I need to figure out which one is a function and why

I Need To Figure Out Which One Is A Function And Why

Answers

Answer 1

The function is represented by the table A.

Given data ,

a)

Let the function be represented as A

Now , the value of A is

The input values are represented by x

The output values are represented by y

where x = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 }

And , y = { 8 , 10 , 32 , 6 , 10 , 27 , 156 , 4 }

Now , A function is a relation from a set of inputs to a set of possible outputs where each input is related to exactly one output.

So, in the table A , each input has a corresponding output and only one output.

Hence , the function is solved.

To learn more about function rule click :

https://brainly.com/question/3760195

#SPJ1


Related Questions

You may need to use the appropriate appendix table or technology to answer this question. A binomial probability distribution has p-0.20 and n 100. (a) What are the mean and standard deviation? mean 20 standard deviation 4 (b) Is this situation one in which binomial probabilities can be approximated by the normal probability distribution? Explain, O Yes, because np z 5 and n(1 -p) 2 5. O No, because np 5 and n(1 -P) 5 O Yes, because np 5 and n(1 -P)5. O No, because np < 5 and n(1 - p)5 O Yes, because n 2 30. (e) What is the probability of exactly 23 successes? Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.) 0.0755 (a) what is the probability of 16 to 24 successes? Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.) 0.6822 (e) What is the probability of 13 or fewer successes? Use the normal approximation of the binomial distribution to answer this question. (Round your answer to four decimal places.) 0.0308

Answers

The mean and standard deviation are 20 and 4, respectively and the probability of 13 or fewer successes is 0.0516.

Given that a binomial probability distribution has p-0.20 and n 100.

(a) The mean and standard deviation can be calculated as follows:

Mean = μ = np = 100 × 0.2 = 20

Standard deviation = σ = √(npq) = √[100 × 0.2 × 0.8] ≈ 4.00

Therefore, the mean and standard deviation are 20 and 4, respectively.

(b) To determine whether binomial probabilities can be approximated by the normal probability distribution, we can use the rule np > 5 and nq > 5.If we put p = 0.2 and q = 0.8, then:

np = 100 × 0.2 = 20,

and nq = 100 × 0.8 = 80.

So, np and nq are both greater than 5, thus we can say that this situation is one in which binomial probabilities can be approximated by the normal probability distribution.

Now, we can use the normal approximation of the binomial distribution to answer the following:

(e) To find the probability of exactly 23 successes, we can use the normal approximation of the binomial distribution as follows:

P(X = 23) = P(22.5 < X < 23.5)≈ P[(22.5 – 20)/4 < (X – 20)/4 < (23.5 – 20)/4]≈ P[0.625 < z < 1.125], where z = (X – μ)/σ = (23 – 20)/4 = 0.75

Using the standard normal table, P(0.625 < z < 1.125) = P(z < 1.125) – P(z < 0.625) = 0.8708 – 0.7953 = 0.0755

Therefore, the probability of exactly 23 successes is 0.0755.

(a) To find the probability of 16 to 24 successes, we can use the normal approximation of the binomial distribution as follows:

P(16 ≤ X ≤ 24) = P(15.5 < X < 24.5)≈ P[(15.5 – 20)/4 < (X – 20)/4 < (24.5 – 20)/4]≈ P[-1.125 < z < 1.125], where z = (X – μ)/σ = (16 – 20)/4 = –1 and z = (X – μ)/σ = (24 – 20)/4 = 1

Using the standard normal table, P(-1.125 < z < 1.125) = P(z < 1.125) – P(z < –1.125) = 0.8708 – 0.1292 = 0.6822

Therefore, the probability of 16 to 24 successes is 0.6822.

(e) To find the probability of 13 or fewer successes, we can use the normal approximation of the binomial distribution as follows:

P(X ≤ 13) = P(X < 13.5)≈ P[(X – μ)/σ < (13.5 – 20)/4]≈ P[z < –1.625], where z = (X – μ)/σ = (13 – 20)/4 = –1.75

Using the standard normal table, P(z < –1.625) = 0.0516

Therefore, the probability of 13 or fewer successes is 0.0516.

Learn more about Probability: https://brainly.com/question/31828911

#SPJ11

Compute The Area Of The Curve Given In Polar Coordinates R(θ) = Sin(θ), For Between 0 And π

Answers

The total area of the regions between the curves is 2 square units

Calculating the total area of the regions between the curves

From the question, we have the following parameters that can be used in our computation:

R(θ) = sin(θ)

The interval is given as

0 ≤ θ ≤ π

Using definite integral, the area of the regions between the curves is

Area = ∫R(θ) dθ

So, we have

Area = ∫sin(θ) dθ

Integrate

Area =  -cos(θ)

Recall that 0 ≤ θ ≤ π

So, we have

Area = -cos(π) + cos(0)

Evaluate

Area =  3.33

Hence, the total area of the regions between the curves is 2 square units

Read more about area at

brainly.com/question/15122151

#SPJ4

Calculate Dz In Terms Of U And Y Using The Dv 2 X² + Y² Chain Nule, For I = Where X = E-Usinzi X+Y And Y=E E-4 COS2V

Answers

Using the given equations, X = e^(-U*sin(Z)) + Y and Y = e^(e^(-4*cos(2V))), and applying the chain rule, we can express dZ in terms of dU and dY as dZ = (-U*cos(Z)*e^(-U*sin(Z))) * dU + (-8*sin(2V)*e^(-4*cos(2V))*e^(e^(-4*cos(2V)))) * dY.



To calculate dZ in terms of dU and dY, we first differentiate the equations with respect to their respective variables. The derivative of X with respect to Z, denoted as dX/dZ, is obtained by applying the chain rule. Similarly, the derivative of Y with respect to V, denoted as dY/dV, is also computed.

Substituting these derivatives into the chain rule formula, we obtain the expression for dZ. By multiplying dU with the derivative of X with respect to Z and dY with the derivative of Y with respect to V, we can compute the respective contributions to the change in Z.Hence, the final expression for dZ in terms of dU and dY is given by dZ = (-U*cos(Z)*e^(-U*sin(Z))) * dU + (-8*sin(2V)*e^(-4*cos(2V))*e^(e^(-4*cos(2V)))) * dY. This expression allows us to determine how changes in U and Y affect the change in Z.

To learn more about derivatives click here

brainly.com/question/29020856

#SPJ11

For a function y = (x² + 2) (x³ + x² + 1)², state the steps to find the derivative.

Answers

Using product rule and chain rule, the derivative of the function y = (x² + 2)(x³ + x² + 1)² is given by:

y' = 2x(x³ + x² + 1)² + 2(x² + 2)(x³ + x² + 1)(3x² + 2x)

What is the derivative of the function?

To find the derivative of the function y = (x² + 2)(x³ + x² + 1)², we can use the product rule and the chain rule.

Let's denote the first factor (x² + 2) as u and the second factor (x³ + x² + 1)² as v.

