If r is the nominal rate and n is the number of times interest is compounded annually, then R=(1+r/n)^(n)-1 is the effective rate. Here, R represents the annual rate that the investment would earn if simple interest were paid. Use this formula to determine the effective rate for $1 invested for 1 year at 4.8% compounded semiannually.

Answers

Answer 1

Effective Rate in Compound Interest

Given r as the nominal rate of investment and n the number of times the interest is compounded annually, the formula for the effective rate is:

[tex]R=\mleft(1+\frac{r}{n}\mright)^n-1[/tex]

We are required to find the effective rate for a rate of r=4.8% compounded semiannually. This means the value of n is 2 since there are two periods where interest is added to the principal per year.

Substituting the given values in the formula (recall r must be used as a decimal value, i.e. r=4.8/100=0.048):

[tex]R=(1+\frac{0.048}{2})^2-1[/tex]

Calculating:

[tex]R=(1.024)^2-1=0.048576[/tex]

The effective rate is 4.86%


Related Questions

What is the image point of (1,−3) after a translation right 2 units and up 2 units?

Answers

For this problem we have the following point given:

[tex]P=(1,-3)[/tex]

And we want to determine the image point after a translation of 2 units to the right and upward. So then we just need to do the following:

[tex]I=(1+2,-3+2)[/tex]

And after do the math we got:

[tex]I=(3,-1)[/tex]

And the final answer for this case would be I=(3,-1)

May I please get help with this. I need help with finding the original and final points on the figure and also finding out where I should put my reflection?

Answers

Answer:

Step-by-step explanation:

The rule for a reflection over the y-axis is represented by the following equation:

[tex](x,y)\rightarrow(-x,y)_{}[/tex]

Therefore, for the given figure and given point:

Correctz is jointly proportional to x and y. If z = 115 when x = 8 and y = 3, find z when x = 5 and y = 2. (Round off your answer to the nearest hundredth.)

Answers

When we have a number that is jointly proportional to two other numebrs, the formula is:

[tex]a=kcb[/tex]

This means "a is jointly proportional to c and b with a factor of k"

Then, we need to find the factor k.

In this case z is jointly proportional to x² and y³

This is:

[tex]z=kx^2y^3[/tex]

Then, we know that z = 115 when x = 8 and y = 3. We can write:

[tex]115=k\cdot8^2\cdot3^3[/tex]

And solve:

[tex]\begin{gathered} 115=k\cdot64\cdot27 \\ 115=k\cdot1728 \\ k=\frac{115}{1728} \end{gathered}[/tex]

NOw we can use k to find the value of z when x = 5 and y = 2

[tex]z=\frac{115}{1728}\cdot5^2\cdot2^3=\frac{115}{1728}\cdot25\cdot8=\frac{2875}{216}\approx13.31[/tex]

To the nearest hundreth, the value of z when x = 5 and y = 2 is 13.31

The side of a square lot is (5×-3) meters. How many meters of fencing materials are needed to enclose the square lot?

Answers

The length of the fencing will be the perimeter of the given square with side (5x - 3) thus (20x - 12) meters will be the fencing length.

What is a square?

A square is a geometrical figure in which we have four sides each side must be equal and the angle between two adjacent sides must be 90 degrees.

As per the given,

Side of square = 5x - 3

The fencing around the square will cover the complete perimeter of the square.

Since the perimeter of the square = 4 × side

Therefore,

Length of fencing = 4 × (5x - 3)

Length of fencing = 20x - 12

Hence "The length of the fencing will be the perimeter of the given square with side (5x - 3) thus (20x - 12) meters will be the fencing length".

For more about a square,

https://brainly.com/question/2189895

#SPJ1

Solve the following system of equations using the elimination method. Give the final answer in (x,y) form.

Answers

Anisha used the substitution method to solve the system of equations.

She is missing the value of y.

