The heat that is transferred in the reaction can be given as -42.7kJ/mol
What is the heat?We know that the reaction equation can be written as;
HCl + NaOH ---->NaCl +H2O
Then Number of moles of HCl = 75/1000 * 1.25 = 0.09375 moles
Then we know that the total mass of the solutions is;
(75g + 75 g) = 150 g
We would then have the heat that is absorbed by the solution in the calorimeter as;
H = mcdT
H = 150 * 4.18 * (28.32 - 21.45)
H = 4.3 kJ
The heat of the reaction is thus;
ΔH rxn = -(4.3 kJ)/0.09375 moles
= -42.7kJ/mol
Learn more about reaction:https://brainly.com/question/28984750
#SPJ1
a concentration cell was set up at using two hydrogen electrodes. if the cell is generating a potential of , answer the following questions: a) what is the concentration of in the cathode's half-cell solution, if the anode's half-cell is ?
A concentration cell is an electrochemical cell in which the same half-cells are used, but the concentrations of the electrolyte solutions in the half-cells are different. The cell generates a potential that depends on the difference in concentration between the two half-cells.
In this particular concentration cell, two hydrogen electrodes are used, and the potential generated by the cell is not provided in the question. Therefore, we cannot calculate the concentration of the cathode's half-cell solution directly. However, we can use the Nernst equation to calculate the potential generated by the cell, given the concentrations of the two half-cell solutions.
The Nernst equation is given by:
E = E° - (RT/nF) ln(Q)
where E is the cell potential, E° is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred in the cell reaction, F is the Faraday constant, and Q is the reaction quotient.
For the hydrogen half-cell reaction, the standard potential is 0.00 V. The reaction is:
2H+ + 2e- -> H2
Assuming that the half-cells are at standard pressure (1 atm
for more such questions on electrochemical
https://brainly.com/question/30375518
#SPJ11
Describe the action of concentrated tetraoxosulphate (VI) acid on sugar
Using equations
The equation of the dehydration of sugar is;
C12H22O11+nH2SO4→12C+11H2O+nH2SO4
How does concentrated sulfuric acid dehydrate sugar?The sugar molecule is then attacked by the hydronium ions, which cause the glycosidic bonds holding the sugar molecules together to rupture. The sugar molecule disintegrates into its component carbon and water molecules as a result.
Sugar and sulfuric acid react in a way that is very exothermic, or one that produces a lot of heat.
The combination may boil as a result of this heat, releasing a dark, carbonaceous material.
Learn more about dehydration of sugar:https://brainly.com/question/7184579
#SPJ1
for the following equilibrium, if the concentration of barium ion is x, what will be the molar solubility of barium sulfate given the reaction: BaSO4 (s) <==> Ba^2+(aq) +SO4^-2 (aq). Report your answer in terms of X.
The molar solubility of barium sulfate is x.
Molar solubility represents the number of ions dissolved per liter of solution. The relation between the solubility and the solubility product constant depends on the stoichiometry of the dissolution reaction.
When a slightly soluble ionic compound is placed in water, there is an equilibrium between the solid state and the aqueous ions. This is found by the equilibrium constant for the reaction.
For the equilibrium reaction:
BaSO₄ (s) ⇌ Ba²⁺ (aq) + SO₄²⁻ (aq),
the molar solubility of barium sulfate can be expressed in terms of the concentration of barium ion [Ba²⁺]
Since the stoichiometry of the reaction is 1:1 between BaSO₄ and Ba²⁺, the molar solubility of BaSO₄ is equal to the concentration of barium ion [Ba²⁺].
Therefore, the molar solubility of barium sulfate is represented as [BaSO4] = [Ba²⁺] = x.
Learn more about Molar solubility, here:
https://brainly.com/question/28170449
#SPJ12
PART OF WRITTEN EXAMINATION:
In an anodic process:
A) positively charged ions leave the anode and enter the electrolyte
B) Electrons flow through the electronic path cathode to anode
C) negatively charged ions leave the anode and enter the electrolyte
D) ions become atoms
In an anodic process: A) positively charged ions leave the anode and enter the electrolyte. In an anodic process, the anode is the electrode where oxidation occurs.
