If the line y-7=3(x+5) is dilated with a center at the origin and a scale factor of 4, which of the following equations would describe its image?

If The Line Y-7=3(x+5) Is Dilated With A Center At The Origin And A Scale Factor Of 4, Which Of The Following

Answers

Answer 1

When we dilate a line with a scale factor of "a", we change its equation by changing the slope.

The slope gets multiplied by "a".

In the equation given, the slope is "3". After a dilation with a scale factor of 4, the slope would become:

3 * 4 = 12

The equation, after dilation, would be:

[tex]y-7=12(x+5)[/tex]


Related Questions

Assume that each circle shown below represents one unit. Express the sha amount as a single fraction and as a mixed number. One Fraction: Mixed Number:

Answers

The shaded portions for the first three circles are a total of 15 while for the fourth one is 1. As a fraction it is therefore,

[tex]\frac{16}{5}[/tex]

As mixed numbers it is;

[tex]3\frac{1}{5}[/tex]

Consider the graph below.(3,1) (4,2) (6,3) (4,4) (8,5) Which correlation coefficient and interpretation best represent the given points?1.) 0.625, no correlation 2.) 0.791. no correlation 3.) 0.625, positive correlation4.) 0.791. positive correlation

Answers

Given the information on the problem,we have that the correlation coefficient of the data given is:

[tex]r=\frac{\sum^{}_{}(x-\bar{y})(y-\bar{x})}{\sqrt[]{SS_x\cdot SSy}}=\frac{10}{\sqrt[]{16\cdot10}}=0.79[/tex]

therefore, the value of the correlation coeficient is 0.79, which shows a strong positive correlation

The length of the hypotenuse in a 30°-60°-90° triangle is 6√10yd. What is thelength of the long leg?

Answers

In order to calculate the length of the long leg, we can use the sine relation of the 60° angle.

The sine relation is the length of the opposite side to the angle over the length of the hypotenuse.

So we have:

[tex]\begin{gathered} \sin (60\degree)=\frac{x}{6\sqrt[]{10}} \\ \frac{\sqrt[]{3}}{2}=\frac{x}{6\sqrt[]{10}} \\ 2x=6\sqrt[]{30} \\ x=3\sqrt[]{30} \end{gathered}[/tex]

So the length of the long leg is 3√30 yd.

cos(alpha + beta) = cos^2 alpha - sin^2 beta

Answers

The trigonometric identity cos(α + β)cos(α - β) = cos²(α) - sin²(β) is verified in this answer.

Verifying the trigonometric identity

The identity is defined as follows:

cos(α + β)cos(α - β) = cos²(α) - sin²(β)

The cosine of the sum and the cosine of the subtraction identities are given as follows:

cos(α + β) = cos(α)cos(β) - sin(α)sin(β).cos(α - β) = cos(α)cos(β) + sin(α)sin(β).

Hence, the multiplication of these measures is given as follows:

cos(α + β)cos(α - β) = (cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β))

Applying the subtraction of perfect squares, it is found that:

(cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β)) = cos²(α)cos²(β) - sin²(α)sin²(β)

Then another identity is applied, as follows:

sin²(β) + cos²(β) = 1 -> cos²(β) = 1 - sin²(β).sin²(α) + cos²(α) = 1 -> sin²(α) = 1 - cos²(a).

Then the expression is:

cos²(α)cos²(β) - sin²(α)sin²(β) = cos²(α)(1 - sin²(β)) - (1 - cos²(a))sin²(β)

Applying the distributive property, the simplified expression is:

cos²(α) - sin²(β)

Which proves the identity.

Missing information

The complete identity is:

cos(α + β)cos(α - β) = cos²(α) - sin²(β)

More can be learned about trigonometric identities at https://brainly.com/question/7331447

#SPJ1

please help me please

Answers

F (x) = (-1/20)x + 13.6

Then

Radmanovics car y -intercept is= 13.6 gallons

Mr Chin's car y-intercept is= 13.2

Then , in consecuence

Radmanovics car has a larger tank, than Mr Chin's car.