To find it we plut the value of x in the first equation, then:

[tex]y=4-5=-1[/tex]

Therefore the solution is (4,-1)

$75 dinner, 6.25% tax, 18% tip please show work.You have to find the total cost

Answers

According the the information given in the exercise, you know that the cost of the dinner was:

[tex]d=_{}$75$[/tex]

Where "d" is the cost of the dinner in dollars.

Convert from percentages to decimal numbers by dividing them by 100:

1. 6.25% tax in decimal for:

[tex]\begin{gathered} tax=\frac{6.25}{100} \\ tax=0.0625 \\ \end{gathered}[/tex]

2. 18% tip in decimal form:

[tex]\begin{gathered} tip=\frac{18}{100} \\ \\ tip=0.18 \end{gathered}[/tex]

To find the amount in dollars of the tax and the the amount in dollars of the tip, multiply "d" by the decimals found above.

Knowing the above, let be "t" the total cost in dollars.

This is:

[tex]\begin{gathered} t=d+0.0625d+0.18d \\ t=75+(0.0625)(75)+(0.18)(75) \\ t=93.1875 \end{gathered}[/tex]

Therefore the answer is: The total cost is $93.1875

Approximate 14 plus cube root of 81 to the nearest tenth.

15.8
17.9
18.0
18.3

Answers

The Approximation of 14 plus cube root of 81 to the nearest tenth is 18.0

How can the terms be simplified?

The concept that will be used to solve this is finding cube root of 81 which same thing as [tex]81^{\frac{1}{3} }[/tex].

Firstly we will need to find the  cube root of 81, which can be expressed as this: [tex]\sqrt[3]{81}[/tex]  and this can be calculated as 4.33.

This implies that the cube root of 81 will now be 4.33.

Then we can proceed to the simplification that was asked from the question which is 14 plus cube root of 81 and this can be expressed as ( 14) + (4.33) = 18.33

Then we were told to express in the the nearest tenth which is 18.0

Therefore, the third option is correct.

Read more about Approximation at:

https://brainly.com/question/24318076

#SPJ1

Question is stated in picture. The figure is a triangular piece of cloth

Answers

Answer:

Alternative D - 8 sin(35°)

Step-by-step explanation:

Sin(x) is defined as:

[tex]\begin{gathered} \sin (x)=\frac{\text{Opposite side}}{Hypotenuse\text{ }} \\ \end{gathered}[/tex]

In this exercise,

BC is the opposite side to 35°

AC is the hypotenuse and measures 8 in

Then:

[tex]\begin{gathered} \sin (35\degree)=\frac{BC}{8} \\ \sin (35\degree)\cdot8=BC \\ BC=8\sin (35\degree) \end{gathered}[/tex]

Coronado co. sells product p-14 at a price of $52 a unit. the per unit cost data are direct materials $16, direct labour $12, and overhead $12 (75% variable) Coronado has no excess capacity to accept a special order for 38,700 units at a discount of 25% from the regular price. Selling costs associated with this order would be $3 per unit. Indicate the net income/loss

Answers

The net loss from accepting the special order at a discount of 25% from the regular price, without the existence of excess capacity is $38,700.

How is the net loss determined?

Since Coronado Co. lacks the excess capacity for special orders, it implies that it will incur fixed costs per unit of the special order in addition to the variable costs.

Therefore, the company will incur a per unit cost of $40 ($16 + $12 + $9 + $3) while generating a revenue of $39 per unit.

This results in a loss of $1 per unit.

Selling price per unit = $52

Unit Costs:

Direct Materials = $16

Direct Labor = $12

Variable Overhead = $9 (75% of $12)

Total variable cost per unit = $37

Fixed Overhead = $3 (25% of $12)

Special order price per unit = $39 ($52 x 1 - 75%)

Contribution margin per unit = $2 ($39 - $37)

Total contribution margin = $77,400 ($2 x 38,700)

Fixed Overhead without excess capacity = $116,100 ($3 x 38,700)

Net loss = $38,700 ($77,400 - $116,100)

Thus, without excess capacity, it is inadvisable for Coronado to accept the special order at a total loss of $38,700.

