It is to be noted that a relations in math can be represented in 8 different ways. See the examples below.
What are relations in Math?The relation in mathematics is the relationship between two or more sets of values.
The various types of relations and their examples are:
Empty Relation
An empty relation (or void relation) is one in which no set items are related to one another. For instance, if A = 1, 2, 3, one of the empty relations might be R = x, y, where |x - y| = 8. For an empty relationship,
R = φ ⊂ A × A
Universal Relation
A universal (or complete) relation is one in which every member of a set is connected to one another. Consider the set A = a, b, c. R = x, y will now be one of the universal relations, where |x - y| = 0. In terms of universality,
R = A × A
Identity Relation
Every element of a set is solely related to itself via an identity relation. In a set A = a, b, c, for example, the identity relation will be I = a, a, b, b, c, c. In terms of identity, I = {(a, a), a ∈ A}
Inverse Relation
When one set includes items that are inverse pairings of another set, there is an inverse connection. For example, if A = (a, b), (c, d), then the inverse relation is R-1 = (b, a), (d, c). As a result, given an inverse relationship,
R-1 = {(b, a): (a, b) ∈ R}
Reflexive Relation
Every element in a reflexive relationship maps to itself. Consider the set A = 1, 2, for example. R = (1, 1), (2, 2), (1, 2), (2, 1) is an example of a reflexive connection. The reflexive relationship is defined as- (a, a) ∈ R
Symmetric Relation
If a=b is true, then b=a is also true in a symmetric relationship. In other words, a relation R is symmetric if and only if (b, a) R holds when (a,b) R. R = (1, 2), (2, 1) for a set A = 1, 2 is an example of a symmetric relation. As a result, with a symmetric relationship, aRb ⇒ bRa, ∀ a, b ∈ A.
Transitive Relation
For transitive relation, if (x, y) ∈ R, (y, z) ∈ R, then (x, z) ∈ R. For a transitive relation, aRb and bRc ⇒ aRc ∀ a, b, c ∈ A
Equivalence Relation
If a relation is reflexive, symmetric and transitive at the same time, it is known as an equivalence relation.
Learn more about relations:
https://brainly.com/question/15149050
#SPJ1
It is found that a relations in math can be represented in 8 different ways.
What are relations?The relation in mathematics is defined as the relationship between two or more sets of values.
There various types of relations and their examples:
An empty relation (or void relation) is one in which no set items are related to one another. if A = 1, 2, 3, one of the empty relations might be R = x, y, where |x - y| = 8.
R = φ ⊂ A × A
Universal Relation; It is one in which every member of a set is connected to one another.
R = A × A
Identity Relation; Every element of a set is solely related to itself via an identity .
In a set A = a, b, c, for example, it is I = a, a, b, b, c, c. I
n terms of identity, I = {(a, a), a ∈ A}
Inverse Relation; When one set of data includes items that are inverse pairings of another set, there is an inverse connection.
For example, if A = (a, b), (c, d), then the inverse is; R-1 = (b, a), (d, c).
R-1 = {(b, a): (a, b) ∈ R}
Equivalence Relation; When a relation is reflexive, symmetric and transitive at the same time, it is calles as an equivalence relation.
Learn more about relations:
brainly.com/question/15149050
#SPJ1
Need answer for 3a please. This is for homework :)
Given the supplementary angle below for 3a,
Supplementary angles is 180°,
To find x,
[tex]\begin{gathered} 132^0+2x^0+3=180 \\ 2x^0+135^0=180^0 \\ 2x^0=180^0-135^0 \\ 2x^0=45^0 \\ x=\frac{45^0}{2}=22.5^0 \\ x=22.5^0 \end{gathered}[/tex]Hence, x = 22.5°
which table of ordered pairs represents a line that has a slope that is the same as the slope of the line represented by the equation y=2x + 1?
Answer:
From the above options, the only table that have the same slope as the given line in the equation (m=2) is Table C.
[tex]\begin{gathered} m=\frac{3-\mleft(-7\mright)}{4-(-1)} \\ m=\frac{10}{5} \\ m=2 \end{gathered}[/tex]Explanation:
Given the equation;
[tex]y=2x+1[/tex]The slope of the above line is;
[tex]m=2[/tex]From the given options, let us find the table that has the same slope as the above equation;
A.