Answer is OPTION D)

Determine which is the better investment 3.99% compounded semi annually Lee 3.8% compounded quarterly round your answer 2 decimal places

Answers

Remember that

The compound interest formula is equal to

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

In the 3.99% compounded semiannually

we have

r=3.99%=0.0399

n=2

substitute

[tex]\begin{gathered} A=P(1+\frac{0.0399}{2})^{2t} \\ \\ A=P(1.01995)^{2t} \end{gathered}[/tex]

and

[tex]\begin{gathered} A=P[(1.01995)^2]^t \\ A=P(1.0403)^t \end{gathered}[/tex]

the rate is r=1.0403-1=0.0403=4.03%

In the 3.8% compounded quarterly

we have

r=3.8%=0.038

n=4

substitute

[tex]\begin{gathered} A=P(1+\frac{0.038}{4})^{2t} \\ A=P(1.0095)^{2t} \\ A=P[(1.0095)^2]^t \\ A=P(1.0191)^t \end{gathered}[/tex]

the rate is r=1.0191-1=0.0191=1.91%

therefore

the 3.99% compounded semiannually is a better investment

An arctic village maintains a circular cross-country ski trail that has a radius of 2.9 kilometers. A skier started skiing from the position (-1.464, 2.503), measured in kilometers, and skied counter-clockwise for 2.61 kilometers, where he paused for a brief rest. (Consider the circle to be centered at the origin). Determine the ordered pair (in both kilometers and radii) on the coordinate axes that identifies the location where the skier rested. (Hint: Start by drawing a diagram to represent this situation.)(x,y)= (  ,  ) radii(x,y)= ( ,  ) kilometers

Answers

The solution to the question is given below.

[tex]\begin{gathered} The\text{ 2.6km is some fraction of the entire Circumference which is: C= 2}\pi r\text{ = 2}\times\text{ }\pi\text{ }\times2.9 \\ \text{ = 5.8}\pi cm \\ \text{ The fraction becomes: }\frac{2.61}{5.8\pi}\text{ = }\frac{0.45}{\pi} \\ \text{The entire circle is: 2 }\pi\text{ radian} \\ \text{ = }\frac{0.45}{\pi}\text{ }\times2\text{ }\times\pi\text{ = 0.9} \\ The\text{ skier has gone 0.9 radian from (-.1.464, 2.503)} \\ \text{The x- cordinate become: =-1.}464\text{ cos}(0.9)\text{ = -1.4625} \\ while\text{ the Y-cordinate becomes: =-1.}464\text{ sin}(0.9)\text{ = -}0.0229 \\ \text{The skier rested at: (-1.4625, -0.0229)} \\ \end{gathered}[/tex]

A coin is tossed an eight sided die numbered 1 through 8 is rolled find the probability of tossing a head and then rolling a number greater than 6. Round to three decimal places if needed

Answers

We are given that a coin is tossed and a die numbered from 1 through 8 is rolled. To determine the probability of tossing head and then rolling a number greater than 6 is given by the following formula:

[tex]P(\text{head and n>6)=p(head)}\cdot p(n>6)[/tex]

This is because we are trying to determine the probability of two independent events. The probability of getting heads is given by:

[tex]P(\text{heads})=\frac{1}{2}[/tex]

This is because there are two possible outcomes, heads or tails and we are interested in one of the outcomes.

Now we determine the probability of getting a number greater than 6 when rolling the dice. For this, there are 8 possible outcomes and we are interested in two of them, these are the numbers greater than 6 on the die (7, 8). Therefore, the probability is:

[tex]P(n>6)=\frac{2}{8}=\frac{1}{4}[/tex]

Now we determine the product of both probabilities:

[tex]P(\text{head and n>6)=}\frac{1}{2}\times\frac{1}{4}=\frac{1}{8}[/tex]

Now we rewrite the answer as a decimal:

[tex]P(\text{head and n>6)=}0.125[/tex]

Therefore, the probability is 0.125.