Learn more about accepting special orders at https://brainly.com/question/28124882

#SPJ1

I need help for problem number 9. On the right side of the paper.

Answers

Constant of variation ( k ):

• y = 2/3

,

• x = 1/4

[tex]k=\frac{y}{x}=\frac{\frac{2}{3}}{\frac{1}{4}}=\frac{8}{3}[/tex]

k = 8/3

Based on k we can find the value of y when x =3/4 as follows:

[tex]\begin{gathered} k=\frac{y}{x} \\ y=k\cdot x \\ y=\frac{8}{3}\cdot\frac{3}{4}=2 \end{gathered}[/tex]

Answer:

• k = 8/3

,

• When ,x, = ,3/4,,, y = 2

8.
What is the measure of angle x in the figure?
40°
A 69°
B 71°
C 109°
D 111°

Answers

Answer:

C 109

Step-by-step explanation:

First add all the known angles inside the triangle first to get 109°

Then since all angles in a triangle add to 180°

you take away 109 from 180 so

180-109 which equals 71

Then since all angles on a straight line add up to 180°

you take 71 from 180 so

180-71 = 109

so x = 109°

Find the median and mean of the data set below: 3, 8, 44, 50, 12, 44, 14 Median Mean =

Answers

the median is 25, because:

[tex]=\frac{3+8+44+50+12+44+14}{7}=\frac{175}{7}=25[/tex]

the mean value is :

[tex]14[/tex]

How to find postulate

Answers

Note that if plane N and plane M intersects each other in two points (say A and B) it follows that they intersects each other in the line that contains A and B. So they cannot intersect exactly in only two points. Postulate number 10

Solve the inequality. Express your answer using set notation or interval notation. Graph the solution set.

Answers

Answer:

(D) {xIx ≥ 5} or [5, ∞)

Explanation:

Given inequality: 5x - 11 ≥ 9 + x

By collecting the like terms, we have

5x - x ≥ 9 + 11

4x ≥ 20

Divide bothsides by 4

4x/4 ≥ 20/4

x ≥ 5

In set notation, we have {5, ∞}

The graph of the solution set is

60 went into a machine and 72 came out.What percent increase did this machine use?

Answers

From this question, we can deduce he following:

Original value = 60

New value = 72

Let's find the percentage increase.

To find the percentage increase, apply the formula below:

[tex]\text{ Percent increase = }\frac{New\text{ value - old value}}{old\text{ value}}\ast100[/tex]

Thus, we have:

[tex]\begin{gathered} \text{Percent increase = }\frac{72-60}{60}\ast100 \\ \\ \text{Percent increase = }\frac{12}{60}\ast100 \\ \\ \text{Percent increase = }0.2\ast100 \\ \\ \text{Percent increase = 20 \%} \end{gathered}[/tex]

Therefore, the percent increase is 20%.

ANSWER:

20%

Which expression would be easier to simplify if you used the associativeproperty to change the grouping?

Answers

In option A, if expression is simplify with out using associative property then addition of 4/9 and -2/9 is easy, as compare to addition 6 and 4/9. So no need to apply associateive property to option A.

In option B, 60 and 40 can be easily add as compare to 40 and -27 so this expression do not need to apply associative property.

In option C, the expression is easier to simplify if 5/2 and -1/2 is added, which is possible if associative is apply to the expression.

[tex]\begin{gathered} (2+\frac{5}{2})+(-\frac{1}{2})=2+(\frac{5}{2}-\frac{1}{2}) \\ =2+(\frac{5-1}{2}) \\ =2+2 \\ =4 \end{gathered}[/tex]

Thus option C use associative property to make the simplification easier.

Answer: Option C.

