In a particular unit, the proportion of students getting an H
grade is 5%. What is the probability that a random sample of 10
students contains at least 3 students who get an H grade?

Answers

Answer 1

The probability of a random sample of 10 students containing at least 3 students who get an H grade can be calculated based on the given proportion of 5%.

To calculate the probability, we need to consider the binomial distribution. In this case, we are interested in the probability of getting at least 3 students who get an H grade out of a sample of 10 students.

To find this probability, we can calculate the probability of getting exactly 3, 4, 5, ..., 10 students with an H grade, and then sum up these individual probabilities. The probability of getting exactly k successes (students with an H grade) out of n trials (total number of students in the sample) can be calculated using the binomial probability formula.

In this case, we need to calculate the probabilities for k = 3, 4, 5, ..., 10 and sum them up to find the overall probability. This can be done using statistical software or by referring to a binomial probability table. The resulting probability will give us the likelihood of observing at least 3 students with an H grade in a random sample of 10 students, based on the given proportion of 5%.

Learn more about probability  here:

https://brainly.com/question/32117953

#SPJ11


Related Questions

12. [-/1 Points] DETAILS LARCALC11 14.1.007. Evaluate the integral. ſi y7in(x) dx, y > 0 Need Help? Read It Watch It

Answers

If there are no limits of integration provided, the result is: ∫ ysin(x) dx = -ycos(x) + C, where C is the constant of integration.

What is integration?

Integration is a fundamental concept in calculus that involves finding the integral of a function.

To evaluate the integral ∫ y*sin(x) dx, where y > 0, we can follow these steps:

Integrate the function y*sin(x) with respect to x. The integral of sin(x) is -cos(x), so we have:

∫ ysin(x) dx = -ycos(x) + C,

where C is the constant of integration.

Apply the limits of integration if they are provided in the problem. If not, leave the result in indefinite form.

If there are specific limits of integration given, let's say from a to b, then the definite integral becomes:

∫[a to b] ysin(x) dx = [-ycos(x)] evaluated from x = a to x = b

= -ycos(b) + ycos(a).

If there are no limits of integration provided, the result is:

∫ ysin(x) dx = -ycos(x) + C,

where C is the constant of integration.

Remember to substitute y > 0 back into the final result.

To learn more about integration visit:

https://brainly.com/question/30094386

#SPJ4

T/F when sampling with replacement, the standard error depends on the sample size, but not on the size of the population.

Answers

True, the standard error depends on the sample size, but not on the size of the population.

What is the standard error?

A statistic's standard error is the standard deviation of its sample distribution or an approximation of that standard deviation. The standard error of the mean is used when the statistic is the sample mean.

We know that ;

Standard error = σ/√n

The given statement is true.

The standard error is the standard deviation of a sample population.

Hence, the standard error depends on the sample size, but not on the size of the population.

To learn more about the standard error from the given link

https://brainly.com/question/1191244

#SPJ4

calcuate the marginal revenue of concession (g^) for the year 1991. do not include the $ in your answer.

Answers

The marginal revenue of concession (g^) for the year 2018 is 7.59%.

What is the marginal revenue of concession (g^) for the year 2018?

To know marginal revenue of concession (g^) for the year 2018, we can use the following formula: [tex]g^1 = (Pt - Pt-1) / (Pt / (1 + Pt)),[/tex] Pt = Effective Price for the year t and Pt-1 = Effective Price for the previous year (t-1)

Using the given data, we will find the values of Pt and Pt-1 for the year 2018.

Pt = Effective Price for 2018-19 = $71.83

Pt-1 = Effective Price for 2017-18 = $66.53

Now, substituting values:

g^ = ($71.83 - $66.53) / ($71.83 / (1 + $71.83))

g^ = 0.0759

g^ = 7.59%.

Full question:

Year 2014-15 2015-16 2016-17 2017-18 2018-19 Avgs. NBA Data AvgTkt $53.98 $55.88 $58.67 $66.53 $71.83 $61.38 Attend/G 16,442 17,849 17,884 17,830 17,832 17568 FCI $333.58 $339.02 $355.97 $408.87 $420.65 g^ PT PE Marginal revenue of concession Profit maximizing price Effective Price (MRc + MRT) Ratio Ideal to Actual PT/P* g^ PE PT p"/p* 2015-16 2016-17 2017-18 2018-19 $55.88 $58.67 $66.53 $71.83. Calcuate the marginal revenue of concession (g^) for the year 2018.

Read more about marginal revenue

brainly.com/question/10822075

#SPJ1


Find the gradient of the following function
f (x, y, z) = (x^2 − 3y^2 + z^2)/(2x + y − 4z)

Answers

The gradient of the function f(x, y, z) = (x^2 − 3y^2 + z^2)/(2x + y − 4z) is (∂f/∂x, ∂f/∂y, ∂f/∂z) = ((4x^2 - 3y^2 + 2z^2 + 6xy - 8xz)/(2x + y - 4z)^2, (-6xy + 6y^2 + 8yz - 6z^2)/(2x + y - 4z)^2, (-4x^2 + 6xy - 4y^2 + 4yz + 8z^2)/(2x + y - 4z)^2).

To find the gradient, we take the partial derivative of the function with respect to each variable (x, y, and z) separately, while keeping the other variables constant. The resulting partial derivatives form the components of the gradient vector.

To find the gradient of a function, we take the partial derivatives of the function with respect to each variable separately, while treating the other variables as constants. In this case, we have the function f(x, y, z) = (x^2 − 3y^2 + z^2)/(2x + y − 4z).

To find ∂f/∂x (the partial derivative of f with respect to x), we differentiate the function with respect to x while treating y and z as constants. This gives us (4x^2 - 3y^2 + 2z^2 + 6xy - 8xz)/(2x + y - 4z)^2.

Similarly, we find ∂f/∂y by differentiating the function with respect to y while treating x and z as constants. This yields (-6xy + 6y^2 + 8yz - 6z^2)/(2x + y - 4z)^2.

Finally, we find ∂f/∂z by differentiating the function with respect to z while treating x and y as constants. This results in (-4x^2 + 6xy - 4y^2 + 4yz + 8z^2)/(2x + y - 4z)^2.

The gradient vector (∂f/∂x, ∂f/∂y, ∂f/∂z) is formed by these partial derivatives, representing the rate of change of the function in each direction.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

A study was conducted to see if students from public high schools were more likely to attend public colleges compared to students from private high schools. Of a random sample of 100 students from public high schools, 60 were planning to attend a public college. Of a random sample of 100 students from private high schools, 50 of them planned to attend a public college. What are the two independent samples in this study? The students at public high schools and the students at private high schools. Public college or non-public college. Public and private high schools The students at public colleges and the students at private colleges

Answers

This comparison can provide insights into potential disparities in college choices based on the type of high school attended.

The students from public high schools and private high schools are the two independent samples in this study. The goal of the study is to compare how likely these two groups are to attend public colleges.