Oxidation involves the loss of electrons, so the anode loses electrons and becomes positively charged. As a result, positively charged ions (also known as cations) leave the anode and enter the electrolyte, which is the solution or medium surrounding the electrodes. This process is essential for many electrochemical reactions and is a fundamental principle in electrochemistry. The flow of electrons through the electronic path from the cathode to the anode is known as the cathodic process, which is the opposite of the anodic process.
Therefore, the correct answer is A) positively charged ions leave the anode and enter the electrolyte.
Learn more abou electrolyte here:
brainly.com/question/29771118
#SPJ11
In the modern wave-mechanical model of the atom, the orbitals are regions of the most probable location of
Orbitals are areas where electrons are most likely to be found in the wave-mechanical model of the atom. The smallest component of any element, molecule, or compound is an atom. Atoms cannot be split further. Option 4 is Correct.
Atoms have a central nucleus and electrons that move in a set orbit around it. Only the likelihood that an electron will be discovered in a specific area of space surrounding the nucleus is provided by orbitals.
Both hydrogen and polyelectronic atoms may be described by the wave mechanical model. The region of space known as orbitals is where electrons are most likely to be located, however orbitals do not represent how an electron travels within an atom. Option 4 is Correct.
Learn more about wave-mechanical visit: brainly.com/question/26116832
#SPJ4
Correct Question:
In the wave-mechanical model of the atom, orbitals are regions of the most probable locations of
(1) protons (3) neutrons
(2) positrons (4) electrons
Approximately how many categories of chemicals are "peroxide formers?"
3
8
12
23
Approximately 3 categories of chemicals that are considered "peroxide formers."
Peroxide formers are chemicals that can form dangerous peroxides when exposed to air or light. These chemicals are typically classified into three main categories:
1. Severe peroxide hazard chemicals
2. Moderate peroxide hazard chemicals
3. Low peroxide hazard chemicals
Hence, there are about 3 categories of chemicals that are known as peroxide formers. These chemicals can form dangerous peroxides when exposed to certain conditions, and their hazard levels are classified as severe, moderate, or low.
learn more about peroxide formers click here:
https://brainly.com/question/30410912
#SPJ11
Question 6 A 5.00 mL aliquot of a 0.20 M HCl solution is diluted to a final volume of 25.00 mL. What is the molarity of this first dilution solution? Not complete Points out of 2.0 Then a second dilution was made by taking 2.00 mL of the first dilution and diluting it to 50.00 mL. What is the molarity of this second dilution? P Flag question Select one: 1 st Dilution = 0.0100 M; 2nd Dilution = 4.00 x 104 M. 1 st Dilution = 0.0400 M; 2nd Dilution = 1.60 x 10M. 1 st Dilution = 0.0250 M; 2nd Dilution = 4.00 x 10M 1 st Dilution = 0.0800 M; 2nd Dilution = 3.20 x 10 M Check
Therefore, the molarity of the second dilution solution is 0.0016 M. For the first dilution, you can use the formula M1V1 = M2V2, where M1 is the initial molarity (0.20 M), V1 is the initial volume (5.00 mL), M2 is the final molarity, and V2 is the final volume (25.00 mL).
To solve this problem, we can use the equation:M1V1 = M2V2
Where M1 is the initial molarity, V1 is the initial volume, M2 is the final molarity, and V2 is the final volume.For the first dilution, we have:
M1 = 0.20 M
V1 = 5.00 mL = 0.005 L
V2 = 25.00 mL = 0.025 L
Plugging these values into the equation, we get:(0.20 M)(0.005 L) = M2(0.025 L)
Solving for M2, we get:
M2 = 0.0400 M
Therefore, the molarity of the first dilution solution is 0.0400 M.For the second dilution, we have:
M1 = 0.0400 M
V1 = 2.00 mL = 0.002 L
V2 = 50.00 mL = 0.050 L
Plugging these values into the equation, we get:(0.0400 M)(0.002 L) = M2(0.050 L)
Solving for M2, we get:M2 = 0.0016 M
(0.20 M)(5.00 mL) = M2(25.00 mL)
M2 = 0.0400 MFor the second dilution, the initial molarity is now 0.0400 M, and the initial volume is 2.00 mL. The final volume is 50.00 mL.(0.0400 M)(2.00 mL) = M2(50.00 mL)
M2 = 1.60 x 10^-3 MSo, the correct answer is: 1st Dilution = 0.0400 M; 2nd Dilution = 1.60 x 10^-3 M.