Please help meSolve using A=PertThe half life gets me each time.

Answers

[tex]\begin{gathered} Given \\ r=0.028 \\ \end{gathered}[/tex]

Miss Taylor drove 30 miles in March she drove 9 times as many miles in May as she did in March she drove 2 times as many miles in April as she did in May how many miles did Miss Taylor Drive in April.

Answers

then we use the statement to solve

Miss Taylor drove 30 miles in March

[tex]March=30[/tex]

she drove 9 times as many miles in May as she did in March

[tex]\begin{gathered} May=9\text{March} \\ May=9\times30=270 \end{gathered}[/tex]

she drove 2 times as many miles in April as she did in May

[tex]\begin{gathered} April=2May \\ April=2\times270=540 \end{gathered}[/tex]

Taylor Drove 540 Miles in April

Problem 14.f(2)(a) Determine the equations of the perpendicular bisectors througheach side of the triangle.C(4,6)B(7,3)A(2,2)I

Answers

The product of the slopes of the perpendicular lines is -1, which means if the slope of one of them is m, then the slope of the perpendicular line is -1/m

In triangle ABC

The perpendicular bisector of the side BC is drawn from the opposite vertex A

Then to find it find the slope of BC and reciprocal it and change its sign to get its slope and find the midpoint of BC to use it in the equation of the perpendicular bisector

Since B = (7, 3) and C = (4, 6)

Let us find the slope of BC, using the rule of the slope

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

Let (x1, y1) = (7, 3) and (x2, y2) = (4, 6)

[tex]\begin{gathered} m_{BC}=\frac{6-3}{4-7} \\ m_{BC}=\frac{3}{-3} \\ m_{BC}=-1 \end{gathered}[/tex]

Now to find the slope of the perpendicular line to BC reciprocal it and change its sign

Since the reciprocal of 1 is 1 and the opposite of negative is positive, then

Then the slope of the perpendicular line is 1

Now, let us find the mid-point of BC

The rule of the midpoint is

[tex]M=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

Then the mid-point of BC is

[tex]\begin{gathered} M_{BC}=(\frac{7+4}{2},\frac{3+6}{2}) \\ M_{BC}=(\frac{11}{2},\frac{9}{2}) \\ M_{BC}=(5.5,4.5) \end{gathered}[/tex]

Now we can form the equation of the perpendicular bisector of BC using its slope 1 and the point (5.5, 4.5)

The form of the equation using a point and a slope is

[tex]y-y1=m(x-x1)[/tex]

m is the slope and (x1, y1) is a point on the line

Since m = 1 and (x1, y1) = (5.5, 4.5), then

[tex]\begin{gathered} m=1,x1=5.5,y1=4.5 \\ y-4.5=1(x-5.5) \\ y-4.5=x-5.5 \end{gathered}[/tex]

Add 4.5 to both sides

[tex]\begin{gathered} y-4.5+4.5=x-5.5+4.5 \\ y=x-1 \end{gathered}[/tex]

The equation of the perpendicular bisector of BC is

[tex]y=x-1[/tex]

We will do the same to AB and AC

Write the trig equation needed to solve for X. Then solve for X. Round answers to the nearest tenth.

Answers

In order to solve for x, we need to use the tangent relation of the angle 48°.

The tangent relation is equal to the length of the opposite leg to the angle over the length of the adjacent leg to the angle.

So we have:

[tex]\begin{gathered} \tan (48\degree)=\frac{x}{17} \\ 1.1106=\frac{x}{17} \\ x=1.1106\cdot17 \\ x=18.88 \end{gathered}[/tex]

Rounding to the nearest tenth, we have x = 18.9.

Which statement is true about the relation shown on the graph below?

