Find the value of cos(x)

Remember that

[tex]\sin ^2(x)+\cos ^2(x)=1^{}[/tex]

we have

sin(x)=-4/5

The angle x lies on III quadrant

that means

cos(x) is negative

substitute the value of sin(x)

[tex]\begin{gathered} (-\frac{4}{5})^2+\cos ^2(x)=1^{} \\ \\ \frac{16}{25}+\cos ^2(x)=1^{} \\ \\ \cos ^2(x)=1-\frac{16}{25} \\ \cos ^2(x)=\frac{9}{25} \\ \cos (x)=-\frac{3}{5} \end{gathered}[/tex]

step 2

Find the value of sin(2x)

sin(2x) = 2 sin(x) cos(x)

we have

sin(x)=-4/5

cos(x)=-3/5

substitute

sin(2x)=2(-4/5)(-3/5)

sin(2x)=24/25

I need these answers quickly. If I don't get them by midnight ill cry.

Answers

The answer is the second option, “The tank has 200 gallons in it when Jack opens the valve.”

This is because the y intercept represents how much water is in the tank when the time = 0 minutes, and at 0 minutes Jack hasn’t opened the valve yet and no water has been lost.


*Statistical question: Is the proportion of inner-city families living on a subsistence income: 20%? Two hundred families were randomly selected for the survey
and 38 were found to have income at the subsistence level. Use the formal critical value method at 5% level of significance.
List the assumptions pertaining to this procedure.


Answers

Since the critical value of the test is greater than the absolute value of the test statistic, there is not enough evidence to conclude that the proportion is different of 20%.

Hypothesis tested and critical value

At the null hypothesis, it is tested if the proportion is of 20%, that is:

[tex]H_0: p = 0.2[/tex]

At the alternative hypothesis, it is tested if the proportion is different of 20%, hence:

[tex]H_1: p \neq 0.2[/tex]

We have a two-tailed test, as we are testing if the mean is different of a value, with a significance level of 0.05, hence the critical value is of:

|z| = 1.96.

Test statistic

The test statistic is given by the rule presented as follows:

[tex]z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]

In which:

[tex]\overline{p}[/tex] is the sample proportion.p is the proportion tested at the null hypothesis.n is the sample size.

In the context of this problem, the parameters are given as follows:

[tex]p = 0.2, n = 200, \overline{p} = \frac{38}{200} = 0.19[/tex]

Hence the test statistic is:

[tex]z = \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]

[tex]z = \frac{0.19 - 0.2}{\sqrt{\frac{0.2(0.8)}{200}}}[/tex]

z = -0.35.

|z| < 1.96, hence there is not enough evidence to conclude that the proportion is different of 20%.

More can be learned about the use of the z-distribution to test an hypothesis at https://brainly.com/question/13873630

#SPJ1

SOMEONE PLS HELPPPPPPPP

Answers

Answer:

**NEED USEFUL ANSWER ASAP, H.W QUESTION**

Given that hotter blackbodies produce more energy than cooler blackbodies, why do cooler red giants have much higher luminosities than much hotter white dwarfs?

Step-by-step explanation:

11. The population of the District of Columbia was approximately 572 thousand in 2000 and had been growing by about 1.15% per year.(a) Write an explicit formula for the population of DC t years after 2000 (i.e. t=0 in 2000), where Pt is measured in thousands of people.Pt = (b) If this trend continues, what will the district's population be in 2025? Round your answer to the nearest whole number. thousand people(c) When does this model predict DC's population to exceed 800 thousand? Give your answer as a calendar year (ex: 2000).During the year

Answers

Given:

Population in 2000 = 572 thousand

Rate of growth per year = 1.15%

Let's solve for the following:

(a) Explicit formula for the population years after 2000.

Where:

In year 2000, t = 0

To write the explicit formula, apply the exponantial growth function formula:

[tex]f(t)=a(1+r)^t[/tex]

Where:

a is the initial amount

r is the growth rate.

Thus, we have:

[tex]\begin{gathered} P_t=572(1+\frac{1.15}{100}_{^{}})^t \\ \\ P_t=572(1+0.0115)^t \end{gathered}[/tex]

Therefore, the explicit formula for the population years after 2000 is:

[tex]P_t=572(1.0115)^t[/tex]

(b) What will be the district's population in 2025.

Where:

In the year 2000, t = 0

In the year 2025, t will be = 25

To find the population in 2025, substitute 25 for t in the explicit formula for evalaute:

[tex]\begin{gathered} P_{25}=572(1.0115)^{25} \\ \\ P_{25}=572(1.330905371) \\ \\ P_{25}=761.28\approx761 \end{gathered}[/tex]

The population in 2025 if the trend continues will be approximately 761 thousand.