Learn more about molarity here
https://brainly.com/question/30404105
#SPJ11
how many atoms are there in 6.2 grams of silver
What is the mass ratio and atomic ratio of S2Cl2
The atomic ratio of S₂Cl₂ is: 2 sulfur atoms : 2 chlorine atoms
Simplifying this ratio by dividing both sides by 2, we get: 1 sulfur atom : 1 chlorine atom
The molecular formula of S₂Cl₂ indicates that there are two sulfur atoms and two chlorine atoms in the molecule.
To calculate the mass ratio and atomic ratio of S₂Cl₂, we need to know the atomic masses of sulfur and chlorine:
Atomic mass of sulfur (S) = 32.06 g/mol
Atomic mass of chlorine (Cl) = 35.45 g/mol
Mass ratio of S₂Cl₂:
Mass of 2 sulfur atoms = 2 x 32.06 g/mol = 64.12 g/mol
Mass of 2 chlorine atoms = 2 x 35.45 g/mol = 70.90 g/mol
Total mass of S₂Cl₂= 64.12 g/mol + 70.90 g/mol = 135.02 g/mol
So the mass ratio of S₂Cl₂ is:
64.12 g/mol : 70.90 g/mol
Atomic ratio of S₂Cl₂:
The atomic ratio of S₂Cl₂refers to the ratio of the number of atoms of each element in the molecule. As mentioned earlier, there are 2 sulfur atoms and 2 chlorine atoms in S₂Cl₂ Therefore, the atomic ratio of S₂Cl₂ is:
2 sulfur atoms : 2 chlorine atoms
Simplifying this ratio by dividing both sides by 2, we get:
1 sulfur atom : 1 chlorine atom
Learn more about chlorine atom
https://brainly.com/question/1127028
#SPJ4
Question 58
Which one of the following metals is most fatal to fish when it becomes dissolved in acid waters?
a. Manganese
b. lead
c. Aluminum
d. zinc
The answer to question 58 is c. Aluminum. When aluminum dissolves in acid waters, it can be extremely toxic to fish, causing death or other negative effects on their health. Acid waters are bodies of water that have a low pH due to acid rain or other sources of acidity.
These acid waters can dissolve metals and other pollutants, making them even more harmful to aquatic life. It is important to monitor and regulate the pH and pollution levels in bodies of water to ensure the health and survival of fish and other aquatic organisms. The most fatal metal to fish when it becomes dissolved in acid waters is c. Aluminum. In acidic environments, aluminum becomes more soluble and toxic to aquatic life, including fish. Elevated levels of dissolved aluminum can lead to gill damage, reduced growth, and even death in fish populations. Although manganese, lead, and zinc can also be harmful in high concentrations, aluminum poses a greater threat in acid waters due to its increased solubility and toxicity.
Learn more about Aluminum here
https://brainly.com/question/246454
#SPJ11
for each atom, determine how many dots (valence electrons) should be drawn around the element symbol in the lewis structure for a lone, neutral atom.the lewis structure of an oxygen atom should have choose... dots drawn around the symbol o.the lewis structure of a calcium atom should have choose... dots drawn around the symbol ca.the lewis structure of a nitrogen atom should have choose... dots drawn around the symbol n.the lewis structure of an aluminum atom should have choose... dots drawn around the symbol al.the lewis structure of a fluorine atom should have choose... dots drawn around the symbol f.