Using the product rule (u * v)', the derivative of the function is given by:

y' = u' * v + u * v'

First, let's find the derivative of u (x² + 2):

u' = d/dx (x² + 2)

  = 2x

Next, let's find the derivative of v (x³ + x² + 1)² using the chain rule:

v' = d/dx (x³ + x² + 1)²

  = 2(x³ + x² + 1) * (d/dx (x³ + x² + 1))

  = 2(x³ + x² + 1) * (3x² + 2x)

Now we can substitute the values of u, u', v, and v' into the derivative formula:

y' = (2x) * (x³ + x² + 1)² + (x² + 2) * [2(x³ + x² + 1) * (3x² + 2x)]

Simplifying further:

y' = 2x(x³ + x² + 1)² + (x² + 2) * 2(x³ + x² + 1) * (3x² + 2x)

y' = 2x(x³ + x² + 1)² + 2(x² + 2)(x³ + x² + 1)(3x² + 2x)

Learn more on product rule here;

https://brainly.com/question/847241

#SPJ4

2. Source: Levin & Fox (2003), pp. 249, no. 19 (data modified) A personnel consultant was hired to study the influence of sick-pay benefits on absenteeism. She randomly selected samples of hourly employees who do not get paid when out sick and salaried employees who receive sick pay. Using the following data on the number of days absent during a one-year period, test the null hypothesis that hourly and salaried employees do not differ with respect to absenteeism. Salary Scheme Days Absent Subject 1 Hourly 1 2 Hourly 1 3 Hourly 2 2 4 Hourly 3 - 5 Hourly 3 6 Monthly 2 7 Monthly 2 8 Monthly 4 9 Monthly 2 10 Monthly 2 11 Monthly 5 12 Monthly 6 Answer the following questions regarding the problem stated above. a. What t-test design should be used to compute for the difference? b. What is the Independent variable? At what level of measurement? c. What is the Dependent variable? At what level of measurement? d. Is the computed value greater or lesser than the tabular value? Report the TV and CV. e. What is the NULL hypothesis? f. What is the ALTERNATIVE hypothesis? 8. Is there a significant difference? h. Will the null hypothesis be rejected? WHY? i. If you are the personnel consultant hired, what will you suggest to the company with respect to absenteeism?

Answers

Use independent samples t-test. Independent variable: Salary scheme. Dependent variable: Number of days absent.

To compute the difference in absenteeism between hourly and salaried employees, the appropriate statistical test is the independent samples t-test. The independent variable in this study is the salary scheme, categorized as either hourly or monthly.

The level of measurement for the independent variable is categorical/nominal. The dependent variable is the number of days absent during a one-year period, measured on an interval scale. The computed t-value and tabular value cannot be determined without conducting the t-test.

The null hypothesis states that there is no difference in absenteeism between hourly and salaried employees, while the alternative hypothesis suggests that a difference exists. The significance of the difference and whether the null hypothesis will be rejected depends on the results of the t-test and the chosen critical value or significance level.

As a personnel consultant, the suggestion to the company regarding absenteeism would depend on the analysis results, considering factors such as the magnitude of the difference and the practical implications for the organization.

To learn more about “ hypothesis ” refer to the https://brainly.com/question/25263462

#SPJ11

ind all x-intercepts and y-intercepts of the graph of the function. f(x)=-3x³ +24x² - 45x If there is more than one answer, separate them with commas.

Answers

The x-intercepts of the graph of the function f(x) = -3x³ + 24x² - 45x are 0, 3, and 5. These are the values of x for which the function intersects or crosses the x-axis. To find the x-intercepts, we set the function equal to zero and solve for x. In this case, we have -3x³ + 24x² - 45x = 0. By factoring out an x from each term, we get x(-3x² + 24x - 45) = 0. The equation is satisfied when either x = 0 or -3x² + 24x - 45 = 0. Solving the quadratic equation, we find that x = 3 and x = 5 are the additional x-intercepts.

The y-intercept of a function is the value of the function when x = 0. In this case, when we substitute x = 0 into the function f(x) = -3x³ + 24x² - 45x, we get f(0) = 0. Therefore, the y-intercept is 0.

To know more about intercepts, click here: brainly.com/question/14180189

#SPJ11

f(x+h)-f(x), for h*0. 3. (10pt) Let f(x)=8x²-5x. Compute and simplify 4. (10pt) For the polynomial f(x)=x' +9x² +18x-10, find all roots algebraically, in simplest radical form.

Answers

The given functions and expressions are: f(x) = 8x² - 5xf(x + h) = 8(x + h)² - 5(x + h). The roots of the polynomial function are: x = -2, (-7 + √69) / 2, (-7 - √69) / 2.

For the polynomial function f(x) = x³ + 9x² + 18x - 10, we need to find all its roots algebraically, in the simplest radical form. We start by finding its possible rational roots using the Rational Root Theorem. The factors of the constant term (-10) are ±1, ±2, ±5, ±10, and the factors of the leading coefficient (1) are ±1.

Hence, its possible rational roots are ±1, ±2, ±5, ±10. Next, we perform synthetic division with each of the possible rational roots until we find one that results in a zero remainder. We obtain the following result with

x = -2:x³ + 9x² + 18x - 10

= (x + 2)(x² + 7x - 5)

We continue by finding the roots of the quadratic factor x² + 7x - 5 using the quadratic formula: x = [tex](-7 ± √(7² + 4(1)(5))) / 2x = (-7 ± √69) / 2[/tex]

Hence, the roots of the polynomial function are: [tex]x = -2, (-7 + √69) / 2, (-7 - √69) / 2.[/tex]

To know more about polynomial function visit :

https://brainly.com/question/11298461

#SPJ11

Let R be a relation on the set of ordered pairs of positive integers, (a,b) E Z* x Z. The relation R is: (a,b) R (c,d) - ad = bc. (another way to look at right side is 4) Determine whether or not this is an Equivalence Relation. If it is, ther determine/describe the equivalence classes. a b

Answers

Given R be a relation on the set of ordered pairs of positive integers, (a,b) E Z* x Z. The relation R is (a,b) R (c,d) ⇔ ad = bc.

Determine whether or not this is an Equivalence Relation. If it is, then determine/describe the equivalence classes.Step-by-step solution:

To prove that R is an equivalence relation, we need to prove that it satisfies the following three conditions:

Reflexive: (a, b) R (a, b) for all (a, b) ∈ Z* x Z.

Symmetric: (a, b) R (c, d) implies that (c, d) R (a, b) for all (a, b), (c, d) ∈ Z* x Z.Transitive: If (a, b) R (c, d) and (c, d) R (e, f), then (a, b) R (e, f) for all (a, b), (c, d), (e, f) ∈ Z* x Z.1.

Reflexive: (a, b) R (a, b) ⇔ ab = ba, which is always true.

2. Symmetric: (a, b) R (c, d) ⇔ ad = bc. We have to show that (c, d) R (a, b).

This is true because ad = bc implies cb = da. Hence, (c, d) R (a, b).3. Transitive: Suppose (a, b) R (c, d) and (c, d) R (e, f). Then ad = bc and cf = de.

Multiplying these two equations, we get adcf = bcde. Since ad = bc, we can substitute ad for bc in this equation to get adcf = adde or cf = de. Thus, (a, b) R (e, f).Therefore, R is an equivalence relation.