A trapezoid has a height of 16 miles. The lengths of the bases are 20 miles and 35miles. What is the area, in square miles, of the trapezoid?

Answers

Given:

A trapezoid has a height of 16 miles.

The lengths of the bases are 20 miles and 35 miles.

To find:

The area of the trapezoid.

Explanation:

Using the area formula of the trapezoid,

[tex]A=\frac{1}{2}(b_1+b_2)h[/tex]

On substitution we get,

[tex]\begin{gathered} A=\frac{1}{2}(20+35)\times16 \\ =\frac{1}{2}\times55\times16 \\ =440\text{ square miles} \end{gathered}[/tex]

Therefore the area of the trapezoid is 440 square miles.

Final answer:

The area of the trapezoid is 440 square miles.

hello I'm stuck on this question and need help thank you

Answers

Explanation

[tex]\begin{gathered} -2x+3y\ge9 \\ x\ge-5 \\ y<6 \end{gathered}[/tex]

Step 1

graph the inequality (1)

a) isolate y

[tex]\begin{gathered} -2x+3y\geqslant9 \\ add\text{ 2x in both sides} \\ -2x+3y+2x\geqslant9+2x \\ 3y\ge9+2x \\ divide\text{ both sides by 3} \\ \frac{3y}{3}\geqslant\frac{9}{3}+\frac{2x}{3} \\ y\ge\frac{2}{3}x+3 \end{gathered}[/tex]

b) now, change the symbol to make an equality and find 2 points from the line

[tex]\begin{gathered} y=\frac{2}{3}x+3 \\ i)\text{ for x=0} \\ y=\frac{2}{3}(0)+3 \\ \text{sp P1\lparen0,3\rparen} \\ \text{ii\rparen for x=3} \\ y=\frac{2}{3}(3)+3=5 \\ so\text{ P2\lparen3,5\rparen} \end{gathered}[/tex]

now, draw a solid line that passes troguth those point

(0,3) and (3,5)

[tex]y\geqslant\frac{2}{3}x+3\Rightarrow y=\frac{2}{3}x+3\text{\lparen solid line\rparen}[/tex]

as we need the values greater or equatl thatn the function, we need to shade the area over the line

Step 2

graph the inequality (2)

[tex]x\ge-5[/tex]

this inequality represents the numbers greater or equal than -5 ( for x), so to graph the inequality:

a) draw an vertical line at x=-5, and due to we are looking for the values greater or equal than -5 we need to use a solid line and shade the area to the rigth of the line

Step 3

finally, the inequality 3

[tex]y<6[/tex]

this inequality represents all the y values smaller than 6, so we need to draw a horizontal line at y=6 and shade the area below the line

Step 4

finally, the solution is the intersection of the areas

I hope this helps you

find a slope of the line that passes through (8,8) and (1,9)

Answers

The slope formula is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

we can use this formula by introducing the values of the given points. In our case

[tex]\begin{gathered} (x_1,y_1)=(8,8) \\ (x_2,y_2)=(1,9) \end{gathered}[/tex]

Hence, we have

[tex]m=\frac{9-8}{1-8}[/tex]

It yields,

[tex]m=\frac{1}{-7}[/tex]

hence, the answer is

[tex]m=-\frac{1}{7}[/tex]

suppose that z varies jointly with x and y. When x=2, y=2, z=7 write the equation that models the relationship

Answers

[tex]\begin{gathered} z=\text{ x + y + b} \\ 7\text{ = 2+2+b} \\ 7\text{ = 4+b} \\ 7-4=b \\ b=\text{ 3} \\ z=\text{ x + y +3} \end{gathered}[/tex]

Which of the following is the result of using the remainder theorem to find F(-2) for the polynomial function F(x) = -2x³ + x² + 4x-3?