(c) When does the model predict the population to exceeed 800 thousand.

Substitute 800 for Pt and solve for t.

We have:

[tex]\begin{gathered} P_t=572(1.0115)^t \\ \\ 800=572(1.0115)^t \end{gathered}[/tex]

Divide both sides by 572:

[tex]\begin{gathered} \frac{800}{572^{}}=\frac{572(1.0115)^t}{572} \\ \\ 1.3986=1.0115^t \end{gathered}[/tex]

Take the natural logarithm of both sides:

[tex]\begin{gathered} \ln (1.3986)=\ln (1.0115)^t \\ \\ \ln (1.3986)=t\ln (1.0115) \\ \\ 0.33547=0.01143t \end{gathered}[/tex]

Divide both sides by 0.01143:

[tex]\begin{gathered} \frac{0.33547}{0.01143}=\frac{0.01143t}{0.01143} \\ \\ 29.3=t \\ \\ t=29.3\approx29 \end{gathered}[/tex]

When t = 29, the year is 2000 + 29 = 2029

Therefore, using this model, DC's population will exceed 800 thousand in the year 2029.

ANSWERS:

[tex]\begin{gathered} (a)P_t=572(1.0115)^t \\ \\ (b)=761\text{ thousand people} \\ \\ (c)\text{ 20}29 \end{gathered}[/tex]

You want to build a sandbox that can hold50,445 cubic inches of sand. If the sandbox is to be59 in. long and57 in. wide, how tall will it need to be?

Answers

Volume of sandbox (to be built) = 50,445 cubic inches

A sandbox is the shape of a cuboid and is calculated by the formula

[tex]\text{volume = length }\cdot\text{ wi}\differentialD tth\text{ }\cdot\text{ height }\Rightarrow\text{ v = l }\cdot\text{ w }\cdot\text{ h}[/tex]

Volume = Length * Width * Height

Volume = 50,445 cubic inches, Length = 59 in. Width = 57 in, Height = ?

50,445 = 59 * 57 * h

Make h the subject of the formula, we have:

h = 50445 / (59 * 57) = 15 in

using the gcf and the distributive property find the sum of 34+51

Answers

the sum of those two would be 75.

it would be 75 ur welcome

I need help finding 5 points. the vertex, 2 to the left of the vertex, and 2 points to the right of the vertex.

Answers

Let's convert the given equation first into a vertex form.

[tex]y=a(x-h)^2+k[/tex]

where (h, k) is the vertex.

The vertex form of the equatio that we have is:

[tex]y=-2(x-0)^2+0[/tex]

Hence, the vertex of the equation is at the origin (0, 0).

Since "a" is negative, our parabola is opening downward.

Let's identify two points to the left of the vertex. Let's say at x = -1. Replace "x" with -1 in the equation.

[tex]\begin{gathered} y=-2(-1)^2 \\ y=-2(1) \\ y=-2 \end{gathered}[/tex]

Hence, we have a point to the left of the parabola at (-1, -2).

Let's say x = -2. Replace "x" with -2 in the equation.

[tex]\begin{gathered} y=-2(-2)^2 \\ y=-2(4) \\ y=-8 \end{gathered}[/tex]

Hence, we also have another point to the left of the parabola at (-2, -8).

If our x is to the right of the vertex, say, x = 1. Replace "x" with 1 in the equation.

[tex]\begin{gathered} y=-2(1)^2 \\ y=-2(1) \\ y=-2 \end{gathered}[/tex]

We have a point to the right of the parabola at (1, -2).

If x = 2, let's replace "x" with 2 in the equation.

[tex]\begin{gathered} y=-2(2)^2 \\ y=-2(4) \\ y=-8 \end{gathered}[/tex]

Hence, we also have another point to the right of the parabola at (2, -8).

The graph of this equation is:

Find the product. Write your answer in scientific notation. (6.5 X 10^8) X (1.4 x 10^-5) =

Answers

Evaluate the product of the expression.

[tex]\begin{gathered} (6.5\times10^8)\cdot(1.4\times10^{-5})=6.5\cdot1.4\times10^{8-5} \\ =9.1\times10^3 \end{gathered}[/tex]

So answer is 9.1X10^3.