The principal test comprises of 100 understudies haphazardly chose from public secondary schools. Out of this example, 60 understudies were intending to go to a public school. The second sample consists of 50 students who planned to attend a public college out of a total of 100 students who were selected at random from private high schools.

By contrasting the extents of understudies arranging with go to public universities in each example, the review tries to decide whether there is a tremendous distinction in the probability of going to public universities between understudies from public secondary schools and those from private secondary schools. Based on the type of high school attended, this comparison may provide insight into potential disparities in college choices.

To know more about probability refer to

https://brainly.com/question/31828911

#SPJ11

what is the odds ratio for people afraid of heights being afraid of flying against people not afraid

Answers

The odds ratio for people who are afraid of heights being afraid of flying can be calculated using a case-control study design. In this design, individuals with and without a fear of flying are compared to determine the odds of having a fear of flying if someone already has a fear of heights. The odds ratio can be calculated by dividing the odds of having a fear of flying among those who are afraid of heights by the odds of having a fear of flying among those who are not afraid of heights. A higher odds ratio indicates a stronger association between the two fears.

Odds ratio is a measure of the strength of association between two variables. In this case, we are interested in the association between a fear of heights and a fear of flying. By calculating the odds ratio, we can determine if there is a higher likelihood of having a fear of flying if someone already has a fear of heights.

In conclusion, the odds ratio for people afraid of heights being afraid of flying can be calculated using a case-control study design. The higher the odds ratio, the stronger the association between the two fears. By understanding this relationship, we can better understand how different fears may be related and how they can impact our lives.

To know more about Odds Ratio visit:

https://brainly.com/question/31586619

#SPJ11

the following confidence interval is obtained for a population proportion

Answers

The margin of error (E) for the given confidence interval is 0.019.

How to calculate the value

It should be noted that the confidence interval is (0.707, 0.745), which means that we are 95% confident that the true population proportion is between 0.707 and 0.745. The margin of error is the amount of uncertainty in our estimate of the population proportion.

E = (upper limit - lower limit) / 2

In this case, the upper limit is 0.745 and the lower limit is 0.707. Plugging these values into the formula, we get:

E = (0.745 - 0.707) / 2

E = 0.038 / 2

E = 0.019

Therefore, the margin of error (E) for the given confidence interval is 0.019.

Learn more about confidence interval on

https://brainly.com/question/15712887

#SPJ1

The following confidence interval is obtained for a population proportion, p: (0.707, 0.745). Use these confidence interval limits to find the margin of error, E.

Select the correct answer.
What is the simplified form of this expression?

Answers

Answer: D - 6x^2 + 5x - 4/15

Step-by-step explanation:

To simplify the expression (8x^2 - 3x + 1/3) - (2x^2 - 8x + 3/5), we can combine like terms within the parentheses

8x^2 - 3x + 1/3 - 2x^2 + 8x - 3/5

Next, we can combine the like terms

(8x^2 - 2x^2) + (-3x + 8x) + (1/3 - 3/5)

Simplifying

6x^2 + 5x + (5/15 - 9/15)

The fractions can be simplified further

6x^2 + 5x + (-4/15)

Thus, the simplified expression is 6x^2 + 5x - 4/15

from 1990 to 2000 the student tuition at a university grew from $12,000 to $18,000. (a) using the exponential growth model, determine r, the annual rate of increase for the population as a decimal accurate to 3 places (b) assuming the same growth rate use r found in part (a) above, find in what year (to the nearest year) the tuition of rutgers will reach $30.000

Answers

To determine the annual rate of increase (r) using the exponential growth model, we can use the formula:

Final Value = Initial Value * (1 + r)^t

Where:

Final Value = $18,000 (tuition in 2000)

Initial Value = $12,000 (tuition in 1990)

t = 2000 - 1990 = 10 years (time period)

Using the formula, we can solve for r:

$18,000 = $12,000 * (1 + r)^10

Divide both sides by $12,000:

1.5 = (1 + r)^10

Taking the 10th root of both sides:

(1 + r) ≈ 1.5^(1/10)

(1 + r) ≈ 1.048808848

Subtracting 1 from both sides:

r ≈ 1.048808848 - 1

r ≈ 0.048808848

Therefore, the annual rate of increase (r) for the tuition is approximately 0.0488 or 4.88% (rounded to three decimal places).

Next, to find in what year the tuition will reach $30,000, we can use the same exponential growth model equation:

Final Value = Initial Value * (1 + r)^t

Where:

Final Value = $30,000

Initial Value = $12,000

r = 0.0488 (as found in part (a))

t = number of years we want to find

We need to solve for t:

$30,000 = $12,000 * (1 + 0.0488)^t

Divide both sides by $12,000:

2.5 = (1.0488)^t

Taking the logarithm of both sides (base 10 or natural logarithm can be used):

log(2.5) = log(1.0488)^t

Using logarithmic properties:

log(2.5) = t * log(1.0488)

Divide both sides by log(1.0488):

t ≈ log(2.5) / log(1.0488)

Using a calculator, we can find:

t ≈ 11.72

Rounded to the nearest year, the tuition of Rutgers will reach $30,000 in the year 1990 + 11.72 ≈ 2002.

Therefore, the tuition of Rutgers will reach $30,000 in the year 2002 (to the nearest year).

(a)The annual rate of increase (r) is approximately 0.047 or 4.7%

To determine the annual rate of increase (r) using the exponential growth model, we can use the formula:

P = P0 * (1 + r)^t

Where:

P is the final value (tuition at the end year),

P0 is the initial value (tuition at the starting year),

r is the annual rate of increase (as a decimal),

t is the number of years.

We are given that the tuition grew from $12,000 (P0) to $18,000 (P) over a period of 10 years (t = 2000 - 1990 = 10). Plugging these values into the formula, we can solve for r:

18,000 = 12,000 * (1 + r)^10

Dividing both sides of the equation by 12,000, we have:

1.5 = (1 + r)^10

Taking the 10th root of both sides:

(1 + r) ≈ 1.5^(1/10)

Calculating this expression, we find:

(1 + r) ≈ 1.047

Subtracting 1 from both sides:

r ≈ 1.047 - 1

r ≈ 0.047

Therefore, the annual rate of increase (r) is approximately 0.047 or 4.7% (as a decimal accurate to 3 decimal places).

(b) The tuition will reach $30,000 around the year 2010.

Using the rate of increase found in part (a), we can determine in what year the tuition will reach $30,000. Let's use the same formula and solve for t:

30,000 = 12,000 * (1 + 0.047)^t

Dividing both sides by 12,000:

2.5 = (1.047)^t

Taking the logarithm of both sides:

log(2.5) = t * log(1.047)

Solving for t, we have:

t = log(2.5) / log(1.047)

Calculating this expression, we find:

t ≈ 9.67

Rounding to the nearest year, the tuition of Rutgers will reach $30,000 in approximately 10 years (2000 + 10 = 2010).