Answers

Solution

We have the polynomial

[tex]f(x)=-2x^3+x^2+4x-3[/tex]

Usin the remainder theorem, we find f(-2) by substituting x = -2

So we have

[tex]\begin{gathered} f(x)=-2x^{3}+x^{2}+4x-3 \\ \\ f(-2)=-2(-2)^3+(-2)^2+4(-2)-3 \\ \\ f(-2)=-2(-8)+4-8-3 \\ \\ f(-2)=16+4-8-3 \\ \\ f(-2)=20-11 \\ \\ f(-2)=9 \end{gathered}[/tex]

Therefore, the remainder is

[tex]9[/tex]

5. Graph the system of inequalities. Then, identify a coordinate point in the solution set.2x -y > -3 4x + y < 5

Answers

We have the next inequalities

[tex]\begin{gathered} 2x-y>-3 \\ 4x+y<5​ \end{gathered}[/tex]

as we can see if we graph these inequalities we will obtain the next graph

where the red area is the first inequality and the blue area is the second inequality

and the area in purple is the solution set of the two inequalities

one coordinate point in the solution set could be (0,0)

How much of the wall does the mirror cover? Use the π button in your calculations and round your answer to the nearest hundredths. Include units.

Answers

Since the diameter of the mirror is given, calculate the area of the mirror using the formula

[tex]A=\frac{1}{4}\pi\cdot(D)^2[/tex]

replace with the information given

[tex]\begin{gathered} A=\frac{1}{4}\pi\cdot24^2 \\ A=144\pi\approx452.39in^2 \end{gathered}[/tex]

The mirror covers 452.39 square inches.

"Solve for x. Enter as a decimal not as a fraction. Round to the nearest hundredth if necessary."

Answers

Answer:

x =

5

Explanation

From the given diagram, it can be infered that WY = 2QR

From the diagram

WY = x+9

QR = 2x-3

substitute into the expression

x+9 = 2(2x-3)

x+9 = 4x - 6

Collect the like terms

x-4x = -6-9

-3x = -15

x = -15/-3

x = 5

Hence the value of x is 5

Imagine you asked students to draw an area model for the expression 5+4x2.
Walking around the room, you see the following three area models.

First, briefly explain the student thinking process you think might be behind each answer.

Answer Describe the thinking process

Which order would you call students A, B and C to present their work to the class and how would you guide the discussion?

Answers

Answer:

area 1

Step-by-step explanation:

quadrilateral WXYZ is reflected across the line y=x to create quadrilateral W’X’Y’Z'. What are the coordinates of quadrilateral W’X’Y’Z'.

Answers

Explanation

We are required to determine the coordinates of W’X’Y’Z' when WXYZ is reflected across the line y = x.

This is achieved thus:

From the image, we can deduce the following:

[tex]\begin{gathered} W(-7,3) \\ X(-5,6) \\ Y(-3,7) \\ Z(-2,3) \end{gathered}[/tex]

We know that the following reflection rules exist:

Therefore, we have:

[tex]\begin{gathered} (x,y)\to(y,x) \\ W(-7,3)\to W^{\prime}(3,-7) \\ X(-5,6)\to X^{\prime}(6,-5) \\ Y(-3,7)\to Y^{\prime}(7,-3) \\ Z(-2,3)\to Z^{\prime}(3,-2) \end{gathered}[/tex]

Hence, the answers are:

[tex]\begin{gathered} \begin{equation*} W^{\prime}(3,-7) \end{equation*} \\ \begin{equation*} X^{\prime}(6,-5) \end{equation*} \\ \begin{equation*} Y^{\prime}(7,-3) \end{equation*} \\ \begin{equation*} Z^{\prime}(3,-2) \end{equation*} \end{gathered}[/tex]

This is shown in the graph bwlow for further undertanding:

Find equation of a parallel line and the given points. Write the equation in slope-intercept form Line y=3x+4 point (2,5)

Answers

Given the equation:

y = 3x + 4

Given the point:

(x, y ) ==> (2, 5)

Let's find the equation of a line parallel to the given equation and which passes through the point.