Answers

We know that a function has a unique value of y for each value in x so the correct statement is:

c. it is not a function because there are multiple y values for a given x value

Determine the solution to the system of equations using substitution. (1 pt)2:+ y=6y = -6(2,6)(2,-6)(4, -2)(-2,4)

Answers

2x + y = 6 (1)

y = x - 6 (2)

Substituting y in equation (1)

2x + x - 6 = 6

3x - 6 = 6 Isolating 3x

3x = 6 + 6

3x = 12 Isolating x

x = 12/3 = 4

If x is 4 , then y is equal to -2 ( from equation (2) y)

In the lab, Deandre has two solutions that contain alcohol and is mixing them with each other. Solution A is 10% alcohol and Solution B is 60% alcohol. He uses200 milliliters of Solution A. How many milliliters of Solution B does he use, if the resulting mixture is a 40% alcohol solution?

Answers

The percentage of alcohol of a solution i is given by the quotient:

[tex]p_i=\frac{v_i}{V_i},_{}[/tex]

where v_i is the volume of alcohol in the solution i and V_i is the volume of the solution i.

From the statement of the problem we know that:

1) Solution A has 10% of alcohol, i.e.

[tex]p_A=\frac{v_A_{}}{V_A}=0.1.\Rightarrow v_A=0.1\cdot V_A.[/tex]

2) Solution B has 60% of alcohol, i.e.

[tex]p_B=\frac{v_B}{V_B}=0.6\Rightarrow v_B=0.6\cdot V_B.[/tex]

3) The volume of solution A is V_A = 200ml.

4) The resulting mixture must have a percentage of 40% of alcohol, so we have that:

[tex]p_M=\frac{v_M}{V_M}=0.4.[/tex]

5) The volume of the mixture v_M is equal to the sum of the volumes of alcohol in each solution:

[tex]v_M=v_A+v_{B\text{.}}_{}[/tex]

6) The volume of the mixtureVv_M is equal to the sum of the volumes of each solution:

[tex]V_M=V_A+V_B\text{.}[/tex]

7) Replacing 5) and 6) in 4) we have:

[tex]\frac{v_A+v_B}{V_A+V_B_{}}=0.4_{}\text{.}[/tex]

8) Replacing 1) and 2) in 7) we have:

[tex]\frac{0.1\cdot V_B+0.6\cdot V_B}{V_A+V_B}=0.4_{}\text{.}[/tex]

9) Replacing 3) in 8) we have:

[tex]\frac{0.1\cdot200ml_{}+0.6\cdot V_B}{200ml_{}+V_B}=0.4_{}\text{.}[/tex]

Now we solve the last equation for V_B:

[tex]\begin{gathered} \frac{0.1\cdot200ml+0.6\cdot V_B}{200ml_{}+V_B}=0.4_{}, \\ \frac{20ml+0.6\cdot V_B}{200ml_{}+V_B}=0.4_{}, \\ 20ml+0.6\cdot V_B=0.4_{}\cdot(200ml+V_B), \\ 20ml+0.6\cdot V_B=80ml+0.4\cdot V_B, \\ 0.6\cdot V_B-0.4\cdot V_B=80ml-20ml, \\ 0.2\cdot V_B=60ml, \\ V_B=\frac{60}{0.2}\cdot ml=300ml. \end{gathered}[/tex]

We must use 300ml of Solution B to have a 40% alcohol solution as the resulting mixture.

Answer: 300ml of Solution B.

5. Helen, Riley, and Derrick are on a running team. Helen ran 15 1/4 kilometers last week. Riley ran 4 1/12 less kilometers than Helen, and Derrick ran 7 3/8 more kilometers than Riley. If their goal is to run 60 kilometers in total, how much further do they need to run to meet their goal? I

Answers

Given in the scenario:

a.) Helen ran 15 1/4 kilometers last week.

b.) Riley ran 4 1/12 less kilometers than Helen.

c.) Derrick ran 7 3/8 more kilometers than Riley.

d.) Their goal is to run 60 kilometers in total.