Therefore, the tuition will reach $30,000 around the year 2010.

To know more about exponential growth refer here:

https://brainly.com/question/1596693?#

#SPJ11

given the vectors from R3
V1
2 0 3, V,
1 3 0 ,
V3=(24 -1)
5 0 3 belongs to span(vy, Vz, Vz).
Select one:
O True
O False

Answers

To determine if the vector V3=(24, -1, 5, 0, 3) belongs to the span of vectors Vy and Vz, we need to check if V3 can be expressed as a linear combination of Vy and Vz. The answer is: False



Let's denote the vectors Vy and Vz as follows:
Vy = (R, V12, 0, 3) Vz = (V, 1, 3, 0)

To check if V3 belongs to the span of Vy and Vz, we need to see if there exist scalars a and b such that:
V3 = aVy + bVz

Now, let's try to solve for a and b by setting up the equations:
24 = aR + bV -1 = aV12 + b1 5 = a0 + b3 0 = a3 + b0 3 = a0 + b3

From the last equation, we can see that b = 1. However, if we substitute this value of b into the second equation, we get a contradiction:
-1 = aV12 + 1

Since there is no value of a that satisfies this equation, we can conclude that V3 does not belong to the span of Vy and Vz. Therefore, the answer is: False

Learn more about vectors here : brainly.com/question/24256726

#SPJ11

Find the vector x determined by the given coordinate vector (xlg and the given basis B. -4 2 B= [x]B B - 2 - 5 5 X= -8 (Simplify your answers.) Find the vector x determined by the given coordinate vector (xIg and the given basis 8. -2 5 1 BE [xle - 2 4 -1 0 -3 + X (Simplify your answers.) Find the change-of-coordinates matrix from B to the standard basis in R. 5 3 B= Ps 吕司

Answers

To find the vector x determined by the given coordinate vector [x]B and the basis B, we need to perform a matrix-vector multiplication.

Given coordinate vector [x]B = [-8]B and basis B:

B = [ -4  2 ]

      [ -2 -5 ]

      [  5  1 ]

To find x, we multiply the coordinate vector [x]B by the basis B:

[x]B = B * x

[x]B = [ -4  2 ] * [-8]

         [ -2 -5 ]

         [  5  1 ]

Performing the matrix multiplication:

[x]B = [ (-4*-8) + (2*0) ] = [ 32 ]

         [ (-2*-8) + (-5*0) ] = [ 16 ]

         [ (5*-8) + (1*0) ] = [ -40 ]

Therefore, the vector x determined by the given coordinate vector [x]B and basis B is:

x = [ 32 ]

     [ 16 ]

     [ -40 ]

Moving on to the next part of the question:

Given coordinate vector [x]E = [-2 4 -1 0 -3] and the basis E:

E = [ 8 ]

      [ -2 ]

      [ 5 ]

      [ 1 ]

      [ 0 ]

      [ -3 ]

To find x, we multiply the coordinate vector [x]E by the basis E

[x]E = E * x

[x]E = [ 8 ] * [-2]

         [ -2 ]

         [ 5 ]

         [ 1 ]

         [ 0 ]

         [ -3 ]

Performing the matrix multiplication:

[x]E = [ (8*-2) + (-2*0) + (5*0) + (1*0) + (0*0) + (-3*0) ] = [ -16 ]

         [ (8*-2) + (-2*0) + (5*0) + (1*0) + (0*0) + (-3*0) ] = [ -16 ]

         [ (8*-2) + (-2*0) + (5*0) + (1*0) + (0*0) + (-3*0) ] = [ -16 ]

         [ (8*-2) + (-2*0) + (5*0) + (1*0) + (0*0) + (-3*0) ] = [ -16 ]

         [ (8*-2) + (-2*0) + (5*0) + (1*0) + (0*0) + (-3*0) ] = [ -16 ]

         [ (8*-2) + (-2*0) + (5*0) + (1*0) + (0*0) + (-3*0) ] = [ -16 ]

Therefore, the vector x determined by the given coordinate vector [x]E and basis E is:

x = [ -16 ]

     [ -16 ]

     [ -16 ]

     [ -16 ]

     [ -16 ]

     [ -16 ]

Moving on to the final part of the question:

The change-of-coordinates matrix from basis B to the standard basis in R is denoted as P.

Given basis B:

B = [ 5 3 ]

      [ -2 4 ]

      [ -1 0 ]

      [ -3 0 ]

Learn more about matrix-vector multiplication here:

https://brainly.com/question/13006202

#SPJ11

[3 points] implement (i.e get the truth table, then the boolean function, and finally draw the logic diagram) of the following functions using and, or, and not logic gates. assume a and b are the inputs and f is the output. a. f has the value of 1 only if: i. a has the value 0 and b has the value 0. ii. a has the value 0 and b has the value 1.

Answers

The truth table is attached in the image and the logic diagram is also attached.

What is the equivalent expression?

Equivalent expressions are expressions that perform the same function despite their appearance. If two algebraic expressions are equivalent, they have the same value when we use the same variable value.

To implement the given function using AND, OR, and NOT logic gates, let's go through each step:

a. f has the value of 1 only if:

  i. a has the value 0 and b has the value 0.

  ii. a has the value 0 and b has the value 1.

We can create a truth table to represent the function:

The truth table is attached in thee image.

From the truth table, we can observe that f is equal to 1 when (a = 0 and b = 0) or (a = 0 and b = 1).

We can express this using logical operators as:

f = (a AND b') OR (a' AND b)

the logic diagram to implement this function is attached.

In the logic diagram, the inputs a and b are connected to the AND gate, and its complement (NOT) is connected to the other input of the AND gate.

The outputs of the AND gate are connected to the inputs of the OR gate. The output of the OR gate represents the output f.

This logic diagram represents the implementation of the boolean function f using AND, OR, and NOT logic gates based on the given conditions.

Hence, The truth table is attached in the image and the logic diagram is also attached.

To learn more about the equivalent expression visit:

https://brainly.com/question/2972832

#SPJ4

(This hint gives away part of the problem, but that's OK, we're all friends here in WebWork. If for some reason you happen to need to enter an inverse trigonometric function, it's best to use the "arc" format: such as, the inverse sine of x² can be entered as "arcsin(x^3)".) 2x 2x Find / dx and evaluate 1.⁰ dx 7+7x¹ 7+7x¹ The ideal substitution in either case is u (Hint: Can you factor out any constants before deciding on a substitution?) The substitution changes the integrand in both integrals to some function of u, say G(u); factor out all constants possible, and give the updated version of the indefinite integral: с c/Gu du G(u) du = Having found the indefinite integral and returned to the original variable, the final result is: 2x dx = 7+7x4 For the definite integral, the substitution provides new limits of integration as follows: The lower limit x = 0 becomes u The upper limit x = 3 becomes u The final value of the definite integral is: $3 2x 7+7x¹ dx = (Data Entry: Be sure to use capital +C as your arbitrary constant where needed.)