Apply the slope-intercept form:

y = mx + b

Where m is the slope and b is the y-intercept.

Hence, the slope of the given equation is:

m = 3

Parallel lines have equal slopes.

Therefore, the slope of the paralle line is = 3

To find the y-intercept of the parallel line, substitute 3 for m, then input the values of the point for x and y.

We have:

y = mx + b

5 = 3(2) + b

5 = 6 + b

Substitute 6 from both sides:

5 - 6 = 6 - 6 + b

-1 = b

b = -1

Therefore, the y-intercept of the parallel line is -1.

Hence, the equation of the parallel line in slope-intercept form is:

y = 3x - 1

ANSWER:

[tex]y=3x-1[/tex]

Kara categorized her spending for this month into four categories: Rent, Food, Fun, and Other. Theamounts she spent in each category are pictured here.Food$333Rent$417Other$500Fun$250What percent of her total spending did she spend on Fun? Answer to the nearest whole percent.

Answers

In this problem we have to calculate the total spences so we add all the costs so:

[tex]\begin{gathered} T=333+417+500+250 \\ T=1500 \end{gathered}[/tex]

So 1500 is the 100% so now we can calculate which percentage correspount to 250 so:

[tex]\begin{gathered} 1500\to100 \\ 250\to x \end{gathered}[/tex]

so the equation is:

[tex]\begin{gathered} x=\frac{250\cdot100}{1500} \\ x=16.66 \end{gathered}[/tex]

So she spend 16.66% in fun

What are all of the x-intercepts of the continuousfunction in the table?Х-4-20246f(x)02820-20 (0,8)O (4,0)O (4,0), (4,0)O (4,0), (0, 8), (4,0)

Answers

The x-intercepts of any function f(x) occur when f(x)=0.

As a reminder, f(x) corresponds to the y coordinate for any given x.

So, we need to focus on the parts of the table where f(x)=0 and look at the x value, that will give us the coordinates of the x-intercepts.

We can see the first entry in the table has f(x)=0 and x= -4.

The only other entry in the table where f(x)=0 has x=4.

As such, the x-intercepts of the given function are (-4,0) and (4,0), which are the coordinates presented in the third option.

Given the functions, f(x) = 6x+ 2 and g(x)=x-7, perform the indicated operation. When applicable, state the domain
restriction.

Answers

The domain restriction for (f/g)(x) is x=7

What are the functions in mathematics?

a mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable.

What does a domain math example mean?

The collection of all potential inputs for a function is its domain. For instance, the domain of f(x)=x2 and g(x)=1/x are all real integers with the exception of x=0.

Given,

f(x) = 6x+2

g(x) = x-7

So,

(f/g)(x) = 6x+2/x-7

Remember that the denominator can not be equal to zero

Find the domain restriction

x-7=0

x=7

Therefore, the domain is all real numbers except the number 7

(-∞,7)∪(7,∞)

To know more about functions visit:

https://brainly.com/question/12431044

#SPJ13

4 5 3 7 89 65Each time, you pick one card randomly and then put it back.What is the probability that the number on the card you pickfirst time is odd and the number on the second card you take isa multiple of 2? Keep your answers in simplified improperfraction form.Enter the answer

Answers

We have a total of 8 cards, where 3 of them are a multiple of 2, and 5 is an odd number. Consider that event A represents the probability of picking an odd number and event B is picking a multiple of 2. We know that the events are independent (because we put the cards back), therefore the probability of A and B can be expressed as

[tex]P(A\text{ and }B)=P(A)\cdot P(B)[/tex]

Where

[tex]\begin{gathered} P(A)=\frac{5}{8} \\ \\ P(B)=\frac{3}{8} \end{gathered}[/tex]

Therefore

[tex]P(A\text{ and }B)=\frac{5}{8}\cdot\frac{3}{8}=\frac{15}{64}[/tex]

The final answer is

[tex]P(A\text{ and }B)=\frac{15}{64}[/tex]

How do we determine the number of hours each family used the sprinklers?