To be able to determine how much further do they need to run to get 60 kilometers in total, we must first determine how many kilometers did Riley and Derrick run.

We get,

A.)

[tex]\text{Riley: }4\frac{1}{12}\text{ less kilometers than Helen}[/tex][tex]\text{ = 15 }\frac{1}{4}\text{ - 4 }\frac{1}{12}[/tex]

Recall: To be able to subtract mixed numbers, you must first convert them into an improper fraction with a common denominator. The LCM of the two denominators must be their denominator when converted.

The LCM of 4 and 12 is 12. We get,

[tex]\text{ 15 }\frac{1}{4}\text{ = }\frac{1\text{ + (4 x 15)}}{4}\text{ = }\frac{1\text{ + 60}}{4}\text{ = }\frac{61}{4}\text{ = }\frac{(61)(3)}{12}\text{ = }\frac{183}{12}[/tex][tex]4\text{ }\frac{1}{12}\text{ = }\frac{1\text{ + (4 x 12)}}{12}\text{ = }\frac{1\text{ + 48}}{12}\text{ = }\frac{49}{12}[/tex]

Let's now proceed with the subtraction,

[tex]15\frac{1}{4}-4\frac{1}{12}=\frac{183}{12}\text{ - }\frac{49}{12}\text{ = }\frac{183\text{ - 49}}{12}\text{ = }\frac{134}{12}\text{ = }\frac{\frac{134}{2}}{\frac{12}{2}}\text{ = }\frac{67}{6}\text{ or 11}\frac{1}{6}[/tex]

Conclusion: Riley ran 11 1/6 kilometers.

B.)

[tex]\text{Derrick: }7\frac{3}{8}\text{ more kilometers than Riley}[/tex][tex]\text{ = 11}\frac{1}{6}\text{ + 7}\frac{3}{8}[/tex]

Recall: To be able to add mixed numbers, you must first convert them into an improper fraction with a common denominator. The LCM of the two denominators must be their denominator when converted.

The LCM of 6 and 8 is 24. We get,

[tex]11\frac{1}{6}\text{ = }\frac{1\text{ + (11 x 6)}}{6}\text{ = }\frac{1\text{ + 66}}{6}\text{ = }\frac{67}{6}\text{ = }\frac{(67)(4)}{24}\text{ = }\frac{268}{24}[/tex][tex]7\frac{3}{8}\text{ = }\frac{3\text{ + (7 x 8)}}{8}=\frac{3\text{ + 56}}{8}=\frac{59}{8}=\frac{(59)(3)}{24}=\frac{177}{24}[/tex]

Let's now proceed with the addition,

[tex]11\frac{1}{6}\text{ + 7}\frac{3}{8}\text{ = }\frac{268}{24}\text{ + }\frac{177}{24}\text{ = }\frac{268\text{ + 177}}{24}\text{ = }\frac{445}{24}\text{ or 18}\frac{13}{24}[/tex]

Conclusion: Derrick ran 18 13/24 kilometers.

C.) To be able to determine how much further do they need to run to get 60 kilometers in total, we subtract 60 by the sum of distance the three people ran.

We get,

[tex]\text{ 60 - (15 }\frac{1}{4}\text{ + 11}\frac{1}{6}\text{ + 18}\frac{13}{24})[/tex]

The same process that we did, convert all numbers into similar fractions.

The LCM of 4, 6 and 24 is 24. We get,

[tex]15\frac{1}{4}\text{ = }\frac{1\text{ + }(15\text{ x 4)}}{4}\text{ = }\frac{1\text{ + 60}}{4}\text{ = }\frac{61}{4}\text{ = }\frac{(61)(6)}{24}\text{ = }\frac{366}{24}[/tex][tex]11\frac{1}{6}\text{ = }\frac{1\text{ + (11 x 6)}}{6}\text{ = }\frac{1\text{ + 66}}{6}\text{ = }\frac{67}{6}\text{ = }\frac{(67)(4)}{24}\text{ = }\frac{268}{24}[/tex][tex]\text{ 18}\frac{13}{24}=\text{ }\frac{13+(18\text{ x 24)}}{24}\text{ = }\frac{13\text{ + 432}}{24}\text{ = }\frac{445}{24}[/tex][tex]60\text{ = }\frac{60\text{ x 24 }}{24}\text{ = }\frac{1440}{24}[/tex]