Answers

The final result fοr the definite integral is 6.

What is definite integral?

The definite integral οf any functiοn can be expressed either as the limit οf a sum οr if there exists an antiderivative F fοr the interval [a, b], then the definite integral οf the functiοn is the difference οf the values at pοints a and b. Let us discuss definite integrals as a limit οf a sum. Cοnsider a cοntinuοus functiοn f in x defined in the clοsed interval [a, b].

Tο evaluate the given integrals, let's fοllοw the steps suggested:

Find d(u)/dx and evaluate ∫(2x)/(7+7x) dx.

Given:

The ideal substitutiοn is u.

The ideal substitutiοn is u = 7 + 7x.

Tο find du/dx, we differentiate u with respect tο x:

du/dx = d(7 + 7x)/dx = 7

Tο find dx, we can sοlve fοr x in terms οf u:

u = 7 + 7x

7x = u - 7

x = (u - 7)/7

Nοw we can express the integral in terms οf u:

∫(2x)/(7+7x) dx = ∫(2((u-7)/7))/(7+7((u-7)/7)) du

= ∫((2(u-7))/(7(u-7))) du

= ∫(2/7) du

= (2/7)u + C

= 2u/7 + C

Fοr the definite integral, the substitutiοn prοvides new limits οf integratiοn.

Given:

The lοwer limit x = 0 becοmes u = 7 + 7(0) = 7.

The upper limit x = 3 becοmes u = 7 + 7(3) = 28.

Nοw we can evaluate the definite integral using the new limits:

∫[0, 3] (2x)/(7+7x) dx = [(2u/7)] [0, 3]

= (2(28)/7) - (2(7)/7)

= 8 - 2

= 6

Therefοre, the final result fοr the definite integral is 6.

Learn more about definite integral

https://brainly.com/question/32465992

#SPJ4

The consumer price index, C, depends on the current value of gross regional domestic expenditure E, number of people living in poverty P, and the average number of household members in a family F, according to the formula: e-EP C = 100+ F It is known that the gross regional domestic expenditure is decreasing at a rate of PHP 50 per year, and the number of people living in poverty and the average number of household members in a family are increasing at 3 and 1 per year, respectively. Use total differential to approximate the change in the consumer price index at the moment when E= 1,000, P=200, and F= 5.

Answers

The consumer price index (C) is a function of gross regional domestic expenditure (E), the number of people living in poverty (P), and the average number of household members in a family (F).

The formula for C is given as C = 100 + E - EP/F. Given that E is decreasing at a rate of PHP 50 per year, while P and F are increasing at rates of 3 and 1 per year, respectively, we want to approximate the change in the consumer price index at the moment when E = 1,000, P = 200, and F = 5 using total differential.

To approximate the change in the consumer price index, we can use the concept of total differential. The total differential of C with respect to its variables can be expressed as dC = ∂C/∂E * dE + ∂C/∂P * dP + ∂C/∂F * dF, where ∂C/∂E, ∂C/∂P, and ∂C/∂F represent the partial derivatives of C with respect to E, P, and F, respectively.

Given that E is decreasing at a rate of PHP 50 per year, we have dE = -50. Similarly, as P and F are increasing at rates of 3 and 1 per year, respectively, we have dP = 3 and dF = 1.

To approximate the change in C at the given moment (E = 1,000, P = 200, F = 5), we substitute these values along with the calculated values of the partial derivatives (∂C/∂E, ∂C/∂P, ∂C/∂F) into the total differential expression. Evaluating this expression will give us an approximation of the change in the consumer price index at that moment.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

7. (12 points) Calculate the line integral /F. F.dr, where F(x, y, z) = (xy, x2 + y2 + x2, yz) and C is the boundary of the parallelogram with vertices (0,0,1),(0,1,0), (2,0,-1), and (2,1, -2).

Answers

the line integral ∫F·dr along the boundary of the parallelogram is equal to 3.

To calculate the line integral ∫F·dr, we need to parameterize the curve C that represents the boundary of the parallelogram. Let's parameterize C as follows:

r(t) = (2t, t, -t - 2)

where 0 ≤ t ≤ 1.

Next, we will calculate the differential vector dr/dt:

dr/dt = (2, 1, -1)

Now, we can evaluate F(r(t))·(dr/dt) and integrate over the interval [0, 1]:

∫F·dr = ∫F(r(t))·(dr/dt) dt

      = ∫((2t)(t), (2t)² + t² + (2t)², t(-t - 2))·(2, 1, -1) dt

      = ∫(2t², 6t², -t² - 2t)·(2, 1, -1) dt

      = ∫(4t² + 6t² - t² - 2t) dt

      = ∫(9t² - 2t) dt

      = 3t³ - t² + C

To find the definite integral over the interval [0, 1], we can evaluate the antiderivative at the upper and lower limits:

∫F·dr = [3t³ - t²]₁ - [3t³ - t²]₀

      = (3(1)³ - (1)²) - (3(0)³ - (0)²)

      = 3 - 0

      = 3

To know more about parallelogram visit;

brainly.com/question/28854514

#SPJ11

Find a solution of the second-order IVP consisting of this
differential equation
15. [O/1 Points) ZILLDIFFEQ9 1.2.011. DETAILS PREVIOUS ANSWERS ASK YOUR TEACHER MY NOTES In this problem, y = Ge* + cze-* is a two-parameter family of solutions of the second-order DEY" - y = 0. Find

Answers

Let's assume that the initial conditions are Y(0) = a and Y'(0) = b.

The characteristic equation of the differential equation Y'' - Y = 0 is r^2 - 1 = 0. Solving for r, we get r = ±1. Therefore, the general solution of the differential equation is Y = c1e^x + c2e^-x.

To find the values of c1 and c2, we need to use the initial conditions. We know that Y(0) = a, so we can substitute x = 0 in the general solution and get c1 + c2 = a.

We also know that Y'(0) = b. Differentiating the general solution with respect to x, we get Y' = c1e^x - c2e^-x. Substituting x = 0, we get c1 - c2 = b.

Solving these two equations simultaneously, we get c1 = (a + b)/2 and c2 = (a - b)/2.

Therefore, the solution of the second-order IVP consisting of the differential equation Y'' - Y = 0 with initial conditions Y(0) = a and Y'(0) = b is:

Y = (a + b)/2*e^x + (a - b)/2*e^-x.

Learn more about differential equation: https://brainly.com/question/28099315

#SPJ11

A 6-foot long piece of wire is to be cut into two pieces. One piece is used to make a circle and the other a square. Find the exact amount of wire used for the square so as to make the combined area of the square and the circle a minimum.