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{-8-7}{3-(-2)} \\ m=\frac{-15}{5} \\ m=-3 \end{gathered}[/tex]B.
[tex]\begin{gathered} m=\frac{4-2}{2-(-2)} \\ m=\frac{2}{4} \\ m=\frac{1}{2} \end{gathered}[/tex]C.
[tex]\begin{gathered} m=\frac{3-\mleft(-7\mright)}{4-(-1)} \\ m=\frac{10}{5} \\ m=2 \end{gathered}[/tex]D.
[tex]\begin{gathered} m=\frac{-1-2}{4-(-2)} \\ m=\frac{-3}{6} \\ m=-\frac{1}{2} \end{gathered}[/tex]From the above options, the only table that have the same slope as the given line (m=2) is Table C.
[tex]\begin{gathered} m=\frac{3-\mleft(-7\mright)}{4-(-1)} \\ m=\frac{10}{5} \\ m=2 \end{gathered}[/tex]How many terms do you have in the expression 7x - 2y + 8?
Answer:
3 terms we have constant ,Y and X terms
Some airlines charge a fee for each checked luggage item that weighs more than 21,000 grams. How many kilograms is this?
The value of 21,000 grams to kilograms is 21 kilograms
How to convert kilograms to grams ?1000 grams = 1kg
The first step is to convert 21,000 grams to kilograms
It can be calculated as follows;
= 21000/1000
= 21
Hence the value of 21,000 grams in kilograms is 21 kilograms
Read more on grams here
https://brainly.com/question/1684400
#SPJ1
Which of the following statements about the table is true?
Select all that apply.
The table shows a proportional relationship.
All the ratios for related pairs of x and y are equivalent to 7.5.
When x is 13.5, y is 4.5.
When y is 12, x is 4.
The unit rate of for related pairs of x and y is .
26
22 Undertond Proportional Relationships: Fouivalent Ratios
C
C
y
10.5 3.5
15.9 5.3
22.5 7.5
27
9
3
Answer:
there is a lot of ratios here, but I will try my best. A proportional relationship is the relationship that is proportional obviously. and if the ratio is related, pairs are equivalent to 7.5 then that must mean that the proportional relationship is fuevalent
3 166.40 266.24 3. Consider the following functions which all have an or decay? By what percent? Rewrite as (1+r) or (1-r) f(t) = 30(1.04) p(x) = 30(0.65)Solve f(t)
ANSWER
Function f(t) represents a growth by 4%
EXPLANATION
If the function represents a decay it is written as:
[tex]f(t)=a(1-r)^t[/tex]and if it represents a growth it's:
[tex]f(t)=a(1+r)^t[/tex]We can see if it's a growth or decay by looking at the number we have between parenthesis: if it's greater than 1, then it's a growth and if it's less than 1 then it's a decay.
For function f(t) we have
[tex]1+r=1.04[/tex]Therefore, r = 0.04 which, expressed as a percent is 4%
I really need help please
The surface area of the given figure is the sum of the area of the six faces.
Two of them have an area A1:
A1 = 2.5 x 4 ft² = 10 ft²
Other two have an area A2:
A2 = 1.25 x 2.5 ft² = 3.125 ft²
and the other two have an area A3:
A3 = 1.25 x 4 ft² = 5 ft²
Then, the total surface area is:
AT = 2(A1) + 2(A2) + 2(A3)
AT = 2(10 ft²) + 2(3.125 ft²) + 2(5 ft²)
AT = 36.25 ft²
Hence, the total surface area of the given figure is 36.25 ft²
Ms. Mistovich and Ms. Nelson are having a competition to see who can get morestudents to bring in extra tissues for their classroom. Ms. Mistovich starts with 4 boxesand each week she gets two more boxes from her students. Ms. Nelson starts with 1box and each week she gets 3 more boxes from her students. Write a system ofequations to represent the situation. (1 pt)y=2x+4y=3x+1Ooy=2x+4y=2x+3y=4x+2y=3x+1y=2x+3y=4x+1o
To write an equation, it is enough to know the rate of change (slope) and the initial value (y-intercept).