Let's proceed with the operation,

[tex]\text{ 60 - (15 }\frac{1}{4}\text{ + 11}\frac{1}{6}\text{ + 18}\frac{13}{24})\text{ = }\frac{1440}{24}-(\frac{366}{24}\text{ + }\frac{268}{24}\text{ + }\frac{445}{24})[/tex][tex]\text{ }\frac{1440\text{ - (366 + 268 + 445)}}{24}\text{ = }\frac{1440\text{ - 1079}}{24}[/tex][tex]\text{ = }\frac{361}{24}[/tex]

Therefore, they need to run a total of 361/24 kilometers to be able to meet their goal.

A company needs to take 10 sample sensor readings if the sensor collects data at 1/3 of a sample per second how long will it take the company to take all 10 samples

Answers

Given:

Sample space = 10

Rate = 1/3 per second

15. (09.03) Jim picked a card from a standard deck. What is the probability that Ilm picked a heart or an ace? (1 point) OI 52 O 2 52 O 16 52 O 17 52

Answers

The probability of picking a heart or an ace is 17/52

Here, we want to get the probability

The number of cards in a standard deck is 52 cards

Now, we need to know the number of hearts and the number of ace

There are 13 hearts, and 4 aces

The probability of picking a heart is;

[tex]\frac{13}{52}[/tex]

The probability of picking an ace is;

[tex]\frac{4}{52}[/tex]

The probability of picking an ace or a heart is the sum of both which is;

[tex]\frac{4}{52}+\frac{13}{52}\text{ = }\frac{17}{52}[/tex]

a blu ray player costs $80.99 in the store. what would your total cost be if the sales tax is 5.5%

Answers

ANSWER:

$ 85.44

STEP-BY-STEP EXPLANATION:

We have the value after tax, we must calculate the sum between the original value and the value equivalent to the established percentage, therefore, we calculate it like this:

[tex]\begin{gathered} p=80.99+80.99\cdot\frac{5.5}{100} \\ p=80.99+4.45 \\ p=\text{ \$85.44} \end{gathered}[/tex]

The final price is $ 85.44

Which answer choice shows 3.002 written in expanded form?A) 3 + 0.2B) 3 + 0.02C) 3 + 0.002D) 3+ 0.0002

Answers

SOLUTION

We want to know which answer choice shows 3.002 written in expanded form

To do this let us subtract 3.002 from 3, we have

We got 0.002

So the expanded form is

[tex]3+0.002[/tex]

Hence the correct answer is option C

Which of the following is a factor of the polynomial Step By Step Explanation Please

Answers

Use the quadratic formula.

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Where a = 3, b = -31, and c = -60.

[tex]x=\frac{-(-31)\pm\sqrt[]{(-31)^2-4(3)(-60)}}{2(3)}[/tex]

Solve to find both solutions.

[tex]x=\frac{31\pm\sqrt[]{961+720}}{6}=\frac{31\pm\sqrt[]{1681}}{6}=\frac{31\pm41}{6}[/tex]

Rewrite the expression as two.

[tex]\begin{gathered} x_1=\frac{31+41}{6}=\frac{72}{6}=12 \\ x_2=\frac{31-41}{6}=\frac{-10}{6}=-\frac{5}{3} \end{gathered}[/tex]

Once we have the solutions, we express them as factors. To do that, we have to move the constant to the right side of each equation.