1. 9c-3c=48A) c=9B) c=3C) c=4D) C=8

Answers

[tex]9c\text{ - 3c = 48}[/tex]

To solve this equation, we need to subtract both, 9c - 3c:

[tex]9c\text{ - 3c = 6c = 48}[/tex]

Dividing by 6 at both sides of the equation

[tex]\frac{6c}{c}\text{ = }\frac{48}{6}[/tex]

Then

[tex]c\text{ = 8}[/tex]

Then the answer C = 8. (Option D)

**Determine the x-value at which the-following function touches but does not cross the x-axis:3x^3- 182 + 27x

Answers

Okay, here we have this:

We need to identify the x-value at which the-following function touches but does not cross the x-axis in the following function: 3x^3- 18^2 + 27x. So, considering that if is a zero with even multiplicity, the graph touches the x-axis and bounces off of the axis. And if it is a zero with odd multiplicity, the graph crosses the x-axis at a zero.

According with this let's

An observer in a lighthouse 350 ft above sea level observes two ships directly offshore. The angles of depression to the shops are 4 degree and 6.5 degree. How far apart are the ships?

Answers

Answer:

The two ships are 1933.32 ft apart

Explanation:

Given:

The height of the lighthouse = 350 ft

The angles of depression to the ships are 4 degree and 6.5 degree

To find:

the distance between the two ships

To determine the distance, we will use an illustration of the situation

First we will find the value of y as we need to know this value to get x

To get y, we will apply tan ratio (TOA)

[tex]\begin{gathered} tan\text{ 6.5\degree = }\frac{opposite}{adjacent} \\ opp\text{ = 350 ft} \\ adj\text{ = y} \\ tan\text{ 6.5\degree = }\frac{350}{y} \\ y(tan\text{ 6.5\degree\rparen= 350} \\ y\text{ = }\frac{350}{tan\text{ 6.5}} \\ y\text{ = 3071.9106 ft} \end{gathered}[/tex]

Next is to find x using tan ratio (TOA):

[tex]\begin{gathered} angle\text{ = 4\degree} \\ tan\text{ 4\degree= }\frac{opposite}{adjacent} \\ \\ opposite\text{ = 350 ft} \\ adjacent\text{ = y + x} \\ tan\text{ 4\degree= }\frac{350}{y\text{ + x}} \end{gathered}[/tex][tex]\begin{gathered} tan\text{ 4 = }\frac{350}{3071.9106+x} \\ \frac{350}{tan\text{ 4}}\text{ = 3071.9106 + x} \\ 5005.2332\text{ = 3071.9106 + x} \\ x\text{ = 1933.3226} \\ \\ The\text{ ships are 1933.32 ft apart \lparen nearest hundredth\rparen} \end{gathered}[/tex]

Four research teamed each used a different method to collect data on how fast a new strain of maize sprouts. Assume that they all agree on the sample size and the sample mean ( in hours). Use the (confidence level; confidence interval) pairs below to select the team that has the smallest sample standard deviation

Answers

We need to identify the team that has the smallest sample standard deviation.

In order to do so, we need to find the stand deviation of each experiment based on the confidence level and confidence interval of each of them.

A. A confidence level of 99.7% corresponds to a confidence interval of 3 standard deviations above and 3 standard deviations below the mean.

Thus, for the confidence interval 42 to 48, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} 3\sigma=48-45=3 \\ \\ \sigma=\frac{3}{3} \\ \\ \sigma=1 \end{gathered}[/tex]

B. A confidence level of 95% corresponds to a confident interval of 2 standard deviations above and 2 standard deviations below the mean.

Thus, for the confidence interval 43 to 47, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} 2\sigma=47-45=2 \\ \\ \sigma=\frac{2}{2} \\ \\ \sigma=1 \end{gathered}[/tex]

C. A confidence level of 68% corresponds to a confident interval of 1 standard deviation above and 1 standard deviation below the mean.

Thus, for the confidence interval 44 to 46, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} \sigma=46-45 \\ \\ \sigma=1 \end{gathered}[/tex]

D. Again, we have a confidence level of 95%, which corresponds to 2 standard deviations.

Thus, for the confidence interval 44 to 46, the mean is 45. And the standard deviation is given by:

[tex]\begin{gathered} 2\sigma=46-45=1 \\ \\ \sigma=\frac{1}{2} \\ \\ \sigma=0.5 \end{gathered}[/tex]

Therefore, the team that has the smallest sample standard deviation is:

Answer

Slope of Linear EquationsWhich description best compares the graph given by the following equations:23-5y = 82Y == -6Choose one. 4 pointsO parallelO perpendicularintersecting but not perpendicularO coinciding

Answers

Answer:

The two lines are parallel.