The equation of a line of slope m and y-intercept b is:
[tex]y=mx+b[/tex]For Ms. Mistovich, the initial value is 4 and the rate of change is 2.
For Ms. Nelson, the initial value is 1 and the rate of change is 3.
Therefore, the equations that model this situation, are:
[tex]\begin{gathered} y=2x+4 \\ y=3x+1 \end{gathered}[/tex]Find five soloutions of the equation select integer values for X starting with -2 and ending with 2. Complete the table of value below y=6x-8
The five solutions of the equation y = 6x - 8 for x starting with -2 and ending with 2 are: (-2, -20), (-1, -14), (0, -8), (1, -2) and (2, 4)
In this question, we have been given an equation y = 6x - 8
We need to find five solutions of the equation select integer values for x starting with -2 and ending with 2.
For x = -2,
y = 6(-2) - 8
y = -20
For x = -1,
y = 6(-1) - 8
y = -14
For x = 0,
y = 6(0) - 8
y = -8
For x = 1,
y = 6(1) - 8
y = -2
For x = 2,
y = 6(2) - 8
y = 4
Therefore, five solutions of the equation y = 6x - 8 for x starting with -2 and ending with 2 are: (-2, -20), (-1, -14), (0, -8), (1, -2) and (2, 4)
Learn more about solutions to equation here:
https://brainly.com/question/18894732
#SPJ1
A psychology test has personality questions numbered 1, 2, 3, intelligence questions numbered 1, 2, 3, 4, and attitudequestions numbered 1,2. If a single question is picked at random, what is the probability that the question is an intelligence question OR has an odd number?
Answer:
7/9.
Step-by-step explanation?
Total number of questions: 3 + 4 + 2 = 9.
Number of Intelligence questions: 4
Number of questions that have an odd number: 5
The probability of a question is Intelligence questions = 4/9
The probability a question has an odd number = 5/9
The probability a question is Intelligence questions and has an odd number = 2/9
The probability a question is Intelligence question OR has an odd number is:
4/9 + 5/9 - 2/9 = 7/9.
The function is defined by h(x) = x - 2 . Find h(n + 1) .
SOLUTION:
Case: Functions
Method:
The function
[tex]\begin{gathered} h(x)=x-2 \\ Hence \\ h(n+1)=(n+1)-2 \\ h(n+1)=n+1-2 \\ h(n+1)=n-1 \end{gathered}[/tex]Final answer:
[tex]h(n+1)=n-1[/tex]Jina opened a savings account with $600 and was paid simple interest at an annual rate of 3%. When Jina closed the account, she was paid $54 in interest. How long was the account open for, in years?
Answer: The account has been open for 3 years
Step-by-step explanation:
3% of $600 is 18
18*3 = 54
Answer:
3 years
have $600
interest $54
annual rate 3%
600 - 3% = 582 that is the money she has in bank without interest
600-582 = 18
54÷ 18= 3 years
The height of a diver above the water’s surface can be modeled by the function h(t)= –16t^2+ 8t + 48. How long does it take the diver to hit the water? Solve by factoring
Given the function:
[tex]h(t)=-16t^2+8t+48[/tex]Where h(t) is the height of the diver above the surface of the water and t is the time.
Let's find how long it takes the diver to hit the water.
When the diver hits the water, the height h(t) = 0.
Now substitute 0 for h(t) and solve for the time t.
We have:
[tex]0=-16t^2+8t+48[/tex]Rearrange the equation:
[tex]-16t^2+8t+48=0[/tex]Solve for t.
Let's factor the expression by the left.
Factor 8 out of all terms:
[tex]8(-2t^2+t+6)=0[/tex]Now, factor by grouping.