[tex]\begin{gathered} x=12\to(x-12) \\ x=-\frac{5}{3}\to(3x+5)_{} \end{gathered}[/tex]

As can observe, the factor of the polynomial is (x-12).

Therefore, the answer is d.

Could you help me with this problem?There are 7 acts in a talent show.A comedian, a guitarist, a magician, a pianist, a singer, a violinist, and a whistler.A talent show host randomly schedules the 7 acts.Compute the probability of each of the following events.Event A: The magician is first, the comedian is second, and the whistler is third.Event B: The first three acts are the guitarist, the pianist, and the singer, in any order.Write your answers as fractions in simplest form.

Answers

EXPLANATION

For the event B, the order of the first 3 acts doesn't matter.

So, the number of acts taken from the seven acts when the order doesn't matter is calculated using combinations.

[tex]C(m,n)=\frac{m!}{n!(m-n)!}[/tex][tex]C(7,3)=\frac{7!}{3!(7-3)!}=\frac{7!}{3!4!}[/tex]

Computing the factorials:

[tex]C(7,3)=\frac{5040}{6\cdot24}=\frac{5040}{144}=35[/tex]

Hence, the number of ways the three acts could be given are 1:C(7,3)

Therefore, the probability of the event B is:

[tex]P(B)=\frac{1}{35}[/tex]

For the event A, the order matters, so the difference between combinations and permutations is ordering. When the order matters we need to use permutations.

The number of ways in which four acts can be scheculed when the order matters is:

[tex]P(m,n)=\frac{m!}{(m-n)!}[/tex][tex]P(m,n)=\frac{7!}{(7-3)!}=\frac{5040}{24}=210[/tex]

The number of ways the magician is first, the comedian is second and the whistler is third are 1:P(7,4)

Therefore, the probability of the event A is.

[tex]P(A)=\frac{1}{210}[/tex]

Other Questions
I need help figuring out the answer, Im very much confused Why do we have laws? Discuss the concepts of the state of nature and social contract. what is 140% 150,000 a list of 1111 positive integers has a mean of 1010, a median of 99 and a unique mode of 88 what is the largest possible value of an integer in the list? Do people get treated equally in the Us essay tom, fred, and mike are divorced. they refuse to pay child support as they no longer speak to their children and are not involved in their lives. which phrase can be used to describe these fathers? During a baseball game, Diego thought his team would get 4 runs, and they actually got 7 runs. What was Diego's percent error? Make sure to include a percent sign. (Round to two decimal places) during its most recent fiscal year, dover, incorporated had total sales of $3,380,000. contribution margin amounted to $1,590,000 and income was $535,000. what amount should have been reported as fixed costs in the company's contribution margin income statement for the year? ian's house and land have a market price of $225,000 and an assessed value of 55% of that amount. his state has a property tax rate of 0.088. how much does ian pay in property tax every year? Reflected over the x-axis , horizontal shrink of 1/2, translated 7 down. The relationship between time and the number of laps is not proportional across all swimmers. which two swimmers swam at the same rate (had time and laps in the same proportion)? For which of the following reasons do small isolated islands have a greater rate of species extinction than larger, less isloated islands (4xyy)(5xy) expand and simplify Can someone help me with this? If three angles of a triangle are 2x, 6x and x, find the size of largest angle. Hi there, I need help with this question. Thank you in advance! Elisa has 24 black and white photographs and 72 photographs that are in color. She is arranging the photographs in an album and wants to contain the same combination of color and black and white photographs. What is the greatest number of pages elisa can fill with photographs a person throws a ball at an angle of 30 o with the horizontal with a velocity of 32 m/s. as the ball is thrown, a second person is running past the thrower at a constant velocity. at what velocity must this second person run so that she may catch the ball as it hits the ground? Add 43.8lbs and 56.8923lbs. What is the answer in the correct significant figures? Question 19Which of the following business trends affects HR management:O Costs of business going downO GlobalizationO Lack of new technologyO No restructuring