The equivalence class of (a, b) is {[c, d] : ad = bc}.

To know more about ordered pairs, visit:

https://brainly.com/question/28874341

#SPJ11

The equivalence classes are as follows:For all positive integers a and b, [a, b] represents all pairs (c, d) such that ad = bc.

Let R be a relation on the set of ordered pairs of positive integers, (a,b) E Z* x Z.

The relation R is: (a,b) R (c,d) - ad = bc. (another way to look at right side is 4)

Determine whether or not this is an Equivalence Relation and find the equivalence classes.

Definition of relation:A relation is a set of ordered pairs.

The set of ordered pairs, which are related, is called the relation.

R is an equivalence relation if it is reflexive, symmetric, and transitive.

The relation is reflexive, symmetric and transitive and hence it is an equivalence relation:

Reflexive property: (a, b) R (a, b) as ab = ba

Symmetric property: If (a, b) R (c, d), then (c, d) R (a, b) as ab = cd is equivalent to cd = ab

Transitive property: If (a, b) R (c, d) and (c, d) R (e, f), then (a, b) R (e, f) as ab = cd and cd = ef implies ab = ef

Therefore, the relation R is an equivalence relation.

Equivalence Classes:Let's figure out the equivalence classes by using the definition.

The equivalence class [a,b] = {(c,d) ∈ Z* × Z | ad = bc}

We need to find all the ordered pairs (c, d) such that they are equivalent to (a, b) under the relation R.

It implies that ad = bc.Then [a,b] = {(c,d) E Z* x Z | ad = bc}

Therefore, the equivalence classes are as follows:For all positive integers a and b, [a, b] represents all pairs (c, d) such that ad = bc.

To know more about Equivalence Relation and classes visit:

https://brainly.com/question/30956755

#SPJ11

14.2 For each of the scenarios that follow, report the p-value for the chi-square test. If you use the x-cdf( function on the TI, you can report the exact p-value. If you use Table V, you can report bounds for the p-value. (a) The observed X2 statistic value is 3.2 and the null distribution is the chi-square distribu- tion with one degree of freedom. (b) The observed X2 statistic value is 1.7 and the null distribution is the chi-square distribu- tion with two degrees of freedom. (c) The observed X2 statistic value is 16.5 and the null distribution is the chi-square distri- bution with five degrees of freedom.

Answers

a) The p-value for a chi-square test with an observed X2 statistic value of 3.2 and the null distribution is the chi-square distribution with one degree of freedom is 0.0725.

b) The p-value for a chi-square test with an observed X2 statistic value of 1.7 and the null distribution is the chi-square distribution with two degrees of freedom is 0.4321.

c) The p-value for a chi-square test with an observed X2 statistic value of 16.5 and the null distribution is the chi-square distribution with five degrees of freedom is 0.0017.

Find the volume of the solid generated when the region enclosed by the curve y = 2 + sinx, and the z axis over the interval 0≤x≤ 2n is revolved about the x-axis. Make certain that you sketch the region. Use the disk method. Credit will not be given for any other method. Give an exact answer. Decimals are not acceptable.

Answers

The volume of the solid generated by revolving the region enclosed by the curve y = 2 + sinx and the z-axis over the interval 0 ≤ x ≤ 2π around the x-axis using the disk method is 16π cubic units.

To find the volume using the disk method, we divide the region into infinitesimally thin disks perpendicular to the x-axis and sum up their volumes. The curve y = 2 + sinx intersects the x-axis at x = 0 and x = 2π, enclosing a region. We need to find the volume of this region when revolved around the x-axis.

Since we are revolving the region about the x-axis, the radius of each disk is given by the y-coordinate of the curve, which is (2 + sinx). The area of each disk is πr², where r is the radius. Thus, the volume of each disk is πr²* dx.

Integrating this volume expression over the interval 0 ≤ x ≤ 2π will give us the total volume. Using the disk method, we can set up the integral as follows:

V = ∫(0 to 2π) π(2 + sinx)² dx.

Evaluating this integral will yield the volume of the solid. Simplifying the integral expression and performing the calculations, we find:

V = π∫(0 to 2π) (4 + 4sinx + sin²x) dx

 = π∫(0 to 2π) (4 + 4sinx + 1/2 - 1/2cos2x) dx

 = π∫(0 to 2π) (9/2 + 4sinx - 1/2cos2x) dx

 = π[9/2x - 4cosx - 1/4sin2x] (0 to 2π)

 = π[9/2(2π) - 4cos(2π) - 1/4sin(4π) - (0 - 0)]

 = π[9π - 4 - 0 - 0]

 = 9π² - 4π.

Hence, the exact volume of the solid generated by revolving the given region around the x-axis using the disk method is 9π² - 4π cubic units, or approximately 16π cubic units.

Learn more about volume here: https://brainly.com/question/28058531

#SPJ11

Use the given tormation to find the number of degrees of troom, the once values and you and the confidence interval ontmate of His manorable to astume that a simple random tampis has been selected from a population with a normal distribution.
Nicotene in menthol cigaretes 95% confidence, n=21 s=0,21mg

Answers

The calculated number of degrees of freedom is 20

How to calculate the number of degrees of freedom

From the question, we have the following parameters that can be used in our computation:

95% confidence, n = 21 s = 0.21 mg

The number of degrees of freedom is calculated as

df = n - 1

substitute the known values in the above equation, so, we have the following representation

df = 21 - 1

Evaluate

df = 20

Hence, the number of degrees of freedom is 20

Read more about degrees of freedom at

https://brainly.com/question/14675627

#SPJ4

Solve the following inequality problem and choose the interval notation of the solution: -8 < -5x + 2 <-3 2 a. (2,1] b. (-0,0) c. (0,+0) d. [0,+0) e. (1,2) f. [2,1) g. (-00,0] h. (1,2]

Answers

The interval notation of the solution: -8 < -5x + 2 <-3 2 is  (1, 2).Therefore, option e. (1,2) is the correct answer. Given inequality is -8 < -5x + 2 < -3. We need to find the solution of the inequality and choose the interval notation of the solution.

To solve the given inequality, we will solve both inequalities separately.

-8 < -5x + 2

 ⇒  -8-2 < -5x  

⇒  -10 < -5x  

⇒  -10/-5 > x  

⇒  2 > x i.e x < 2.  

So, the first part of the solution is -infinity

< x < 2.-5x + 2 < -3

⇒  -5x + 2 + 3 < 0  

⇒  -5x + 5 < 0  

⇒  -5(x - 1) < 0

⇒  x - 1 > 0  

⇒  x > 1.

So, the second part of the solution is x > 1.  

Now, we will combine the two solutions. -infinity < x < 2 and x > 1.

If we combine these solutions, then the solution will be 1 < x < 2.

As the solution is including 1 and 2. The solution will be (1, 2).

Therefore, option e. (1,2) is correct.

To know more about interval notation, refer

https://brainly.com/question/30766222

#SPJ11

When the What-if analysis uses the average values of variables, then it is based on: O The base-case scenario and best-case scenario. The base-case scenario and worse-case scenario. The worst-case scenario and best-case scenario. The base-case scenario only.