The Lewis structure of an atom is a representation of its valence electron configuration. The number of dots drawn around the element symbol in the Lewis structure of a neutral, lone atom is equal to the number of valence electrons in that atom's outer shell.
For example, the Lewis structure of an oxygen atom should have six dots drawn around the symbol O, as oxygen has six valence electrons. Similarly, the Lewis structure of a calcium atom should have eight dots drawn around the symbol Ca, as calcium has eight valence electrons.
The Lewis structure of a nitrogen atom should have five dots drawn around the symbol N, as nitrogen has five valence electrons. The Lewis structure of an aluminum atom should have three dots drawn around the symbol Al, as aluminum has three valence electrons.
Finally, the Lewis structure of a fluorine atom should have seven dots drawn around the symbol F, as fluorine has seven valence electrons. By following the number of dots drawn around the element symbol in a Lewis structure, one can determine the number of valence electrons in the outer shell of an atom.
Know more about Lewis structure here
https://brainly.com/question/4144781#
#SPJ11
Formula and molecular masses are calculated using the chemical ___ of the relevant compound and atomic masses obtained from the ___ table. The ___ of the atomic masses in the correct proportions gives the formula or molecular mass of the compound.
Formula and molecular masses are calculated using the chemical formula of the relevant compound and atomic masses obtained from the periodic table.
The combination of the atomic masses in the correct proportions gives the formula or molecular mass of the compound. To calculate the formula mass, the sum of the atomic masses of each atom in the compound must be determined. The atomic masses of each element can be found on the periodic table. After the atomic masses of all the elements are determined, the atomic masses for each element must be multiplied by the number of atoms of that element in the compound. This results in the total mass of each element in the compound.
To learn more about atomic masses click here https://brainly.com/question/5661976
#SPJ11
We know that the solid form of water (ICE) is less dense than the liquid form of water ( LIQUID WATER). When water freezes it starts at the top and freezes down through to the bottom. A scientist thinks that wax will also freeze from top to bottom. Describe the steps of how a scientist would test this
A scientist would test if wax freezes from top to bottom using a systematic and controlled experiment.
First, they would gather materials such as wax in its liquid state, a container to hold the wax, a temperature-controlled environment, and temperature sensors or thermometers.
The scientist would start by pouring the liquid wax into the container and placing it in the temperature-controlled environment. They would set the temperature below the freezing point of wax to ensure that it solidifies during the experiment. The temperature sensors would be placed at different depths of the wax, including the top, middle, and bottom, to monitor temperature changes throughout the freezing process.
Next, they would continuously observe and record the temperature at each sensor. This data would provide insights into the freezing pattern of wax, allowing the scientist to determine whether it solidifies from top to bottom or follows a different pattern.
Throughout the experiment, the scientist would control external factors, such as maintaining a constant temperature in the environment and avoiding disturbances that could affect the freezing process. Once the wax has solidified, they would analyze the recorded temperature data and visually inspect the frozen wax to confirm their findings.
If the results indicate that wax freezes from top to bottom, this would support the scientist's hypothesis. However, if the data suggests otherwise, the scientist may need to explore alternative explanations for the freezing behavior of wax.
To know more about experiment, refer to the link below:
https://brainly.com/question/28605706#
#SPJ11
When preparing a dilute solution from a more concentrated one, be sure to carry out the necessary calculations _____ getting started with any glassware. Use a _________ to transfer an aliquot of the concentrated solution into a clean, dry volumetric flask. Add a small amount of solvent, swirl the flask, then fill to the _________. Mix the solution and label the flask
When preparing a dilute solution from a more concentrated one, be sure to carry out the necessary calculations before getting started with any glassware. This is important to ensure that the resulting solution has the desired concentration and accuracy.
Use a pipette to transfer an aliquot (a measured portion) of the concentrated solution into a clean, dry volumetric flask. The pipette should be chosen based on the amount of solution needed, and should be calibrated to ensure accuracy.
Add a small amount of solvent (the diluent) to the flask, and swirl it gently to dissolve the solute (the substance being dissolved). Then, fill the flask to the calibration mark with solvent, using a dropper or funnel to avoid spillage.