Answers

Given:

The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The combined usage of sprinkler is 40 hours. The resulting water output is 1250L.

To find:

The number of hours each family used the sprinkler.

Solution:

Let Martinez family used sprinkler for x hours and Green family used sprinkler for y hours.

Since the combined usage of sprinklers is 40 hours. So,

[tex]x+y=40...\left(i\right)[/tex]

The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The resulting water output is 1250L. So,

[tex]\begin{gathered} 25x+35y=1250 \\ 5x+7y=250...\left(ii\right) \end{gathered}[/tex]

Multiply (i) by 7 and subtract from (ii), to get:

[tex]\begin{gathered} 5x+7y-7\left(x+y\right)=250-7\left(40\right) \\ 5x+7y-7x-7y=250-280 \\ -2x=-30 \\ x=\frac{-30}{-2} \\ x=15 \end{gathered}[/tex]

Now, we get x = 15, Put x = 15 in the equation (i):

[tex]\begin{gathered} 15+y=40 \\ y=40-15 \\ y=25 \end{gathered}[/tex]

Thus, x = 15, y = 25.

I need help creating a tree diagram for this probability scenario

Answers

We need to draw a tree diagram for the information given

The total is 400

120 in finance course

220 in a speech course

55 in both courses

Then we start for a tree for the given number

Then to make the tree for probability we will divide each number by a total 400

Then the probability of finance only is 65/400

The probability of speech only is 165/400

The probability of both is 55/400

The probability of neither is 5/400

The probability of finance or speech is 285/400

An insurance company offers flood insurance to customers in a certain area. Suppose they charge $500 fora given plan. Based on historical data, there is a 1% probability that a customer with this plan suffers aflood, and in those cases, the average payout from the insurance company to the customer was $10,000.Here is a table that summarizes the possible outcomes from the company's perspective:EventFloodPayout Net gain (X)$10,000 -$9,500$0$500No floodLet X represent the company's net gain from one of these plans.Calculate the expected net gain E(X).E(X) =dollars

Answers

The given is a discrete random variable.

For a discrete random variable, the expected value is calculated by summing the product of the value of the random variable and its associated probability, taken over all of the values of the random variable.

It is given that the probability of a flood is 1%=0.01.

It follows that the probability of no flood is (100-1)%=99%.

Hence, the expected net gain is:

[tex]E(X)=0.01(-9500)+0.99(500)=-95+495=400[/tex]

Hence, the expected net gain is $400.

The expected net gain is E(X) = $400.

Sparkles the Clown makes balloon animals for children at birthday parties. At Bridget's party, she made 5 balloon poodles and 1 balloon giraffe, which used a total of 15 balloons. For Eduardo's party, she used 7 balloons to make 1 balloon poodle and 1 balloon giraffe. How many balloons does each animal require?

Answers

Let p be the number of balloons required to make one balloon poodle and g the number of balloons required to make one balloon giraffe.

Then we have:

I) 5p + g = 15

II) p + g = 7

Subtracting equation II from equation I, we have:

5p - p + g - g = 15 - 7

4p = 8

p = 8/4

p = 2

Replacing p with 2 in equation II we have:

2 + g = 7

g = 7 - 2

g = 5

Answer: Each poodle requires 2 balloons and each giraffe requires 5 balloons.

0.75 greater than 1/2

Answers

True

0.75 is greater than 0.5

Explanation

Step 1

remember

[tex]\frac{a}{b}=\text{ a divided by b}[/tex]

then

[tex]\frac{1}{2}=\text{ 1 divided by 2 = 0.5}[/tex]

Step 2

compare

0.75 and 0.5

[tex]0.75\text{ is greater than 0.5}[/tex]

I hope this helps you

FOR GREATER THAN WE ADD THE TERMS.

MATHEMATICALLY THIS MEANS

[tex] = 0.75 + \frac{1}{2} \\ = 0.75 + 0.5 \\ = 1.25[/tex]

1.25 is the answer.