Rewrite the middle term as a sum of two terms whose product is the product of the first term and the last term:
[tex]\begin{gathered} 8(-2t^2+4t-3t+6)=0 \\ \end{gathered}[/tex]Solving further:
[tex]\begin{gathered} 8((-2t^2+4t)(-3t+6))=0 \\ \\ 8(2t(-t+2)+3(-t+2))=0 \\ \\ 8(2t+3)(-t+2)=0 \end{gathered}[/tex]Hence, we have the factors:
[tex]\begin{gathered} 2t+3=0 \\ -t+2=0 \end{gathered}[/tex]Solve each factor for t:
[tex]\begin{gathered} 2t+3=0 \\ \text{ Subtract 3 from both sides:} \\ 2t=-3 \\ \text{ Divide both sides by 2:} \\ \frac{2t}{2}=-\frac{3}{2} \\ t=-\frac{3}{2} \\ \\ \\ -t+2=0 \\ t=2 \end{gathered}[/tex]Hence, we have the solutions:
t = -3/2
t = 2
The time cannot be negative, so let's take the positive value.
Therefore, the will take 2 seconds for the diver to hit the water.
ANSWER:
2 seconds.
Can you please help me because I don’t understand this and I would like to really understand it
Answer:
Explanation:
Given the expression:
[tex]\sqrt{12(x-1)}\div\sqrt{2(x-1)^{2}}[/tex]By the division law of surds:
[tex]\sqrt[]{x}\div\sqrt[]{y}=\sqrt[]{\frac{x}{y}}[/tex]Therefore:
[tex]\sqrt[]{12(x-1)}\div\sqrt[]{2(x-1)^2}=\sqrt[]{\frac{12(x-1)}{2(x-1)^2}}[/tex]The result obtained can be rewritten in the form below:
[tex]=\sqrt[]{\frac{2\times6(x-1)}{2(x-1)(x-1)^{}}}[/tex]Canceling out the common factors, we have:
[tex]=\sqrt[]{\frac{6}{(x-1)^{}}}[/tex]An equivalent expression is Opt
solving systems by graphing and tables : equations and inequalities
Given,
The system of inequalitites are,
[tex]\begin{gathered} 2x+3y>0 \\ x-y\leq5 \end{gathered}[/tex]The graph of the inequalities is,
The are three possible solution for the inequality.
For (0, 0),
[tex]\begin{gathered} 2x+3y>0 \\ 2(0)+3(0)>0 \\ 0>0 \\ \text{Similarly,} \\ x-y\leq5 \\ 0-0\leq5 \\ 0\leq5 \end{gathered}[/tex]For (3, -2),
[tex]\begin{gathered} 2x+3y>0 \\ 2(3)+3(-2)>0 \\ 0>0 \\ \text{Similarly,} \\ x-y\leq5 \\ 3-(-2)\leq5 \\ 5=5 \end{gathered}[/tex]For (5, 0),
[tex]\begin{gathered} 2x+3y>0 \\ 2(5)+3(0)>0 \\ 5>0 \\ \text{Similarly,} \\ x-y\leq5 \\ 5-(0)\leq5 \\ 5=5 \end{gathered}[/tex]Hence, the solution of the inequalities is (5, 0).
5. Find the arclength that subtends a central angle of 175° in a circle with radius 3 feet.
As given by the question
There are given that the central angle is 175 degrees and the radius is 3 feet.
Now,
The length of an arc given it subtends a known angle at the centre is:
[tex]\text{arc length=2}\times\pi\times r\times\frac{175}{360}[/tex]Then,
[tex]\begin{gathered} \text{arc length=2}\times\pi\times r\times\frac{175}{360} \\ \text{arc length=2}\times3.14\times3\times\frac{175}{360} \\ \text{arc length=}9.16 \end{gathered}[/tex]Hence, the arclength is 9.16.
how many hours did the plumber work to fix the plumbing
The total cost of the fix is C = $375.
The plumber charges a fixed rate per call of F = $50 and charges a variable rate of v = $25 per hour, if h is the number of hours he worked, we can write:
[tex]\begin{gathered} C=F+v\cdot h \\ 375=50+25\cdot h \end{gathered}[/tex]This equation shows that the total cost is equal to the fixed cost plus the variable cost. The variable cost is equal to the hourly rate times the number of hours of work.
Then, we can calculate h as:
[tex]\begin{gathered} 375=50+25h \\ 375-50=25h \\ 325=25h \\ h=\frac{325}{25} \\ h=13 \end{gathered}[/tex]Answer: he worked 13 hours.
NOTE:
Table of values:
If we need to use a table of values to solve this, we will have two columns: one for the number of hours and the other for the total cost.