Mix the solution thoroughly by swirling or inverting the flask, being careful not to introduce any air bubbles. Label the flask with the identity and concentration of the solution, and any other relevant information such as the date and preparer's name.
Learn more about volumetric flask
https://brainly.com/question/19517011
#SPJ4
calculate the ph of the solution upon the addition of 0.015 mol of naoh to the original buffer. express your answer to two decimal places.
The pH of the solution upon the addition of 0.015 mol of NaOH to the original buffer is 4.85.
To calculate the pH of the solution upon the addition of 0.015 mol of NaOH to the original buffer, we first need to determine the concentration of the buffer solution. Let's assume the buffer is made up of 0.1 M acetic acid and 0.1 M sodium acetate.
Using the Henderson-Hasselbalch equation:
pH = pKa + log([A⁻]/[HA])
where pKa is the dissociation constant of the acid, [A⁻] is the concentration of the conjugate base (in this case, sodium acetate), and [HA] is the concentration of the acid (acetic acid).
The pKa of acetic acid is 4.76. Plugging in the values:
pH = 4.76 + log([0.1]/[0.1])
pH = 4.76
So the initial pH of the buffer is 4.76.
Now, upon the addition of 0.015 mol of NaOH, we need to calculate the new concentration of the buffer components.
Since NaOH is a strong base, it will react with the acetic acid to form water and the acetate ion:
CH₃COOH + NaOH → CH₃COO⁻ + H₂O
The 0.015 mol of NaOH will react with 0.015 mol of acetic acid, leaving 0.085 mol of acetic acid and 0.115 mol of acetate ion.
Now we can calculate the new pH using the Henderson-Hasselbalch equation again:
pH = 4.76 + log([0.115]/[0.085])
pH = 4.85
Therefore, the pH of the solution upon the addition of 0.015 mol of NaOH to the original buffer is 4.85, expressed to two decimal places.
To know more about pH, refer to the link below:
https://brainly.com/question/10570204#
#SPJ11
Are diatoms a good alternative source of energy? Use 5 articles about diatoms as a renewal source of energy. Describe 3 pros and 3 cons using evidence from the articles.
Diatoms have been studied as a potential source of renewable energy due to their high lipid content and ability to grow rapidly. The pros of using diatoms as an alternative source of energy are their rapid growth rate, high lipid content, and low environmental impact. Cons are high production costs, competition for resources, and limited scalability.
Diatoms show potential as a source of renewable energy due to their rapid growth rate, high lipid content, and low environmental impact, but there are also challenges to their widespread adoption, including high production costs, limited scalability, and competition for resources. Further research is needed to determine the feasibility and practicality of using diatoms as an alternative source of energy.
Learn more about diatoms here.
https://brainly.com/question/2507344
#SPJ1
Answer:
Yes
Explanation:
harness solar energy for photosynthesis
for the following endothermic reversible reaction at equilibrium, how will removing no(g) affect it? 4no(g) 6h2o(g) rightwards harpoon over leftwards harpoon with blank on top 4nh3(g) 5o2(g)
Removing NO(g) from the equilibrium of the endothermic reversible reaction will shift the equilibrium to the left, resulting in an increase in the production of NO(g) and H₂O(g) while consuming NH₃(g) and O₂(g).
For the endothermic reversible reaction at equilibrium, removing NO(g) will affect it as follows:
Reaction: 4NO(g) + 6H₂O(g) ⇌ 4NH₃(g) + 5O₂(g)
Since this is an endothermic reaction, it means that the reaction absorbs heat from its surroundings when it proceeds in the forward direction (left to right). At equilibrium, the rates of the forward and reverse reactions are equal.
When you remove NO(g) from the system, you are essentially decreasing the concentration of NO(g) in the reaction mixture. According to Le Chatelier's principle, the system will counteract this change by shifting the position of equilibrium to restore the balance.
In this case, the equilibrium will shift to the left to replenish the NO(g) that was removed. This means the reaction will proceed more in the reverse direction (right to left), producing more NO(g) and H₂O(g) while consuming NH₃(g) and O₂(g).