Answers

When the what-if analysis uses the average values of variables, then it is based on the base-case scenario only.

What-if analysis refers to the process of evaluating how different outcomes could have been influenced by different decisions in hindsight. In a model designed to determine the optimal quantity of inventory to order, what-if analysis can be done to evaluate how the total cost of inventory changes as different decisions are made concerning inventory levels.

This analysis method usually requires the creation of a hypothetical model and testing it by changing specific variables.

The results of the analysis are then observed to determine how the changes affected the overall outcome. The base-case scenario represents the likely outcome of a business decision in the absence of change, whereas the worst-case scenario represents the potential for the most disastrous outcome

Learn more about inventory models at:

https://brainly.com/question/32181580

#SPJ11








1. Determine the gradient for the following functions (i) f(x,y) = ? y sin (ii) (, y, z) = (x2 + y2 + 22)-1/2

Answers

The gradient of the function f(x, y) = √(x² + y² is (∂f/∂x, ∂f/∂y) = (x / √(x² + y²), y / √(x² + y²)).

To find the gradient of the function f(x, y) = √(x² + y²), we need to calculate the partial derivatives with respect to x and y. Taking the partial derivative with respect to x, we use the chain rule to obtain (∂f/∂x) = x / √(x² + y²). Similarly, taking the partial derivative with respect to y, we have (∂f/∂y) = y / √(x² + y²).

The gradient represents the rate of change of the function in each direction. In this case, it gives us the direction and magnitude of the steepest ascent of the function at each point. The magnitude of the gradient vector (∂f/∂x, ∂f/∂y) is the rate of change of the function in that direction.

Therefore, the gradient of f(x, y) = √(x² + y²) is (∂f/∂x, ∂f/∂y) = (x / √(x² + y²), y / √(x² + y²)), representing the direction and magnitude of the steepest ascent of the function.

To know more about gradient, visit:

https://brainly.com/question/6158243

#SPJ11

Choose the right answer and write it in the following table: (1) Which statement is false: a. 12 is odd es 7 is even. b. (-1) = 1 A 1+(-1)=3. C. 220 or 2<0. d. 1>2= cos (1) + sin (1) = 1. (2) Let A=(0,0. (1), (0.(1))) Then one of the following statements is false: (1) CA b. (0.{1}}

Answers

For statement (1), the false statement is c. 220 or 2<0.

For statement (2), the false statement is b. (0.{1}}.

(1) In statement (1), we need to identify the false statement. Let's analyze each option:

a. 12 is odd: This is false since 12 is an even number.

b. (-1) = 1 + (-1) = 3: This is false because (-1) + 1 = 0, not 3.

c. 220 or 2<0: This is true because 220 is a positive number and 2 is greater than 0.

d. 1 > 2 = cos(1) + sin(1) = 1: This is true because the equation is not true. The cosine and sine of 1 do not sum up to 1.

Therefore, the false statement in (1) is c. 220 or 2<0.

(2) In statement (2), we need to identify the false statement. Let's analyze the options:

a. CA: This is a valid statement.

b. (0.{1}}: This is an invalid statement because the closing curly brace is missing.

Therefore, the false statement in (2) is b. (0.{1}}.

We can fill in the table as follows:

| Statement | False Statement |

|-----------------|-------------------------|

|      (1)           |               c            |

|      (2)          |               b            |

To learn more about cosine and sine click here: brainly.com/question/29279623

#SPJ11

TRUE/FALSE. When using the chi-square test of independence, the larger the value of the chi-square test statistic, the more likely we are to reject the null hypothesis.

Answers

The given statement is true as the larger the value of the chi-square test statistic, the more likely we are to reject the null hypothesis.

Is it more likely to reject the null hypothesis when the chi-square test statistic has a larger value?

When using the chi-square test of independence, the chi-square test statistic measures the discrepancy between the observed and expected frequencies in a contingency table. The null hypothesis assumes that there is no association between the categorical variables being studied. The chi-square test statistic follows a chi-square distribution, and its magnitude is indicative of the strength of the evidence against the null hypothesis.

A larger value of the chi-square test statistic indicates a greater discrepancy between the observed and expected frequencies, suggesting a higher degree of association or dependence between the variables. As a result, it becomes more likely to reject the null hypothesis and conclude that there is a significant relationship between the variables.

To make a decision, we compare the obtained chi-square test statistic to a critical value from the chi-square distribution with a specific degrees of freedom and desired significance level. If the obtained value exceeds the critical value, we reject the null hypothesis. Otherwise, if the obtained value is smaller, we fail to reject the null hypothesis.

Learn more about chi-square test

brainly.com/question/32120940

#SPJ11

A piece of wire 28 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (Round your answers to two decimal places.)
(a) How much wire (in meters) should be used for the square in order to maximize the total area?
(b) How much wire (in meters) should be used for the square in order to minimize the total area? m

Answers

To maximize the total area, 14 m of wire should be used for the square, while to minimize the total area, all 28 m of wire should be used for the square.

To find the length of wire that should be used for the square in order to maximize the total area, we need to consider the relationship between the side length of the square and its area. Let's denote the side length of the square as "s".

The perimeter of the square is given by 4s, and since we have 28 m of wire, we can write the equation: 4s + 3s = 28, where 3s represents the perimeter of the equilateral triangle.

Simplifying the equation, we find: 7s = 28, which gives us s = 4.

Therefore, the side length of the square is 4 m, and the remaining 14 m of wire is used to form an equilateral triangle.

To minimize the total area, we would use all 28 m of wire for the square. In this case, the side length of the square would be 7 m, and no wire would be left to form the equilateral triangle.

In summary, to maximize the total area, 14 m of wire should be used for the square, while to minimize the total area, all 28 m of wire should be used for the square.

To learn more about equilateral triangle  click here, brainly.com/question/17824549

#SPJ11

c. Last week April worked 44 hours. She is paid $11.20 per hour for a regular workweek of 40 hours and overtime at time and one-half regular pay. i. What were April's gross wages for last week? ii. What is the amount of the overtime premium

Answers

i) April's gross wages for last week were $515.20.

ii) The overtime premium is $67.20.

To calculate April's gross wages for last week, we need to consider the regular pay for 40 hours and the overtime pay for the additional hours worked.

i. Gross wages for last week:

Regular pay = 40 hours * $11.20 per hour = $448

Overtime pay:

April worked 44 hours in total, which means she worked 4 hours of overtime (44 - 40).

Overtime rate = 1.5 * regular pay rate = 1.5 * $11.20 = $16.80 per hour

Overtime pay = 4 hours * $16.80 per hour = $67.20

Total gross wages = Regular pay + Overtime pay = $448 + $67.20 = $515.20

Therefore, April's gross wages for last week were $515.20.

ii. Overtime premium:

The overtime premium refers to the additional amount paid for the overtime hours worked.

Overtime premium = Overtime pay - Regular pay = $67.20 - $448 = -$380.80

However, since the overtime premium is typically considered a positive value, we can interpret it as the additional amount earned for the overtime hours.