We can make the table have more detail and separate the cost column in 3: one for the fixed cost, one for the variable cost and the last one for the total cost.
Then, we would write in each column:
1) Hours: the number of hours, from 0 to the amount we consider.
2) Fixed cost: this column will have the value $50 for all the rows, as it is independent of the number of hours.
3) Variable cost: this column will have values proportional to the hours. This values will be 25 times the number of hours.
4) Total cost: this column will add both the fixed cost and variable cost.
Then, we will obtain the following table.
We can now look for the value $375 in the Total cost column.
We find that this cost correspond to 13 hours:
Graph:
We can now use the data from the table to graph the total cost in function of the number of hours.
GEOMETRY Draw the next two figures in the pattern shown below. OOO
Given , the pattern
O , OO , .....
so, the first term is 1 circle
The second is 2 circles
So, the next two figures are:
OOO , OOOO
If a and b are the measure of two first quadrant angles, find the exact value of the functioncsc a =5/3 and tan 5/12 find the cod (a+b)
Input data
[tex]\begin{gathered} \cos a=\frac{5}{3} \\ \tan b=\frac{5}{12} \end{gathered}[/tex]
Now for cos(a+b)
[tex]\begin{gathered} a=\csc ^{-1}(\frac{5}{3})^{} \\ a=36.87 \end{gathered}[/tex][tex]\begin{gathered} b=\tan ^{-1}(\frac{5}{12}) \\ b=22.62 \end{gathered}[/tex][tex]\begin{gathered} \cos (a+b) \\ \cos (36.87+22.62) \\ \cos 59.5 \\ \frac{33}{65}=0.507 \end{gathered}[/tex]If Danica has $1200 to invest at 8% per year compounded monthly, how long will it be before he has $2400? If the compounding is continuous,how long will it be? (Round your answers to three decimal places.)
ANSWER
EXPLANATION
a) To find the time it will take before he has $2400, we have to apply the formula for monthly compounded amount:
[tex]undefined[/tex]Why is it important to
line up the digits in each place-value position when subtracting?
Answer: it’s important because when you do that it makes it easier to remember what’s not a whole number and what is
Step-by-step explanation: the answer is basically the explanation
Determine the minimum and maximum value for f(x) = -5x²-3x+7 over interval [-1, 3].
The maximum and minimum value of the equation "f(x) = -5x²-3x+7" over the interval [-1, 3] is 5 and -47.
What are equations?A mathematical statement that has an "equal to" symbol between two expressions with equal values is called an equation. A number that can be entered for the variable to produce a true number statement is the solution to an equation. 3(2)+5=11, which states that 6+5=11, is accurate. The answer is 2, then. The point-slope form, standard form, and slope-intercept form are the three main types of linear equations.So, the minimum and maximum values when x are -1 and 3:
(1) When x = -1:
f(x) = -5x²-3x+7f(x) = -5(-1)²-3(-1) +7f(x) = -5(1) + 3 +7f(x) = -5 + 10f(x) = 5(2) When x = 3:
f(x) = -5x²-3x+7f(x) = -5(3)² -3(3)+7f(x) = -5(9) -9 +7f(x) = -45 -9 +7f(x) = - 54 + 7f(x) = - 47Therefore, the maximum and minimum value of the equation "f(x) = -5x²-3x+7" over the interval [-1, 3] is 5 and -47.
Know more about equations here:
https://brainly.com/question/2972832
#SPJ13
What is the measure of EDH?EHFO 10°O 40°50°90
To find the measure of angle EDH we must solve for x first. Formulating an equation to find x, we have:
5x + 4x= 90 (Given that the sum of the angles EDH and HDG is equal to 90°)
9x = 90 (Adding like terms)
x= 90/9 (Dividing on both sides of the equation by 9)
x= 10
Replacing in the expression for angle EDH, we have:
m∠EDH = 5*(x) = 5*(10) = 50° (Multiplying)
The answer is m∠EDH =50°.
If TW =6, WV =2, and UV =25, find XV to the nearest hundredth.
TW = 6
WV = 2
UV = 25
XV = ?