Answers

Therefore, the exact amount of wire used for the square is 6/5 feet and for the circle is 24/5 feet in order to minimize the combined area of the square and the circle.

Let's denote the length of the wire used for the square as "s" (in feet) and the length of the wire used for the circle as "c" (in feet).

The total length of the wire is 6 feet, so we can express this as an equation:

s + c = 6

To find the minimum combined area of the square and the circle, we need to express the area in terms of "s" and then minimize it.

Let's start with the square. The perimeter of the square is equal to the length of the wire used for the square:

4s = s

The area of the square is given by:

A_square = s^2

Now, let's consider the circle. The circumference of the circle is equal to the length of the wire used for the circle:

2πr = c

Since the total length of the wire is 6 feet, we can express "c" in terms of "s":

c = 6 - s

The radius of the circle, denoted as "r," is related to its circumference by the formula:

Circumference = 2πr

Substituting the value of "c" and solving for "r," we get:

2πr = 6 - s

r = (6 - s) / (2π)

The area of the circle is given by:

A_circle = πr^2

Substituting the value of "r" and simplifying, we get:

A_circle = π((6 - s) / (2π))^2

A_circle = ((6 - s)^2) / (4π)

Now, let's express the combined area of the square and the circle, denoted as "A_total," as a function of "s":

A_total = A_square + A_circle

A_total = s^2 + ((6 - s)^2) / (4π)

To find the minimum combined area, we can take the derivative of "A_total" with respect to "s" and set it equal to zero:

d(A_total) / ds = 2s - (12 - 2s) / (4π)

d(A_total) / ds = 2s - (12 - 2s) / (4π) = 0

Simplifying the equation, we have:

2s = (12 - 2s) / (4π)

8s = 12 - 2s

10s = 12

s = 12/10

s = 6/5

Now, we have the value of "s" which corresponds to the minimum combined area. To find the exact amount of wire used for the square, we substitute this value into the equation for the total length of the wire:

s + c = 6

6/5 + c = 6

c = 6 - 6/5

c = 30/5 - 6/5

c = 24/5

To know more about combined area,

https://brainly.com/question/30156692

#SPJ11

.Consider the function represented by the table
the ordered pair given in the bottom row can be written using function notation as,
a) f(9)=5
b) f(5)=9
c) f(5,9)=14
d) f(9,5)=14

Answers

The correct answer is (a) f(9)=5. Option (d) says that f(9,5)=14, which is also false, as the output value for input values 9 and 5 is not 14.

In function notation, we use the letter "f" followed by the input value in parentheses to represent the output value. Looking at the table, we can see that when the input value is 9, the output value is 5. So, the correct function notation is f(9)=5.

To fully understand the function represented by the table, we need to look at each row and column. In the first column, we have the input values ranging from 2 to 9. In the second column, we have the corresponding output values. For example, when the input value is 2, the output value is 7. To check if the function is consistent, we can look at the last row. The last row shows the output values for two different input values: 5 and 9. When the input values are 5 and 9, the output value is 9 and 5, respectively. This means that the function is not consistent, as the output values are not the same for different input values. Now, let's look at the options given in the question. Option (a) says that f(9)=5, which is true based on the table. Option (b) says that f(5)=9, which is false, as the output value for input value 5 is 7, not 9. Option (c) says that f(5,9)=14, which is also false, as there is no input value that corresponds to an output value of 14.

To know more about  parentheses visit :-

https://brainly.com/question/3572440

#SPJ11

Give the exact 4. (5 pts) Find the are length of the curve r = 2 cos 6,0 SAS value. dr dᎾ de 2 --SV-9) = 2 72 +

Answers

The arc length of the curve r = 2cos(6θ) on the interval [0, π/6] cannot be expressed exactly using elementary functions. It can only be approximated numerically.

To find the arc length of the curve given by the polar equation r = 2cos(6θ) on the interval [0, π/6], we can use the formula for arc length in polar coordinates:

L = ∫[a, b] √(r^2 + (dr/dθ)^2) dθ

In this case, we have r = 2cos(6θ) and dr/dθ = -12sin(6θ).

Substituting these values into the arc length formula, we get:

L = ∫[0, π/6] √((2cos(6θ))^2 + (-12sin(6θ))^2) dθ

 = ∫[0, π/6] √(4cos^2(6θ) + 144sin^2(6θ)) dθ

 = ∫[0, π/6] √(4cos^2(6θ) + 144(1 - cos^2(6θ))) dθ  [Using the identity sin^2(x) + cos^2(x) = 1]

 = ∫[0, π/6] √(4cos^2(6θ) + 144 - 144cos^2(6θ)) dθ

 = ∫[0, π/6] √(144 - 140cos^2(6θ)) dθ

 = ∫[0, π/6] √(4(36 - 35cos^2(6θ))) dθ

 = ∫[0, π/6] 2√(36 - 35cos^2(6θ)) dθ

To evaluate this integral, we can make a substitution: u = 6θ. Then, du = 6dθ and the limits of integration become [0, π/6] → [0, π/3].

The integral becomes:

L = 2∫[0, π/3] √(36 - 35cos^2(u)) du

At this point, we can recognize that the integrand is in the form √(a^2 - b^2cos^2(u)), which is a known integral called the elliptic integral of the second kind. Unfortunately, there is no simple closed-form expression for this integral.

Therefore, the arc length of the curve r = 2cos(6θ) on the interval [0, π/6] cannot be expressed exactly using elementary functions. It can only be approximated numerically.

To know more about elementary functions refer here:

https://brainly.com/question/7846182#

#SPJ11

Find the standard equation of the sphere with the given characteristics. Endpoints of a diameter: (4, 8, 13), (4, -5, -3)

Answers

The standard equation of a sphere is (x - 4)²+ (y - 1.5)² + (z - 5)² = 106.26.

How to determine the standard equation of a sphere?

To find the standard equation of a sphere, we shall get the center and the radius.

The center of the sphere can be found by taking the average of the endpoints of the diameter. Let's calculate it:

Center:

x-coordinate = (4 + 4) / 2 = 4

y-coordinate = (8 + (-5)) / 2 = 1.5

z-coordinate = (13 + (-3)) / 2 = 5

So the center of the sphere is (4, 1.5, 5).

We shall find the radius of the sphere by computing the distance between the center and any of the endpoints of the diameter.

Using the first endpoint (4, 8, 13), we have:

Radius:

x-coordinate difference = 4 - 4 = 0

y-coordinate difference = 8 - 1.5 = 6.5

z-coordinate difference = 13 - 5 = 8

Using the formula:

radius = √[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]

radius = √[(0)² + (6.5)² + (8)²]

radius = √[0 + 42.25 + 64]

radius = √106.25

radius ≈ 10.306

So the radius of the sphere is ≈ 10.306.