Therefore, the overtime premium is $67.20.

for such more question on gross wages

https://brainly.com/question/15530787

#SPJ8

The curve y= -²/x he end point B such that the curve from A to B has length 78. has starting point A whose x-coordinate is 3. Find the x-coordinate of

Answers

To find the x-coordinate of point B on the curve y = -2/x, we need to determine the length of the curve from point A to point B, which is given as 78.

Let's start by setting up the integral to calculate the length of the curve. The length of a curve can be calculated using the arc length formula:L = ∫[a,b] √(1 + (dy/dx)²) dx, where [a,b] represents the interval over which we want to calculate the length, and dy/dx represents the derivative of y with respect to x.

In this case, we are given that point A has an x-coordinate of 3, so our interval will be from x = 3 to x = b (the x-coordinate of point B). The equation of the curve is y = -2/x, so we can find the derivative dy/dx as follows: dy/dx = d/dx (-2/x) = 2/x². Plugging this into the arc length formula, we have: L = ∫[3,b] √(1 + (2/x²)²) dx.

To find the x-coordinate of point B, we need to solve the equation L = 78. However, integrating the above expression and solving for b analytically may be quite complex. Therefore, numerical methods such as numerical integration or approximation techniques may be required to find the x-coordinate of point B.

To learn more about  arc length formula click here:

brainly.com/question/32264791

#SPJ11

a particle moves along the x-axis with veloity given by v(t)=7-(1.01)^-t^2 at time t≥0. what is the acceleration of the particle at time t=3?

Answers

This expression will give us the acceleration of the particle at time t = 3.

To find the acceleration of the particle at time t = 3, we need to differentiate the velocity function v(t) with respect to time.

Given: v(t) = 7 - (1.01)(-t2)

Differentiating v(t) with respect to t, we get:

a(t) = d/dt [v(t)]

= d/dt [7 - (1.01)(-t2)]

= 0 - d/dt [(1.01)(-t2)]

To differentiate the term (1.01)(-t2), we can use the chain rule. Let's define u(t) = -t^2 and apply the chain rule:

a(t) = -d/dt [(1.01)u(t)] * d/dt [u(t)]

The derivative of (1.01)u(t) with respect to u is given by:

d/du [(1.01)u(t)] = ln(1.01) * (1.01)u(t)

The derivative of u(t) with respect to t is simply:

d/dt [u(t)] = -2t

Substituting these values back into the equation, we have:

a(t) = -ln(1.01) * (1.01)(-t2) * (-2t)

= 2t * ln(1.01) * (1.01)(-t2)

Now, we can find the acceleration at t = 3 by substituting t = 3 into the equation:

a(3) = 2 * 3 * ln(1.01) * (1.01)(-32)

Evaluating this expression will give us the acceleration of the particle at time t = 3.

To know more about acceleration refer here:

https://brainly.com/question/12550364#

#SPJ11

please help with this . Question 5Evaluate the following limit:3+h13limh-0hO Does not existO-1/3O-1/9< Previous
Quiz Instructions
D
Question 6
Evaluate the following limit:
lim
2-3 22
-2-6
00
09
• Previous
C
G Search or

Answers

The limit of \frac{3 + h}{1 - 3h} as h approaches 0 exists and is equal to 3. Hence, the correct option is (B) -\frac13.

Given, $\lim_{h \to 0} \frac{3 + h}{1 - 3h}

Let, $f(x) = \frac{3 + h}{1 - 3h}.

Then,

f(x) = \frac{3 + h}{1 - 3h}

= \frac{(3 + h)}{(1 - 3h)} \times \frac{(1 + 3h)}{(1 + 3h)}

= \frac{(3 + h)(1 + 3h)}{(1 - 9h^2)}

= \frac{3 + 9h + h + 3h^2}{1 - 9h^2}

= \frac{3h^2 + 10h + 3}{1 - 9h^2}

Now, putting h = 0, we get,

f(0) = \frac{3 \times 0^2 + 10 \times 0 + 3}{1 - 9 \times 0^2} = 3

Therefore, the limit of \frac{3 + h}{1 - 3h} as h approaches 0 exists and is equal to 3.

Hence, the correct option is (B) -\frac13.

Know more about limit here:

https://brainly.com/question/30679261

#SPJ11

a subjective question, hence you have to write your answer in the Text-Field giver 76261
Solve the following LP using M-method [10M]
Subject to Maximize
zx₁ + 5x₂
3x1 + 4x₂ ≤ 6
X₁ + 3x₂ ≥ 2,
X1, X2, ≥ 0.

Answers

To solve the given linear programming problem using the M-method, we begin by introducing slack variables and an artificial variable. We then convert the problem into standard form and construct the initial tableau. Next, we apply the M-method to iteratively improve the solution until an optimal solution is reached. The final tableau provides the optimal values for the decision variables.

To solve the linear programming problem using the M-method, we start by introducing slack variables to convert the inequality constraints into equations. We add variables s₁ and s₂ to the first constraint and variables a₁ and a₂ to the second constraint. This yields the following equalities:

3x₁ + 4x₂ + s₁ = 6

x₁ + 3x₂ - a₁ = 2

Next, we introduce an artificial variable, M, to the objective function to create an auxiliary problem. The objective function becomes:

z = zx₁ + 5x₂ + 0s₁ + 0s₂ + Ma₁ + Ma₂

We then convert the problem into standard form by adding surplus variables and replacing the inequality constraint with an equality. The problem is now:

Maximize z = zx₁ + 5x₂ + 0s₁ + 0s₂ + Ma₁ + Ma₂

subject to:

3x₁ + 4x₂ + s₁ = 6

x₁ + 3x₂ - a₁ + a₂ = 2

x₁, x₂, s₁, s₂, a₁, a₂ ≥ 0

Constructing the initial tableau with the given coefficients, we apply the M-method by selecting the most negative coefficient in the bottom row as the pivot element. We perform row operations to improve the solution until all coefficients in the bottom row are non-negative.

Visit here to learn more about function:

brainly.com/question/11624077

#SPJ11

Use a double-angle formula to find the exact value of the given expression 1 - 2 sin 2105 1 - 2 sin 2105° 0 (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression)

Answers

The exact value of the given expression is (2 - √6 - √2) / 2.

We are supposed to find the exact value of the given expression 1 - 2 sin 2105° by using a double angle formula.

The double angle formula for sin2θ is given by sin2θ=2sinθcosθ.

Now, let's use this double angle formula to simplify the given expression.

Solution:Here is the given expression: 1 - 2 sin 2105°

We need to find the exact value of the given expression using the double angle formula.

Let's begin by finding sin 2θ.Let's take θ = 105°.

Then, we have: sin 2θ = 2 sin θ cos θ

Now, we know that sin 2θ = 2 sin θ cos θsin 105° = sin (45° + 60°) = sin 45° cos 60° + cos 45° sin 60°

We know that: sin 45° = cos 45° = √2 / 2and sin 60° = √3 / 2, cos 60° = 1 / 2

Now, substituting the values, we get:sin 2 x 105° = √2 / 2 × 1 / 2 + √2 / 2 × √3 / 2= (√6 + √2) / 4

Therefore, sin 210° = sin 2 x 105° / 2= (√6 + √2) / 4

Now, let's substitute this value in the given expression, we get:1 - 2 sin 2105°= 1 - 2 × (√6 + √2) / 4= 1 - (√6 + √2) / 2= (2 - √6 - √2) / 2

Therefore, the exact value of the given expression is (2 - √6 - √2) / 2.