XV/UV = WV/TV
XV/25 = 2 /(6 + 2)
XV = 2(25)/7
XV = 50/7
XV = 7.1428
Rounded to the nearest hundredth
XV = 7.14
Calculate Sse for the arithmetic sequence {a,}5sequence {1,3 ={}+}=Ο Α. 1463OB. 91220 C. 8,6716D. 9,26767
Answer:
[tex]\frac{8,671}{6}[/tex]Explanation:
Here, we want to get the sum of the 58 terms in series
Mathematically, we have the formula to use as:
[tex]S_n\text{ = }\frac{n}{2}(a\text{ + L)}[/tex]where a is the first term and L is the last term
The first term is when n is 1
We have this calculated as:
[tex]\text{ a}_{}\text{ = }\frac{5}{6}+\frac{1}{3}\text{ = }\frac{5+2\text{ }}{6}\text{ = }\frac{7}{6}[/tex]The last term is the 58th term which is:
[tex]\text{ a}_{58}\text{ = }\frac{290}{6}\text{ + }\frac{1}{3}\text{ = }\frac{292}{6}[/tex]We finally substitute these values into the initial equation
Thus, we have it that:
[tex]S_{58}\text{ = }\frac{58}{2}(\frac{292}{6}+\frac{7}{6})\text{ = 29(}\frac{299}{6})\text{ = }\frac{8671}{6}[/tex]
Find the area of the circle. Use 3.14 or 227for π . thxQuestion 2
Step 1
State the area of a circle using the diameter
[tex]\frac{\pi d^2}{4}[/tex]Where d=diameter=28in
[tex]\pi=\frac{22}{7}[/tex]Step 2
Find the area
[tex]A=\frac{22}{7}\times\frac{28^2}{4}=616in^2[/tex]Answer;
[tex]Area\text{ = }616in^2\text{ when }\pi\text{ =}\frac{22}{7}[/tex]w=3? What is the value of the expression below when w = 5w+ 2
Answer:
The value of the expression at w=3 is;
[tex]17[/tex]Explanation:
Given the expression;
[tex]5w+2[/tex]Then when w=3, the value of the expression is;
[tex]\begin{gathered} 5w+2 \\ =5(3)+2 \\ =15+2 \\ =17 \end{gathered}[/tex]The value is gotten by replacing/substituting w with 3 in the expression;
Therefore, the value of the expression at w=3 is;
[tex]17[/tex]Question 13 of 18Graph the solution to the following inequality on the number line.x² - 4x ≥ 12
Step 1
Given; Graph the solution to the following inequality on the number line.
x² - 4x ≥ 12
Step 2
[tex]\begin{gathered} x^2-4x\ge \:12 \\ Rewrite\text{ in standard form} \\ x^2-4x-12\ge \:0 \\ Factor\text{ the inequality} \\ \left(x+2\right)\left(x-6\right)\ge \:0 \end{gathered}[/tex][tex]\begin{gathered} Identify\text{ the intervals} \\ x\le \:-2\quad \mathrm{or}\quad \:x\ge \:6 \end{gathered}[/tex]Thus, the number line will look like
Answer; The solution to the inequality graphed on a number line is seen below
[tex]x\le \:-2\quad \mathrm{or}\quad \:x\ge \:6[/tex]an acre is one chain multiplied times one furlong. I know from horse racing that there are 8furlongs in one mile. I remember that there are 640acres in one square mile. How many feet are in one chain?
Based on the acres in one square mile and the number of furlongs, the number of feet in one chain is 66 feet.
How to find the number of feet?First, find the number of feet in 1 furlong:
8 furlongs = 1 mile
This means that 1 furlong is 1/8 miles. In feet this is:
= 1/8 x 5,280 feet per mile
= 660 feet
Then, it is said that an acre is equal to a Chain x a Furlong.
This means that 1 chain is:
= Number of acres per square feet / Number of feet in chain
= 43,560 / 660
= 66 ft
Find out more on acres at https://brainly.com/question/8449176
#SPJ1
3/5 ÷ 1/3 = ?????????
Change the division sign to multiplication and then invert 1/3
That is;
[tex]\frac{3}{5}\times3[/tex][tex]=\frac{9}{5}\text{ =1}\frac{4}{5}[/tex]