In summary, removing NO(g) from the endothermic reversible reaction at equilibrium will cause the reaction to shift to the left, producing more NO(g) and H₂O(g) while consuming NH₃(g) and O₂(g).
To know more about the endothermic reversible reaction refer here :
https://brainly.com/question/17163217#
#SPJ11
what is the condensed electron configuration of a ground state atom of manganese (Z =25).
The condensed electronic configuration of a ground state atom of manganese is [tex][Ar] 3d^5 4s^2[/tex].
Electronic configuration is defined as the distribution of electrons which are present in an atom or molecule in atomic or molecular orbitals.It describes how each electron moves independently in an orbital.
Knowledge of electronic configuration is necessary for understanding the structure of periodic table.It helps in understanding the chemical properties of elements.Manganese has five electrons in d-orbital and two in s-orbital .
Thus, the condensed electronic configuration of a ground state atom of manganese is [tex][Ar] 3d^5 4s^2[/tex].
Learn more about electronic configuration,here:
https://brainly.com/question/29184975
#SPJ12
Which of the following is not a positive aspect of flooding?
a. rich river deposits
b. habitat for animals
c. fertilizer for farmers
d. brings in salt water to help cleanse wetlands
D. Brings in salt water to help cleanse wetlands is not a positive aspect of flooding.
What are the positive aspect of flooding?Not all aspects of flooding are negative since it can actually benefit both humans and nature alike. To begin with, fertile river deposits improve the quality of arable land leading to increased crop yield in farming communities.
Moreover, its role in providing a conducive ecosystem for aquatic give these species a chance to thrive and develop undisturbed and comfortably.
Learn about flood here https://brainly.com/question/1567872
#SPJ1
which of the following equations correctly represents the number of moles (n) of a gas in terms of pressure, volume and temperature?
a.n=pv/rt
b.n=rt/pv
c=pv-rt
The correct equation that represents the number of moles (n) of a gas in terms of pressure, volume, and temperature is (a) n = pv/rt. This equation is known as the Ideal Gas Law and is derived from combining the Boyle's Law, Charles's Law, and Avogadro's Law. The equation shows that the number of moles of a gas is directly proportional to the product of pressure and volume and inversely proportional to the product of temperature and the gas constant (R).
This equation is useful in calculating the number of moles of a gas in a given system and can also be used to determine the pressure, volume, or temperature of a gas if other parameters are known.
In this equation, R is the ideal gas constant (8.314 J/mol K). The relationship states that the product of the pressure and volume of a gas is directly proportional to the number of moles and the temperature. By using this equation, you can find the number of moles of gas when the pressure, volume, and temperature are known.
For more information on Ideal Gas see:
https://brainly.com/question/31463642
#SPJ11
A substance that keeps its shape because its particles can't flow freely is a(n) _____________.
The substance that keeps its shape because its particles cannot flow freely is known as a solid. Solids have a fixed shape and volume because the particles are tightly packed together and cannot move freely.
The particles in solids are arranged in a specific pattern that gives them a definite shape. This pattern of arrangement is referred to as the crystal lattice structure.Solids are distinguished from liquids and gases by their ability to maintain their shape and volume. Liquids, on the other hand, take the shape of their container because their particles can flow freely, but they still have a fixed volume. Gases, on the other hand, can flow freely and can also expand or contract to fill the entire space available to them.In summary, a substance that keeps its shape because its particles cannot flow freely is a solid. This characteristic is due to the tight packing of particles and the arrangement of the crystal lattice structure. Solids are one of the three states of matter and are distinguished from liquids and gases by their fixed shape and volume.
Learn more about particles here
https://brainly.com/question/27911483
#SPJ11
each of the following equations shows the dissociation of an acid in water. which of the reactions occurs to the least extent?
The extent of dissociation of an acid depends on its acid dissociation constant (Ka) and the concentration of the acid in solution. The greater the value of Ka, the stronger the acid and the more it will dissociate in water.