Now we show the standard equation of the sphere using the center and radius:

(x - h)² + (y - k)² + (z - l)² = r²

Putting the values:

(x - 4)² + (y - 1.5)² + (z - 5)² = (10.306)²

Therefore, the standard equation of the sphere is (x - 4)²+ (y - 1.5)² + (z - 5)² = 106.26

Learn more about standard equation at brainly.com/question/30224265

#SPJ1

If p > 1, the graphs of u = sin a and u = pe-X
intersect for a > 0. Find the smallest value of p for which the graphs
are tangent.

Answers

The smallest value of p for which the graphs of u = sin(a) and u = pe^(-x) are tangent is p = 2^(1/4).

To find the smallest value of p for which the graphs of u = sin(a) and u = pe^(-x) are tangent, we need to find the point of tangency where the two curves intersect and have the same slope. First, let's find the intersection point by equating the two equations: sin(a) = pe^(-x). To make the comparison easier, we can take the natural logarithm of both sides: ln(sin(a)) = ln(p) - x. Next, let's differentiate both sides of the equation with respect to x to find the slope of the curves: d/dx [ln(sin(a))] = d/dx [ln(p) - x]. Using the chain rule, we have: cot(a) * da/dx = -1

Now, we can set the slopes equal to each other to find the condition for tangency: cot(a) * da/dx = -1. Since we want the smallest value of p, we can consider the case where a > 0 and the slopes are negative. For cot(a) to be negative, a must be in the second or fourth quadrant of the unit circle. Therefore, we can consider a value of a in the fourth quadrant. Let's consider a = pi/4 in the fourth quadrant: cot(pi/4) * da/dx = -1, 1 * da/dx = -1, da/dx = -1. Now, we substitute a = pi/4 into the equation of the curve u = pe^(-x) and solve for p: sin(pi/4) = p * e^(-x), 1/sqrt(2) = p * e^(-x). To have a common tangent, the slopes must be equal, so the slope of u = pe^(-x) is -1.

Taking the derivative of u = pe^(-x) with respect to x: du/dx = -pe^(-x). Setting du/dx = -1, we have: -1 = -pe^(-x). Simplifying: p = e^(-x). Now, substituting p = e^(-x) into the equation obtained from sin(a) = pe^(-x): 1/sqrt(2) = e^(-x) * e^(-x), 1/sqrt(2) = e^(-2x). Taking the natural logarithm of both sides: ln(1/sqrt(2)) = -2x. Solving for x: x = -ln(sqrt(2))/2. Substituting this value of x back into p = e^(-x): p = e^(-(-ln(sqrt(2))/2)), p = sqrt(2^(1/2)), p = 2^(1/4). Therefore, the smallest value of p for which the graphs of u = sin(a) and u = pe^(-x) are tangent is p = 2^(1/4).

To learn more about derivative, click here: brainly.com/question/2159625

#SPJ11

Define a bijective, rational function that has degree 1 on the numerator and degree 1 on the denominator (not a trivial one like x/2). Prove that it is bijective (define the domain and range carefully so that it is and find its inverse function. Do not copy any of the functions we have
already seen

Answers

A bijective rational function with degree 1 on both the numerator and denominator can be defined as f(x) = (ax + b) / (cx + d), where a, b, c, and d are non-zero constants.

Let's consider the function f(x) = (ax + b) / (cx + d), where a, b, c, and d are non-zero constants. To ensure bijectivity, we need to carefully define the domain and range. The domain can be defined as the set of all real numbers excluding the value x = -d/c (to avoid division by zero). The range can be defined as the set of all real numbers excluding the value y = -b/a (to avoid division by zero).

To prove that the function is bijective, we need to show that it is both injective (one-to-one) and surjective (onto). For injectivity, we assume that f(x₁) = f(x₂) and show that x₁ = x₂. By equating the expressions (ax₁ + b) / (cx₁ + d) and (ax₂ + b) / (cx₂ + d), we can cross-multiply and simplify to obtain a linear equation in x₁ and x₂. By solving this equation, we can prove that x₁ = x₂, thus establishing injectivity.

Learn more about rational here:

https://brainly.com/question/15837135

#SPJ11

Tom is driving towards a building. When he first looks up at the top of the building, he looks up at an angle of elevation of 47 degrees. After driving 500 feet towards the building, he is now looking up at an angle of elevation of 54 degrees. How tall is the building?

Answers

Answer:

Step-by-step explanation:




To calculate the indefinite integral I= / dc (2x + 1)(5x + 4) we first write the integrand as a sum of partial fractions: 1 (2.C + 1)(5x + 4) А B + 2x +1 5x +4 where A BE that is used to find I = -c

Answers

In the given problem, we are asked to identify the expressions for 'u' and 'dx' in two different integrals. The first integral involves the function f(x) = (14 - 3x^2)/(-6x), while the second integral involves the function g(x) = (3 - sqrt(x))/(2x).

In the first integral, u and dx can be identified using the substitution method. We let u = 14 - 3x^2 and du = -6xdx. Rearranging these equations, we have dx = du/(-6x). Substituting these expressions into the integral, the integral becomes ∫(u/(-6x))(du/(-6x)). In the second integral, we identify w and du/dx using the substitution method as well. We let w = 3 - sqrt(x) and du/dx = 2x. Solving for dx, we get dx = du/(2x). Substituting these expressions into the integral, it becomes ∫(w/2x)(du/(2x)).

In both cases, identifying u and dx allows us to simplify the original integrals by substituting them with new variables. This technique, known as substitution, can often make the integration process easier by transforming the integral into a more manageable form.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

A curve with polar equation r 5 6 sin ( + 13 cos e represents a line. This line has a Cartesian equation of the form y = mx +b,where m and bare constants. Give the formula for y in terms of z.

Answers

The Cartesian equation of the line represented by the polar equation r = 5 + 6sin(θ) + 13cos(θ) can be expressed as y = mx + b, where m and b are constants. The formula for y in terms of x is explained below.

To find the Cartesian equation of the line, we need to convert the polar equation into Cartesian coordinates. Using the conversion formulas, we have:

x = rcos(θ) = (5 + 6sin(θ) + 13cos(θ))cos(θ) = 5cos(θ) + 6sin(θ)cos(θ) + 13cos²(θ)

y = rsin(θ) = (5 + 6sin(θ) + 13cos(θ))sin(θ) = 5sin(θ) + 6sin²(θ) + 13cos(θ)sin(θ)

Now, we can simplify the expressions for x and y:

x = 5cos(θ) + 6sin(θ)cos(θ) + 13cos²(θ)

y = 5sin(θ) + 6sin²(θ) + 13cos(θ)sin(θ)

To express y in terms of x, we can rearrange the equation by solving for sin(θ) and substituting it back into the equation:

sin(θ) = (y - 5sin(θ) - 13cos(θ)sin(θ))/6

sin(θ) = (y - 13cos(θ)sin(θ) - 5sin(θ))/6

Next, we square both sides of the equation:

sin²(θ) = (y - 13cos(θ)sin(θ) - 5sin(θ))²/36

Expanding the squared term and simplifying, we get:

36sin²(θ) = y² - 26ysin(θ) - 169cos²(θ)sin²(θ) - 10ysin(θ) + 65cos(θ)sin²(θ) + 25sin²(θ)

Now, we can use the identity sin²(θ) + cos²(θ) = 1 to simplify the equation further:

36sin²(θ) = y² - 26ysin(θ) - 169(1 - sin²(θ))sin²(θ) - 10ysin(θ) + 65cos(θ)sin²(θ) + 25sin²(θ)

36sin²(θ) = y² - 26ysin(θ) - 169sin²(θ) + 169sin⁴(θ) - 10ysin(θ) + 65cos(θ)sin²(θ) + 25sin²(θ)

Rearranging the terms and grouping the sin⁴(θ) and sin²(θ) terms, we have:

169sin⁴(θ) + (26 + 10y - 25)sin²(θ) + (26y - y²)sin(θ) + 169sin²(θ) - 36sin²(θ) - y² = 0

Simplifying the equation, we obtain:

169sin⁴(θ) + (140 - 11y)sin²(θ) + (26y - y²)sin(θ) - y² = 0

This equation represents a quartic equation in sin(θ), which can be solved using numerical methods or factoring techniques.

Once sin(θ) is determined, we can substitute it back into the equation y = 5sin(θ) + 6sin²(θ) + 13cos(θ)sin(θ) to express y in terms of x, yielding the final formula for y in terms of z.

Learn more about Cartesian equation:

https://brainly.com/question/32622552

#SPJ11

Does g(t) = 31- 35* +120° +90 have any inflection points? If so, identify them. + Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. An inflection p

Answers

The correct answer is : g(t) = 31 - 35t + 120t^2 + 90 does not have any inflection points.

An inflection point is a point on the graph of a function where the concavity changes. In other words, it is a point where the second derivative changes sign. To determine if a function has inflection points, we need to analyze the concavity of the function.

In the given function g(t) = 31 - 35t + 120t^2 + 90, we can find the second derivative by taking the derivative of the first derivative. The first derivative is g'(t) = -35 + 240t, and the second derivative is g''(t) = 240.

Since the second derivative, g''(t) = 240, is a constant, it does not change sign. Therefore, there are no points where the concavity changes, and the function g(t) = 31 - 35t + 120t^2 + 90 does not have any inflection points.

Learn more about inflection points

https://brainly.com/question/30767426

#SPJ11


Given the line whose equation is 2x - 5x - 17 = y Answer the
following questions. Show all your work. (1) Find its slope and
y-intercept; (2) Determine whether or not the point P(10, 2) is on
this lin

Answers

The values of all sub-parts have been obtained.

(a).  Slope is 2/5 and y-intercept is c = -17/5.

(b) . The point P(10, 2) does not lie on this line.

What is equation of line?

The equation for a straight line is y = mx + c where c is the height at which the line intersects the y-axis, often known as the y-intercept, and m is the gradient or slope.

(a). As given equation of line is,

2x - 5y - 17 = 0

Rewrite equation,

5y = 2x - 17

y = (2x - 17)/5

y = (2/5) x - (17/5)

Comparing equation from standard equation of line,

It is in the form of y = mx + c so we have,

Slope (m): m = 2/5

Y-intercept (c): c = -17/5.

(b). Find whether or not the point P(10, 2) is on this line.

As given equation of line is,

2x - 5y - 17 = 0

Substituting the points P(10,2) in the above line we have,

2(10) - 5(2) - 17 ≠ 0

    20 - 10 - 17 ≠ 0

         20 - 27 ≠ 0

                 -7 ≠ 0

Hence, the point P(10, 2) is does not lie on the line.

Hence, the values of all sub-parts have been obtained.

To learn more about Equation of line from the given link.

https://brainly.com/question/18831322

#SPJ4

2 Evaluate the following Deim (Sin (4.5 kn) + Cos (3 Tn))? T6n+ N- Do n=-N N note - 20

Answers

The answer is the expression: (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)) + (2N + 1).

To evaluate the sum ∑[n=-N to N] (sin(4.5n) + cos(3n)), we can use the properties of trigonometric functions and summation formulas.

First, let's break down the sum into two separate sums: ∑[n=-N to N] sin(4.5n) and ∑[n=-N to N] cos(3n).

Evaluating ∑[n=-N to N] sin(4.5n):

We can use the formula for the sum of a geometric series to simplify this sum. Notice that sin(4.5n) repeats with a period of 2π/4.5 = 2π/9. So, we can rewrite the sum as follows:

∑[n=-N to N] sin(4.5n) = ∑[k=-2N to 2N] sin(4.5kπ/9),

where k = n/2. Now, we have a geometric series with a common ratio of sin(4.5π/9).

Using the formula for the sum of a geometric series, the sum becomes:

∑[k=-2N to 2N] sin(4.5kπ/9) = (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)).

Evaluating ∑[n=-N to N] cos(3n):

Similar to the previous sum, we can rewrite the sum as follows:

∑[n=-N to N] cos(3n) = ∑[k=-2N to 2N] cos(3kπ/3) = ∑[k=-2N to 2N] cos(kπ) = 2N + 1.

Now, we can evaluate the overall sum:

∑[n=-N to N] (sin(4.5n) + cos(3n)) = ∑[n=-N to N] sin(4.5n) + ∑[n=-N to N] cos(3n)

= (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)) + (2N + 1).

In this solution, we are given the sum ∑[n=-N to N] (sin(4.5n) + cos(3n)) and we want to evaluate it.

We break down the sum into two separate sums: ∑[n=-N to N] sin(4.5n) and ∑[n=-N to N] cos(3n).

For the sin(4.5n) sum, we use the formula for the sum of a geometric series, taking into account the periodicity of sin(4.5n). We simplify the sum using the geometric series formula and obtain a closed form expression.

For the cos(3n) sum, we observe that it simplifies to (2N + 1) since cos(3n) has a periodicity of 2π/3.

Finally, we combine the two sums to obtain the overall sum.

Therefore, the main answer is the expression: (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)) + (2N + 1).

To learn more about trigonometric functions, click here: brainly.com/question/25618616

#SPJ11

Let 8 (0 ≤ 0≤ π) be the angle between two vectors u and v. If 16 |u| = 5, |v|= 2, u.v = 6, uxv= 16 8 3 3 2 3 find the following. 1. sin(0) = 2. V-V= 3. /v x (u + v) = < (enter integers or fractio

Answers

The sine of π/8 is (√2 - √6)/4 and the value of the expression |V × (U + V)| is equal to √901.

To find the values based on the given information, let's break down the problem:

1. Sin(θ):

Since θ is given as 8 (0 ≤ θ ≤ π), we can directly evaluate sin(θ). However, it seems there might be a typo in the question because the value of θ is given as 8, which is not within the specified range of 0 to π.