Anna weighs 132 lb. Determine her mass in kilograms using the conversion 1 kg equal 2.2 lb. Use this mass to answer this question. calculate Anna's weight on Jupiter. (G= 25.9 m/ S2) must include a unit with your answer

Answers

Input data

132 lb

132 lb * 1kg / 2.2lb = 60 kg

Anna's weight on Jupiter

w = 60 kg * 25.9 m/S2

w = 1554 N

Be specific with your answer thank you thank you thank you bye-bye

Answers

The y-axis on the graph, that shows us the cost, goes from 2 to 2 units.

To find the cost at option one, the red line, we look in the graph where the line is when x = 80.

For x= 80, y= 58

Now, the same for option 2:

For x = 80, y= 44.

58-44 = 14

Answer: The difference is 14.

Other Questions
What advantages exist when using the balloons to model molecular shapes verses using model kits?. What is the measure of the angle at the bottom of home plate? when a firm attempts to determine whether the product will perform according to its design and whether it satisfies the need for which it was intended, it partakes in Lavania is studying the growth of a population of fruit flies in her laboratory. After 6 days, she had ninemore than five times as many fruit flies as when she began the study. If she observes 20 fruit flies on the firstday of the study, write and evaluate an expression to find the population of fruit flies Lavania observed after6 days. I would like to know how to solve this answer. Given a family with four children, find the probability of the event. All are boys. The probability that all are boys The following relation defines y as a one-to-one function of x x y3.0 7.45-8.4 -8.072.4 -9.16-1.5 7.45TrueFalse Write a formal persuasive e-mail to a public figure who is successful and in a field that you are interested in that you would like to be an intern for. This e-mail should be addressing the person and discussing their impact in their field. After, you should discuss your interest in the field and why you should work for them. Make sure you include a subject, salutation (Hello _____,), body, and closing (Sincerely,______). PLEASE HELP ME THIS IS SUPER OVERDUE !!! WILL GIVE BRAINLIESTin 1-2 sentences explain the change of relationship between religious and secular authorities after muhammads death. after electrophoresis dna fragments through an agarose gel, you examine the dna band that is closest to the positive electrode. how does this dna fragment compare to the others on the gel? Round your answer to the nearest hundredth.A = 8.4 inCalculate the diameter of the circle.O 3.27 inO 4.20 inO 1.75 inO2.89 in Which of the following were among the aims of Louis XIV's religious policies? Select all that apply.granting religious toleration to the Arsonists and Quietistssuppressing the work of the Jesuit ordergranting religious toleration to all French peopleimposing religious unity upon all French peopleproviding some rights to Protestants living in France Mike owns swibel trucking, a successful trucking business, as a sole proprietor. After many successful years in business, one night he decides he wants to change his business to a partnership so that he can share the burden and devote more time to pursue his hobby of duck watching full time. What steps must he take to change the type of business entity to a partnership?. genetic information of plants, animals, bacteria and many viruses is stored in deoxyribonucleic acid polymers (dna). the backbone of the polymer is a made up of the phosphorylated carbohydrate ribose with one less oh group on it. based on what you know about amino acid properties and the charge of phosphates at physiological ph what amino acids would be best at binding dna? group of answer choices positively charged ones like k and r negatively charged ones like d and e uncharged polar ones like t and c nonpolar ones like a and g due wensday but prefered be done now Business Mathematics question ) - At a farming supply store 7 pounds of seed cost $141.96. If a farmer needed 4 pounds ofseeds, how much would it cost him? I need help 9th grade math A machine that makestoy spinners operates for 8 hours eachday. The machine makes 7,829 toyspinners inday. About howmany toyspinners does the machine make eachhour? 13 The population of a Ramilo village was 12000 in the mid of the year. Among them 125 birth took place, and 5 were recorded as still birth. In the same year 100 were found death, 350 joined the village and 250 left due to various reasons. Calculate the rate of natural increase.