Out of the given equations, HCl has the highest Ka value, making it the strongest acid. Therefore, it will dissociate the most and occur to the least extent.
On the other hand, H₃PO₄ has the lowest Ka value among the given acids, making it the weakest acid. Thus, it will dissociate the least and occur to the greatest extent.
Therefore, the dissociation of H₃PO₄ + H₂O --> H₃O+ + H₂PO⁴⁺ occurs to the least extent.
To know more about the dissociation of an acid refer here :
https://brainly.com/question/29165165#
#SPJ11
Each of the following equations shows the dissociation of an acid in water. Which of the reactions occurs to the LEAST extent?
HCl + H₂O --> H₃O + Cl⁻
HPO₄²⁻ + H₂O --> H₃O⁺ + PO₄³⁺
H₂SO₄ + H₂O --> H₃O⁺ + HSO⁴⁻
H₃PO₄ + H₂O --> H₃O⁺ + H2PO⁴⁻
_______ WILL BOIL AT A TEMPERATURE SAME WITH 2 m sugar solution
The boiling point of the liquid depends upon the pressure of the surrounding. A liquid at high pressure has a higher boiling point than the boiling point at normal atmospheric pressure. Here any solution with 2m concentration will boil at a same temperature.
The temperature at which the vapor pressure of the liquid becomes equal to the atmospheric pressure of the liquids environment is the boiling point. It is at this temperature, the liquid is converted into a vapour.
Since on increasing the number of moles the molality also increases and is directly proportional to an elevation in boiling point. So any solution with 2m concentration boil at same temperature.
To know more about boiling point, visit;
https://brainly.com/question/16945842
#SPJ1
Describe and provide detailed mechanism (use arrow pushing) for the preparation of 1,2- dibromo-1,2-diphenylethane 2 pts Provide potential undesired (side) reaction that can occur during the preparation of the 1,2- dibromo-1,2-diphenylethane_.
1,2-dibromo-1,2-diphenylethane is prepared through the bromination of trans-stilbene, a reaction involving an electrophilic addition mechanism.
The reaction starts with the generation of a bromine radical (Br•) by a free-radical initiator. This radical reacts with trans-stilbene, producing a brominated stilbene radical (Ph-CH=CH-Ph•Br). The brominated radical further reacts with another bromine radical to form the final product, 1,2-dibromo-1,2-diphenylethane (Ph-CHBr-CHBr-Ph).
Arrow pushing in the mechanism:
1. The π bond of trans-stilbene donates an electron pair to Br•, forming a bond between the carbon and bromine.
2. The brominated stilbene radical donates an electron pair to another Br•, forming a bond between the second carbon and bromine.
A potential undesired side reaction is the formation of 1,1-dibromo-1,2-diphenylethane, a regioisomer. This occurs when the brominated stilbene radical reacts with another bromine molecule (Br₂) instead of a bromine radical. The carbon-bromine bond in the intermediate species can break, forming a carbocation (Ph-CHBr-CH⁺-Ph) and a bromide ion (Br⁻). The carbocation then captures the bromide ion, resulting in the undesired product (Ph-CHBr₂-CHBr-Ph).
Arrow pushing in the side reaction:
1. The brominated stilbene radical donates an electron pair to Br₂, forming a bond between the second carbon and one bromine.
2. The carbon-bromine bond in the intermediate species breaks, producing a carbocation and a bromide ion.
3. The carbocation captures the bromide ion, forming the undesired product.
To know more about bromination, refer to the link below:
https://brainly.com/question/14678883#
#SPJ11
After having a glass of red wine, a chemistry student rinsed her glass in the sink. When the tap water ran into the glass, the wine residue changed from a deep red to a light-blue color. How could this student explain what is causing this color change?
The colour shift that occurs when tap water is added to a glass with wine residue is caused by a chemical reaction between the anthocyanin pigments in the wine and the calcium and magnesium ions that are dissolved in the water.
What is pH?The H⁺ ion concentration's negative logarithm is known as pH. As a result, the meaning of pH is justified as the strength of hydrogen.