To know more about exact value, visit:

https://brainly.com/question/30754075

#SPJ11

find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (assume that n begins with 1.) −9, 6, − 4, 8 3 , − 16 9 , ...

Answers

The general term of the sequence is given by:

an = (-1)^(n+1) * (9/2^(n-1)).

Looking at the given sequence: -9, 6, -4, 8/3, -16/9, ...

We can observe that each term alternates between negative and positive, and the numerators follow a pattern of doubling each time, while the denominators follow a pattern of increasing powers of 3.

Therefore, we can deduce that the general term of the sequence can be expressed as:

an = (-1)^(n+1) * (2n)/(3^(n-1))

The (-1)^(n+1) term ensures that the terms alternate between negative and positive. When n is odd, (-1)^(n+1) evaluates to -1, and when n is even, (-1)^(n+1) evaluates to 1.

The (2n) in the numerator represents the doubling pattern observed in the sequence. Each term is twice the value of the previous term.

The (3^(n-1)) in the denominator represents the increasing powers of 3 observed in the sequence. The first term has 3^0 in the denominator, the second term has 3^1, the third term has 3^2, and so on.

By combining these patterns, we arrive at the formula for the general term of the sequence.

To know more about  general term formula, refer here:

https://brainly.com/question/30464177#

#SPJ11

7. An animal feed producer makes two types of grain: A and B. Each unit of grain A contains 2 grams of fat, 1 gram of protein, and 80 calories. Each unit of grain B contains 3 grams of fat, 3 grams of protein, and 60 calories. Suppose that the producer wants each unit of the final product to yield at least 18 grams of fat, at least 12 grams of protein, and at least 480 calories. If each unit of A costs 10 cents and each unit of B costs 12 cents, how many units of each type of grain should the producer use to minimize the cost?

Answers

The animal feed producer makes two types of grain, A and B. Each unit of grain A contains 2 grams of fat, 1 gram of protein, and 80 calories. Each unit of grain B contains 3 grams of fat, 3 grams of protein, and 60 calories.

Suppose that the producer wants each unit of the final product to yield at least 18 grams of fat, at least 12 grams of protein, and at least 480 calories.

If each unit of A costs 10 cents and each unit of B costs 12 cents, how many units of each type of grain should the producer use to minimize the cost?

First, let x be the number of units of grain A and y be the number of units of grain B, which are used to minimize the cost of the feed.

Let the function C(x, y) denote the cost of producing x units of grain A and y units of grain B.C(x,y) = 10x + 12y

where each unit of A costs 10 cents, and each unit of B costs 12 cents. The producer wants each unit of the final product to yield at least 18 grams of fat, at least 12 grams of protein, and at least 480 calories. Each unit of grain A contains 2 grams of fat, 1 gram of protein, and 80 calories; therefore, x units of grain A contain 2x grams of fat, x grams of protein, and 80x calories.

Similarly, y units of grain B contain 3y grams of fat, 3y grams of protein, and 60y calories.

Therefore, the following inequalities must be satisfied:2x + 3y >= 181x + 3y >= 12 80x + 60y >= 480 We use the graphing technique to solve this problem by finding the feasible region and using a corner point method. From the above inequalities, we plot the following equations on a graph and find the feasible region.

2x + 3y = 18,1x + 3y = 12,80x + 60y = 480

This is a plot of the feasible region. Now we need to find the corner points of the feasible region and evaluate C(x, y) at each point.(0, 4), (4.5, 1.5), (6, 0), (0, 12), and (9, 0) are the corner points of the feasible region.

We use these points to compute the minimum cost.

C(0,4) = 10(0) + 12(4)

= 48,C(4.5,1.5)

= 10(4.5) + 12(1.5)

= 57,C(6,0)

= 10(6) + 12(0)

= 60,C(0,12)

= 10(0) + 12(12)

= 144,C(9,0) = 10(9) + 12(0) = 90

Therefore, the minimum cost is 48 cents, which is obtained when 0 units of grain A and 4 units of grain B are used. The producer should use 0 units of grain A and 4 units of grain B to minimize the cost of producing the feed.

To know more about animal feed producer visit:

https://brainly.com/question/28282541

#SPJ11

For commercial flights in 2010, approximately 11% of flights are late. Assuming this success rate still holds, if you randomly select 6 flights, what is the probability that A) at least one of the flights is late? (round your answer to 4 decimal places) B) at least two of the flights are late? (round your answer to 4 decimal places)

Answers

The probability that at least two of the flights are late is approximately 0.2859.

We have,

a) To find the probability that at least one of the flights is late, we need to find the complement of the probability that none of the flights are late.

The probability of none of the flights being late is calculated as

[tex](1 - 0.11)^6[/tex] since each flight being on time has a probability of

1 - 0.11 = 0.89.

So, the probability that at least one of the flights is late is:

[tex]1 - (1 - 0.11)^6 = 0.4672[/tex]

Therefore, the probability that at least one of the flights is late is approximately 0.4672.

b) To find the probability that at least two of the flights are late, we need to find the probability of two or more flights being late.

This can be calculated by summing the probabilities of having exactly two, three, four, five, or six flights being late.

Using the binomial distribution formula, the probability of k flights being late out of n flights is given by:

[tex]P(X = k) = C(n, k) \times p^k \times (1 - p)^{n - k}[/tex]

Where C(n, k) represents the number of ways to choose k flights out of n flights, and p is the probability of a single flight being late (0.11).

So, the probability of at least two flights being late is calculated as:

P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)

Using the formula and summing the probabilities, we find:

P(X ≥ 2) ≈ 0.2859

Therefore,

The probability that at least two of the flights are late is approximately 0.2859.

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ4

Let X1, X2, ..., X16 be a random sample from the normal distribution N(90, 102). Let X be the sample mean and $2 be the sample variance. Fill in each of the fol- lowing blanks

Answers

Let X1, X2, ..., X16 be a random sample from the normal distribution N(90,102). Let X be the sample mean and s² be the sample variance.In the context of the given question, we are required to fill in the blanks. As per the definition of sample variance:s² = Σ(X - µ)² / (n - 1)where Σ(X - µ)² is the sum of squared deviations of sample data from the sample mean and n - 1 represents degrees of freedom.

We are given the values of sample mean and variance as:

X = (X1 + X2 + ... + X16) / 16

= (X1/16) + (X2/16) + ... + (X16/16)s²

= [(X1 - X)² + (X2 - X)² + ... + (X16 - X)²] / (16 - 1)From the given problem, we have: Mean, µ = 90Variance, σ² = 102We  

(a) P(88 < X < 92) = P[-2/((2/4)(1/2)) < (X - 90)/(2/4) < 2/((2/4)(1/2))] (By using the standardization of the normal variable)

P(-4 < (X - 90) / (1/2) < 4)By using the probability table, we can write:P(-4 < Z < 4) = 0.9987P(88 < X < 92) = 0.9987(b) P(91 < X < 93) = P[(91 - 90) / (1/4) < (X - 90) / (1/2) < (93 - 90) / (1/4)] (By using the standardization of the normal variable)P(4 < (X - 90) / (1/2) < 12)By using the probability table.