Assuming the value is actually π/8, we can proceed.

The sine of π/8 is (√2 - √6)/4.

2. V - V:

The expression V - V represents the subtraction of vector V from itself. Any vector subtracted from itself will result in the zero vector.

Therefore, V - V = 0.

3. |V × (U + V)|:

To calculate the magnitude of the cross product V × (U + V), we need to find the cross product first. The cross product of two vectors is given by the determinant of a matrix.

Using the given values, we have:

V × (U + V) = 16(8i + 3j + 3k) × (i + 2j + 3k)

           = 16(24i - 15j + 10k)

To find the magnitude, we calculate the square root of the sum of the squares of the components:

|V × (U + V)| = [tex]\sqrt{(24)^2 + (-15)^2 + (10)^2[/tex]

             = [tex]\sqrt{576 + 225 + 100[/tex]

             = √901

Please note that the answer for sin(θ) assumes the value of θ to be π/8, as the given value of 8 does not fall within the specified range.

Learn more about expression:

https://brainly.com/question/1859113

#SPJ11

If a statistically significant relationship is found in an observational study for which the sample represents the population of interest, then which of the following is true:
a. ) A causal relationship cannot be concluded but the results can be extended to the population.
b. ) A causal relationship cannot be concluded and the results cannot be extended to the population.
c. )A causal relationship can be concluded but the results cannot be extended to the population.
d. ) A causal relationship can be concluded and the results can be extended to the population.

Answers

The correct option is a. A causal relationship cannot be concluded but the results can be extended to the population.

In an observational study, where the researcher observes and analyzes data without directly manipulating variables, finding a statistically significant relationship indicates an association between the variables. However, it does not establish a causal relationship. Other factors or confounding variables may be influencing the observed relationship.

Since causation cannot be inferred in observational studies, option (a) is the correct answer. The results can still be extended to the population because the sample represents the population of interest, but causality cannot be determined without further evidence from experimental studies or additional research methods.

To know more about population,

https://brainly.com/question/30887325

#SPJ11

Other Questions
: D. 1. The total cost of producing a food processors is C'(x) = 2,000 + 50x -0.5x a Find the actual additional cost of producing the 21st food processor. b Use the marginal cost to approximate the cost of producing the 21st food processor. If ()=cos()+sin()+2r(t)=cos(t)i+sin(t)j+2tkcompute()r(t)= +i+ +j+ kand()r(t)dt= +i+ +j+ + besides helping to lock the knee the posterior cruciate ligament answer this asap please please please14. Determine the constraints a and b such that f(x) is continuous for all values of x. 16 Marks] ax-b x 51 f(x) = X-2 -3x, 1 Third molar agencies, sickle cell anemia, peppered moths and lactose intolerance teach us that evolution does not happen anymore in recent human or other organisms. T/F The most important aspect of a high-strength bolt connection is:a.) heating of the bolts. b.) tensioning of the bolts c.) adding nuts and washers. d.) using A307 bolts. e.) all of the above. Hal used the following procedure to find an estimate for StartRoot 82.5 EndRoot. Step 1: Since 9 squared = 81 and 10 squared = 100 and 81 < 82.5 < 100, StartRoot 82.5 EndRoot is between 9 and 10. Step 2: Since 82.5 is closer to 81, square the tenths closer to 9. 9.0 squared = 81.00 9.1 squared = 82.81 9.2 squared = 84.64 Step 3: Since 81.00 < 82.5 < 82.81, square the hundredths closer to 9.1. 9.08 squared = 82.44 9.09 squared = 82.62 Step 4: Since 82.5 is closer to 82.62 than it is to 82.44, 9.09 is the best approximation for StartRoot 82.5 EndRoot. In which step, if any, did Hal make an error? a. In step 1, StartRoot 82.5 EndRoot is between 8 and 10 becauseStartRoot 82.5 EndRoot almost-equals 80 and 8 times 10 = 80. b. In step 2, he made a calculation error when squaring. c. In step 4, he made an error in determining which value is closer to 82.5. d. Hal did not make an error. Problem 4. (30 points) Determine whether the series is convergent. (a) n=2 n(Inn) sin(x) (b) sin(). Hint: you may use limz+0 = 7. I (c) =1 In(n) n=1(n+2)3 question: a ball of mass 0.5 kg is attached to a string and is being swung in a horizontal circle with a radius of 2 meters. if the tension in the string is 20 newtons, what is the ball's speed in meters per second? You are the architect for Pharaoh Khufu. He wants you to construct a square pyramid with a height of 100 m but you only have an limestone to fill a volume of 2,000,000 m. How long should the sides of the square base be? Round your answer to the nearest hundredth. asymptotes of the root locus for the transfer function given below?a. 0b. 1c. -1d. Cannot be determined without additional information urgent!!Select the form of the partial fraction decomposition of B A + x- 4 (x+3) A B C + x- 4 x + 3 (x+3) Bx + C (x+3) O A - B 4 + + 1 (x-4) (x+3)Select the form of the partial fraction decompositi Could the answers for the questions below pleaseFind the value of the derivative of the function at the given point. Function Point g(x) = (x - 2x + 6) (x -3) (1, -10) g'(1) = State which differentiation rule(s) you used to find the derivative. ntntententententententent040Question 10 of 20:Select the best answer for the question.10. This question is based on the following paragraph.The back yard was covered in late afternoon sunlight. The leaves danced in the trees, delighted thatspring had finally arrived. The tulips were bright slashes of color like a child's crayon drawing. In thegarden, the first green shoots were pushing out of the soil to greet the warmth of the sun. Sitting on theporch swing, I drank in the beauty of nature, a delicious treat.Which fiction element is the focus in this paragraph?O A. SettingB. PlotC. ThemeO D. ConflictMark for review (Will be highlighted on the review page)> Whats the factor of the expression? a 2-year-old boy presents with fever, lethargy, and vomiting. which physical exam finding would most likely indicate the need for this child to be hospitalized? group of answer choices tachycardia of 154 beats per minute fever of 103.1 capillary refill time of 5 seconds flushed skin color a performance marketer is setting up a customer match strategy in order to reach a list of prospective customers.which user data source is the marketer eligible to use?social media profile, email, mailing addressemail, mailing address, phone numberip address, social media profile, phone numberip address, work address, phone number In a theatre, two attached spotlights make an angle of 100'. One shines on Ben, who is 30.6 feet away. The other shines on Mariko, who is 41.1 feet away. How far apart are Ben and Mariko? syreeta wants to buy some cds that each cost $14 and a dvd that costs $23. she has $65. write the equation if oil executives read in the newspaper that new solar-power technologies have been discovered but will likely only become useful in 10 years, what is likely to happen to the supply of oil today? what is the likely equilibrium impact on the price and quantity of oil today? today's supply of oil will likely . the equilibrium price will probably and the equilibrium quantity will probably .