Explanation:

We have the equations:

[tex]\begin{gathered} 2x-5y=8 \\ y=\frac{2}{5}x-6 \end{gathered}[/tex]

Let's solve the first one for y, so we get the same formatting on both euqations:

[tex]\begin{gathered} 2x-5y=8 \\ 5y=2x-8 \\ y=\frac{2}{5}x-\frac{8}{5} \end{gathered}[/tex]

SInce the two lines have the same slope, 2/5, the two lines are parallel.

0.2x + 0.21x - 0.04 = 8.16Solve for "x".

Answers

Given the folllowing equation:

[tex]0.2x+0.21x-0.04=8.16​[/tex]

You need to solve for "x" in order to find its value. To do this, you can follow the steps shown below:

1. You can apply the Addition property of equality by adding 0.04 to both sides of the equation:

[tex]\begin{gathered} 0.2x+0.21x-0.04+(0.04)=8.16​+(0.04) \\ 0.2x+0.21x=8.2 \end{gathered}[/tex]

2. Now you need to add the like terms on the left side of the equation:

[tex]0.41x=8.2[/tex]

3. Finally, you can apply the Division property of equality by dividing both sides of the equation by 0.41:

[tex]\begin{gathered} \frac{0.41x}{0.41}=\frac{8.2}{0.41} \\ \\ x=20 \end{gathered}[/tex]

The answer is:

[tex]x=20[/tex]

I don't understand please explain in simple words the transformation that is happeningwhat is the function notation

Answers

We have the next functions

[tex]f(x)=5^x^{}[/tex][tex]g(x)=2(5)^x+1[/tex]

Function notation

[tex]g(x)=2(f(x))+1[/tex]

Describe the transformation in words

we have 2 transformations, the 2 that multiplies the function f(x) means that we will have an expansion in the y axis by 2, the one means that we will have a shift up by one unit

a circular cylinder with a diameter of 12 cm and a height of 27 cm is filled with water. An aquarium is in the shaoe of a rectangular prism with the dimensions 35 cm 40cm by 42cm. what isvthe maximum number of full cylinders that can be poured into the fish tank without overflowing it?

Answers

Given data:

The diameter of cylinder is d=12 cm.

The height of the cylinder is h= 27 cm.

The dimension of the aquarium is V=(35 cm)(40 cm)( 42 cm).

The volume of the cylinder is,

[tex]\begin{gathered} V^{\prime}=\frac{\pi}{4}(d)^2h \\ =\frac{\pi}{4}(12cm)^2(27\text{ cm)} \\ =3053.628cm^3 \end{gathered}[/tex]

The volume of the aquarium is,

[tex]\begin{gathered} V=(35\text{ cm)(40 cm)(42 cm)} \\ =58800cm^3 \end{gathered}[/tex]

The number of cylinders that can be pour into aquarium is,

[tex]\begin{gathered} n=\frac{V}{V^{\prime}} \\ =\frac{58800}{3053.628} \\ =19.25 \end{gathered}[/tex]

Thus, the number of cylinders that can be pour into aquarium is 19.25.

The length of a rectangle is 5 ft less than double the width, and the area of the rectangle is 33f * t ^ 2 Find the dimensions of the rectangle. length___with____

Answers

The length of rectangle is : 6ft .

Width of rectangle is : 5.5ft .

What is an area of rectangle?

The area of rectangle is :

A = l × w

Here given,

length is 5ft less than twice the width,

So the equation can be represented in terms of length as,

l = 2w - 5

Given area = 33sqft

By substituting value of length,

33 = (2w - 5) × w

By applying distributive property,

33 = 2w² - 5w

= 2w² - 5w - 33

By factoring the equation:

(2w - 11)(w + 3) = 0

To find value of zeros,

2w - 11 = 0

2w = 11

w = 5.5

Similarly,

w + 3 = 0

w = -3

Since width cannot be negative , the width will be:

the width = 5.5 ft.

Also find length by substituting value of width in equation,

33 = 5.5l

33/5.5 = l

l = 6 ft.

∴ The  length = 6ft, and width = 5.5ft.

To learn more about area of rectangle refer to :

https://brainly.com/question/1171312

#SPJ1

Please fill in the blanks so that the following statement is trues

Answers

x-intercepts

1) In a quadratic equation, the Real solutions correspond to the points in which the parabola intercepts the x-axis.

2) Note that when the roots are not real solutions, then we'd have complex numbers and the parabola wouldn't intercept the x-axis.