P(4 < Z < 12) ≈ 0P(91 < X < 93) ≈ 0(c) P(X > 92) = P[(X - 90) / (1/4) > (92 - 90) / (1/4)] (By using the standardization of the normal variable)P(X > 92) = P(Z > 8) = 1 - P(Z < 8)By using the probability table, we can write:

P(Z < 8) = 1.00P(X > 92) = 1 - 1.00 = 0(d) P(2s < X < 6s) = P[2 < (X - 90) / (s) < 6]

(By using the standardization of the normal variable)P(2s < X < 6s) = P(4 < Z < 12)By using the probability table, we can write :

P(4 < Z < 12) ≈ 0P(2s < X < 6s) ≈ 0(e) P(X < 88) = P[(X - 90) / (1/4) < (88 - 90) / (1/4)]

(By using the standardization of the normal variable)P(X < 88) = P(Z < -8)By using the probability table, we can write:

P(Z < -8) = 0.00P(X < 88) = 0

Therefore, all the blanks have been filled correctly. Thus, the solution to the given problem has been demonstrated.

To know more about random sample visit:-

https://brainly.com/question/31416768

#SPJ11

British researchers recently added genes from snapdragon flowers to tomatoes to increase the tomatoes' levels of antioxidant pigments called anthocyanins. Tomatoes with the added genes ripened to an almost eggplant purple. The modified tomatoes produce levels of anthocyanin about on a par with blackberries,blueberries, and currants, which recent research has touted as miracle fruits. Because of the high cost and infrequent availability of such berries,tomatoes could be a better source of anthocyanins. Researchers fed mice bred to be prone to cancer one of two diets. The first group was fed standard rodent chow plus 10% tomato powder.The second group was fed standard rodent chow plus 10% powder from the genetically modified tomatoes.Below are the data for the life spans for the two groups. Data are in days. GroupI GroupII n 20 20 347 days 451 days 48 days 32days longer than the group receiving the unmodified tomato powder?

Answers

The group receiving the modified tomato powder lived longer than the group receiving the unmodified tomato powder. However, more research is needed to understand the impact of consuming genetically modified foods on human health and the environment.

The researchers added genes from snapdragon flowers to tomatoes to increase the tomatoes' levels of antioxidant pigments called anthocyanins

.Tomatoes with the added genes ripened to an almost eggplant purple.

The modified tomatoes produce levels of anthocyanin about on a par with blackberries, blueberries, and currants, which recent research has touted as miracle fruits

.Researchers fed mice bred to be prone to cancer one of two diets.

The first group was fed standard rodent chow plus 10% tomato powder.The second group was fed standard rodent chow plus 10% powder from the genetically modified tomatoes.

The group receiving the modified tomato powder lived longer than the group receiving the unmodified tomato powder.

Group I

n = 20,

mean = 347,

SD = 48.

Group II

n = 20,

mean = 451,

SD = 32.

Group II is longer than Group I by (451 - 347) = 104 days. The data imply that the modified tomato powder lengthened the lifespan of the mice. However, more research is needed to understand the impact of consuming genetically modified foods on human health and the environment.

The group receiving the modified tomato powder lived longer than the group receiving the unmodified tomato powder. However, more research is needed to understand the impact of consuming genetically modified foods on human health and the environment.

To know more about genes visit:

brainly.com/question/31121266

#SPJ11

9. Find the all the values of p for which both ∑_(n=1)^[infinity] 1^n/(n^2 P) and ∑_(n=1)^[infinity] p/3
a. ½ < p<3
b. P<1/2 or p> 3
c. -1/2

d. -2

10. which of the following diverge
∑_(n=0)^[infinity]▒〖(-1)^n〗 2^n/n!
∑_(n=0)^[infinity]▒ (-1)^n 1/(√n)
∑_(n=0)^[infinity]▒〖 〗 2^n/(3n+1)

a. I and II
b. II and III
c. III only
d.I and III

Answers

We know that the harmonic series ∑_(n=1)^[infinity] 1/n diverges. Thus, the series ∑_(n=1)^[infinity] 1/(n^2 p) diverges when p ≤ 0.

The series ∑_(n=1)^[infinity] p/3 converges if and only if p/3 = 0, i.e. p = 0.

Therefore, the only value of p for which both series converge is p = 0.

The answer is not one of the options given.

The series ∑_(n=0)^[infinity] (-1)^n 2^n/n! converges by the alternating series test.

The series ∑_(n=0)^[infinity] (-1)^n 1/√n diverges by the alternating series test and the fact that the harmonic series ∑_(n=1)^[infinity] 1/n diverges.

The series ∑_(n=0)^[infinity] 2^n/(3n+1) diverges by the ratio test:

lim_(n→∞) |a_(n+1)| / |a_n| = lim_(n→∞) 2^(n+1) (3n+1) / (2^n (3n+4))

= lim_(n→∞) 2 (3n+1) / (3n+4)

= 2/3

Since the limit is greater than 1, the series diverges.

Therefore, the answer is d. I and III.

Visit here to learn more about harmonic series:

brainly.com/question/32256890

#SPJ11

Suppose f(x) = x^2 +1 and g(x) = x+1 . Then (f + g)(x) = ______ (f - g)(x) =______. (ƒg)(x) = _____. (f/g)(x) = _____. (fog)(x) = _____. (gof)(x) = _____.

Answers

The expressions for (f + g)(x), (f - g)(x), (f * g)(x), (f / g)(x), (f o g)(x), and (g o f)(x), we'll substitute the given functions:

f(x) = x² + 1 and g(x) = x + 1

We are to find the following: (f + g)(x), (f - g)(x), (f × g)(x), (f/g)(x), (fog)(x)

and (gof)(x).(f + g)(x) = f(x) + g(x)

=[tex]x^2 + 1 + x + 1[/tex]

=[tex]x^2+ x + 2(f - g)(x)[/tex]

= f(x) - g(x)

=[tex]x^2 + 1 - x - 1[/tex]

= [tex]x^2 - x(fg)(x)[/tex]

= f(x) × g(x)

=[tex](x^2 + 1) \times (x + 1)[/tex]

= [tex]x^3 + x^2 + x + 1(f/g)(x)[/tex]

= f(x)/g(x)

=[tex](x^2 + 1)/(x + 1)(fog)(x)[/tex]

= f(g(x))

= f(x + 1)

= [tex](x + 1)^2 + 1[/tex]

=[tex]x^2 + 2x + 2(gof)(x)[/tex]

Since the numerator and denominator cannot be simplified further, we leave it as (x^2 + 1) / (x + 1).