The color change observed when tap water is added to a glass containing wine residue is due to a chemical reaction that occurs between the wine and the tap water. Specifically, the tap water contains dissolved ions, such as calcium and magnesium ions, which can react with the pigments in the red wine to form a precipitate.
Red wine contains anthocyanin pigments, which are responsible for the deep red color. When the tap water is added, the calcium and magnesium ions in the water react with the anthocyanin pigments to form a complex. This complex has a blue color, which causes the color change observed by the student.
The reaction between the calcium and magnesium ions and the anthocyanin pigments is pH-dependent. At a low pH, the anthocyanins are red in color. However, when the pH increases, the anthocyanins lose their red color and become blue. This is because the anthocyanin molecule contains a chromophore group that absorbs light at different wavelengths depending on the pH of the solution.
In summary, the color change observed when tap water is added to a glass containing wine residue is due to a chemical reaction between the dissolved calcium and magnesium ions in the water and the anthocyanin pigments in the wine. This reaction forms a blue-colored complex, which causes the color change. The pH of the solution also plays a role in the color change, as the anthocyanin pigments are pH-sensitive and change color depending on the pH of the solution.
Learn more about pH on:
https://brainly.com/question/26424076
#SPJ11
In an electrolytic cell which ion would migrate through the solution to the positive electrode:
A hydrogen ion
A chloride ion
An ammonium ion
A hydronium ion
In an electrolytic cell, a chloride ion would migrate through the solution to the positive electrode.
Why would chloride ion migrate to the positive electrode?In an electrolytic cell, ions follow a specific path depending on their electronegativity and the location of electrode reactions.
From a general perspective, cations (positively charged ion) head towards the negatively charged electrode known as cathodes since this is where reduction takes place. Here they receive electrons resulting in their transformation into neutral atoms or molecules.
On the contrary, anions (negatively charged ion) will migrate towards positive electrodes - namely anodes - as these are sites for oxidation which entails loss of electrons to produce uncharged forms. In this case, chloride ion is negatively charged ion.
Learn about anions here https://brainly.com/question/28971609
#SPJ1
Name the compound: C(CH3)₂H-C(C₂H5)H - CH₂ - C(CH3)3
Answer:
Explanation:
imethyl pentane
Which is the following statements are true with regard to displacement?
The statement that is true about displacement is D. 3 and 4 only.
What is true of displacement ?As per the halogen's reactivity series, bromine surpasses iodine in terms of its level of potency. Therefore, a reactive halogen can substitute another less reactive one from an aqueous solution of its salt.
The position of fluorine is towards the upper section of periodic table than that of chlorine, thus exhibiting more activity when compared with chlorine. A trend states that there exists an increase in oxidation ability (reactivity) of Halogens as one traverses up and across the periodic table towards right side.
Find out more on displacement at https://brainly.com/question/23981265
#SPJ1
Why do plants need humans
Answer: In a way, they are a cycle — plants help humans breathe by providing us with oxygen, and humans help plants "breathe" by providing them with carbon dioxide.
Answer:
mutualism
Explanation:
Plants provide humans with oxygen Humans provide plants with carbon dioxide we help each other.
How many moles of aluminum will be used when reacted with 1.35 moles of oxygen based on this chemical reaction? __Al + ___ O2 → 2Al2O3
This is due by midnight.
Answer:
The balanced chemical equation is: 4Al + 3O2 → 2Al2O3
From the equation, we can see that 4 moles of aluminum react with 3 moles of oxygen to form 2 moles of aluminum oxide.
Therefore, to find out how many moles of aluminum will react with 1.35 moles of oxygen, we can set up a proportion:
4 moles Al / 3 moles O2 = x moles Al / 1.35 moles O2
Cross-multiplying, we get:
4 moles Al × 1.35 moles O2 = 3 moles O2 × x moles Al
5.4 = 3x
x = 5.4 / 3
x = 1.8 moles Al
Therefore, 1.8 moles of aluminum will be used when reacted with 1.35 moles of oxygen