3) Therefore, the answer is: x-intercepts

Other Questions
Line m passes through points (9, 9) and (6, 1). Line n passes through points (10, 7) and (1, 15). Are line m and line n parallel or perpendicular? 3. a sociologist wishes to estimate the percentage of u.s. citizens living in poverty. what sample size should be obtained if she wishes the estimate to be within 2% points (the error) with 99% confidence if she uses the year 2000 estimate of 11.8% poverty obtained from the census? Write the expression as a monomial in standard form. -0.01a^4*(-10a^5)^3 What does the y-intercept mean? What does the x-intercept mean? Explain what each intercept means and then Identify the x-intercept and y-intercept from each equation.A. y=7/2x -2B. x=-3 describe a situation in which migration and natural selection could work in opposition to each other. think about how the net change in allele frequencies is zero Does the least-squares fit line always go through at least one point in the plot? plssss help!!!! Right triangle RST is drawn below. A square is drawn on to each leg of the triangle, and a square is drawn onto the hypotenuse of the triangle. The area of square A is 25 cm . The area of square B is 144 cm. Determine the length in centimeters of x, the hypotenuse of the right triangle.O 13 cmO 17 cm O 169 cmO 119 cm line spectra from all regions of the electromagnetic spectrum, including the paschen series of infrared lines for hydrogen, are used by astronomers to identify elements present in the atmospheres of stars. calculate the wavelength of the photon emitted whe find the size of each interior angle of a regular hexagon Which part of the rock cycle can only occur because of thermal convection?1. Magma changing to igneous rock 2. Igneous rock changing to metamorphic rock3. Metamorphic rock changing to sedimentary rock4. Sediment changing to sedimentary rock The initial earthquake had a Richter scale reading of 3.24. The aftershock was 7470 times as strong as the initial earthquake. What was the Richter scale reading of the aftershock?(a) 7.11(b) 6.48(c) 4.32(d) 3.87 Proteins function best under specific pH and temperature. This is called their optimal. Which of the following are NOT true statements? Select all that apply.ResponsesProteins all have the same function because they have the same structure. Proteins have different function but are all the same structure. Proteins have different structures that lead to different functions.Proteins can change their structures to fit the desired functions. find the probability of tossing 5 tails, them 5 heads. on the first 10 tosses of a fair coin when a graph is a smooth curve it means that there is not a definite law connecting the two quantities which are plotted true or false Describe the correlation in the scatter plot below.----------------The scatter plot shows (positive linear, positive linear with one outlier, negative linear, negative linear with one outlier, nonlinear, or no) correlation because as the plotted values of x increase, the values of y generally (decrease, increase, show no pattern or follow a nonlinear pattern). Read this outline for an essay.1. Should college students work during the school year?1. Benefits of working1. You can earn money to pay for tuition and other expenses.2. Working teaches you time management skills. 3. A job can positively affect your future employment.4. A job provides you with valuable experience.2. Drawbacks of working1. Balancing school, work, family, and friends can be difficult.2. Many jobs open to high school students are not very exciting or challenging.3. Research has suggested that working more than fifteen hours a week during the school year can negativelyaffect your grades.What is the author's intended purpose for this essay?O To persuade students to find a job they like.O To entertain students with stories about the workplace.To provide statistics about teen employment.O To inform teens about both sides of the student work issue. A hydroelectric plant takes energy from water and turns it into electrical energy.What are the transformations of energy in the water molecules that are used in theprocess of generating electricity this way?The water particles initially have kinetic energy due to their motion. This kineticenergy is transformed into potential energy due to the position of the water andthen this energy is used to produce electricity.The water particles initially have potential due to their position. This potentialenergy is transformed into thermal energy and then this energy is used toproduce electricity.The water particles initially have chemical energy due to the bonds in water. Thischemical energy is transformed into thermal and then the thermal energy is usedto produce electricity.The water particles initially have potential due to their position. This potentialenergy is transformed into kinetic energy due to the motion of energy and thenthe kinetic energy is used to produce electricity. I understand the answer to simplifying it, i want a mathematical expression of the method of simplifying to know how to show my work An instructor has a jar of sulfur that contains 16 grams. The students are asked how many sulfur atoms are in the jar. Four students give the following responses:Arlo says, "There are 1/2 times Avogadro's number of sulfur atoms in the jar."Bob says, "There are sixteen sulfur atoms in the jar."Celine says, "There are two times Avogadro's number of atoms in the jar."Delbert says, "There are sixteen times Avogardro's number of atoms in the jar."With which, if any, of these three students do you agree:Arlo,Bob,Celine,Delbert, orI don't think any of these students are correct Explain how Pasteurs experiment was set up and what we determined from it.