= g(f(x))

= [tex]g(x^2 + 1)[/tex]

= [tex](x^2 + 1) + 1[/tex]

= [tex]x^2 + 2[/tex]

to know more about  expression visit :

https://brainly.com/question/14083225

#SPJ11

Other Questions
differentiate with the aid of a diagram between astrong and a weak natural monopoly and sustainability or otherwiseof each (13) a. List all the factors of 105 in ascending order: b. List all the factors of 110 in ascending order: c. List all the factors that are common to both 105 and 110: d. List the greatest common factor of 105 and 110: e. Fill in the blank: GCF(105,110) = For parts a., b., and c. enter your answers as lists separated by commas and surrounded by parentheses. For example, the factors of 26 are (1,2,13,26). Now prime factor 105- 110- Enter your answers as lists separated by commas and surrounded by parentheses. Include duplicates. Next, move every factor they have in common under the line. Above the line write the lists that have not been moved and below the line, write the lists that have been moved. 105: 110: Enter your answers as lists separated by commas and surrounded by parentheses. Include duplicates. If there are no numbers in your list, enter DNE Finally, find the greatest common factor by multiplying what is below either of the two lines: How do I solve 8-3p2 Solve the differential equation (xD 2xD 4)y = 32(log x),where D dx by the method of variation of parameters. Summer Co. Ltd has accounts receivable of $100,350 at 30 June. Credit terms are 2/10, n/30. At this date, Allowance for Doubtful Accounts has a credit balance of $1,234 prior to adjustment. The company uses the percentage-of-receivables basis for estimating uncollectible accounts. The Companys estimate of bad debts is shown below.Age of AccountsBalance, April 30Estimated Percentage Uncollectible1-30 days$68,0002.00%31-60 days22,3005.00%61-90 days5,50020.00%Over 90 days4,55050.00%Required:Determine the total estimated uncollectible at 30 June.Calculate the adjusted bad debt expense for the period. If you take the first option, $7,500 per month for three years,what is the present value? (Do not round intermediatecalculations and round your answer to 2 decimal places, e.g.,32.16.)b.What i Suppose that we want to know the proportion of American citizens who have served in the military. In this study, a group of 1200 Americans are asked if they have served. Use this scenario to answer questions 1-5. 1. Identify the population in this study. 2. Identify the sample in this study. 3. Identify the parameter in this study. 4. Identify the statistic in this study. 5. If instead of collecting data from only 1200 people, all Americans were asked if they have served in the military, then this would be known as what? Suppose that we are interested in the average value of a home in the state of Kentucky. In order to estimate this average we identify the value of 1000 homes in Lexington and 1000 homes in Louisville, giving us a sample of 2000 homes. Use this scenario to answer questions 6-10. 6. Identify the variable in this study. 7. In this study, the average value of all homes in the state of Kentucky is known as what? 8. In this study, the average value of the 2000 homes in our sample is known as what? 9. Is this sample representative of the population? Explain why. 10. How should the sample of 2000 homes be selected so the results can be used to estimate the population? For the scenarios given in questions 11 and 12, identify the branch of statistics. 11. We calculate the average length for a sample of 100 adult sand sharks in order to estimate the average length of all adult sand sharks. 12. We calculate the average rushing yards per game for a football team at the end of the season. 13. The mathematical reasoning used when doing inferential statistics is known as what? 14. Understanding properties of a sample from a known population (the opposite of inferential statistics) is known as what? 15. When a sample is selected in such a way that every sample of size n has an equal probability of being selected, it is known as what? Identify the type of variable for questions 16-20. (If the variable is quantitative then also identify it as discrete or continuous) 16. Political party affiliation 17. The distance traveled to get to school 18. The student ID number for a student 19. The number of children in a household 20. The amount of time spent studying for a test What is the role of the following people in planning andmanaging an event:Venue ManagerStage ManagerEntertainersSecurity ManagerCatering Manager Calculate the volume of the solid bounded by the surfaces z = (x^2+y^2)/3 and x^2+y^2+z^2 = 4 how to convert left to right???0.2 +2.2 cos60 + j2.2 sin 60 = 2.307/55.7 How would implementing the cost-volume-profit analysis benefit a company? As a manager, which income statement format do you find more useful - the traditional financial accounting method or the contribution margin method? Why? Assume Ms. Hautale an investor is interested in embarking on property investments in theWestern africa and calls you in your capacity as a property investment specialist to request foradvice on the typical investment decision-making process. With this background explain in briefhow you would go about advising Ms. Hautale in this decision making process. water has an unusually high electrical conductivity. heat of combustion. specific heat. heat of formation. Assume that you always use five sheets of paper with six pencils for your art work. Denote the consumption levels of paper and pencil by x, and x one sheet of paper and a pen are given by $4 and $5, respectively. Your income is $100. Find your optimal consumption level for each good. If the price of each good doubles, what will happen to the optimal consumption level for each good? OA.x, 10, = 0. If each the price of each good doubles, your consumption level for each good will double. O B. x = 10, x = 0. If each the price of each good doubles, your consumption level for each good will stay the same. = 6. If each the price of each good doubles, your consumption level for each good will be the half of the original consumption leve OCx=5,*,= OD. x = 10, x = 12. If each the price of each good doubles, your consumption level for each good will be the half of the original consumption I OEx=0.x = 12. If each the price of each good doubles, your consumption level for each good will be the half of the original consumption le Review the wording of s. 24(2) of the Charter. What doesit mean to bring the administration of justice into disrepute?Discuss how the admission or exclusion of the gun as evidence couldbring the ad use an appropriate vote to complete the inversion in the following sentence no sooner...........the firemen extinguished one forest fire than another started. How would you assess Target's lobbying on federal sales tax legislation from legal, ethical, and economic perspectives? Question Should we understand Target's contribution to MN Forward in 2010 as another form of lobbying or is it different? Why or why not? Looking ahead, what standards or guidelines will you develop to deal with the challenges raised by the engagement of business with public issues and institutions? As Brian Cornell, CEO of Target, what steps should you take given the boycott and declining sales? .Why does the presence of iron trigger a supernova? Choose all that apply. Choose one or more: A Iron causes the core to collapse. OB. Iron is electrically conductive. DC. Iron is the heaviest element on the periodic table. DD. Fusing iron in the core would absorb energy rather than release it. E. Iron is ferromagnetic. determine the molarity of io3- in each of the five 12.00-ml equilibrium solutions. note the power of 10 in the x-axis label The following information relates to a bank reconciliation of WaMarks Traders: (1) The balance as per the bank account in the general ledger, before taking the items below into account, was R7 182 (favourable). (2) A debit order to the amount of R1 275 for insurance on the bank statement have not been entered in the cash payments journal. (3) The bank has debited the bank statement in error with R1 075 which should have been credited. (4) Payments totalling R3 446 have been correctly entered in the cash payments journal but do not appear on the bank statement. (5) Deposits received, totalling R1 392, have been correctly entered in the cash receipts journal but have not been deposited at the bank. What will the balance as per the bank statement as at 31 March 2022 be? NB: Instructions 1. Do not type the amount with any spaces as separators for thousands (eg: 12141.72) 2. Only show the amount, do not show the R (eg: 12141.72) 3. If the total amount calculated is a favourable bank balance, please enter the amount as a positive (eg: 12141.72), if the total amount calculated is an unfavourable bank balance, please enter the amount as a negative (eg: -12141.72) Steam Workshop Downloader