In the normal distribution with any given mean and standard deviation, we know that approximately 68% of the observations fall within one standard deviation of the mean 95% of the observations fall within two standard deviations of the mean 99.7% of the observations fall within 3 standard deviations of the mean. This is sometimes called the 68-95-99.7 Empirical Rule of Thumb. Using the 68-95-99.7 Empirical Rule-of-Thumb, answer the following questions: A study was designed to investigate the effects o two variables-(1) a student's level of mathematical anxiety an. 2) teaching method-on a student's achievement in a mathematics course. Students who had a low level of mathematical anxiety were taught using the traditional expository method. These students obtained a mean score of 450 with a standard deviation of 30 on a standardized test. The test scores follow a normal distribution. a. What percentage of scores would you expect to be greater than 3907 r b. What percentage of scores would you expect to be greater than 4807 c. What percentage of scores would you expect to be between 360 and 480 d. What percent of the students, chosen at random, would have a score greater than 300? Which of the following is the correct answer is it close to 100% or close to 99.7% or close to 0%? The percent is closest to e. True or False: The total area under the normal curve is one.

Answers

Answer 1

The test scores follow a normal distribution. We are supposed to use 68-95-99.7 Empirical Rule-of-Thumb to solve this question. This rule suggests that:68% of the scores are within one standard deviation (σ) of the mean (μ)95% of the scores are within two standard deviations (σ) of the mean (μ)99.7% of the scores are within three standard deviations (σ) of the mean (μ). The statement is e) true.

Step by step answer:

a. What percentage of scores would you expect to be greater than 390?If the mean of test scores is 450, the distance from 390 to the mean is 60. Therefore, we need to go two standard deviations below the mean, which is

390-60

= 390 - (2x30)

= 330.

We need to find the area to the right of 390 in a standard normal distribution, which means finding z score for 390. The formula to find z-score is:z = (x - μ)/σ Where,

x = 390μ

= 450σ

= 30

Substitute the given values, we get z = (390 - 450)/30

= -2

Which means we need to find the area to the right of z = -2. Using standard normal distribution table, the area to the right of z = -2 is 0.9772. Therefore, the area to the left of z = -2 is 1 - 0.9772

= 0.0228.

The percentage of scores that would be greater than 390 is: 0.0228*100% = 2.28%

b. What percentage of scores would you expect to be greater than 480?If the mean of test scores is 450, the distance from 480 to the mean is 30. Therefore, we need to go one standard deviation above the mean, which is 480 + 30 = 510. We need to find the area to the right of 480 in a standard normal distribution, which means finding z score for 480. The formula to find z-score is:

z = (x - μ)/σ Where,

x = 480μ

= 450σ

= 30

Substitute the given values, we get z = (480 - 450)/30

= 1

Which means we need to find the area to the right of z = 1. Using standard normal distribution table, the area to the right of z = 1 is 0.1587. Therefore, the area to the left of z = 1 is 1 - 0.1587

= 0.8413.

The percentage of scores that would be greater than 480 is: 0.8413*100% = 84.13%c. What percentage of scores would you expect to be between 360 and 480?If the mean of test scores is 450, the distance from 360 to the mean is 90, and the distance from 480 to the mean is 30.

Therefore, we need to go three standard deviations below the mean, which is 360 - (3x30) = 270, and one standard deviation above the mean, which is 480 + 30 = 510.We need to find the area between 360 and 480 in a standard normal distribution, which means finding z scores for 360 and 480. The formula to find z-score is:

z = (x - μ)/σ

For x = 360,

z = (360 - 450)/30

= -3

For x = 480,z

= (480 - 450)/30

= 1

Using standard normal distribution table, the area to the left of z = -3 is 0.0013, and the area to the left of z = 1 is 0.8413. Therefore, the area between

z = -3 and

z = 1 is 0.8413 - 0.0013

= 0.84.

The percentage of scores that would be between 360 and 480 is: 0.84*100% = 84%d. What percent of the students, chosen at random, would have a score greater than 300?We need to find the area to the right of 300 in a standard normal distribution, which means finding z score for 300. The formula to find z-score is: z

= (x - μ)/σ

Where,

x = 300μ

= 450σ

= 30

Substitute the given values, we getz = (300 - 450)/30

= -5

Which means we need to find the area to the right of z = -5.Using standard normal distribution table, the area to the right of z = -5 is very close to 0. Therefore, the percentage of students that would have a score greater than 300 is close to 0%.The total area under the normal curve is one. Hence, the statement "True or False: The total area under the normal curve is one" is True.

To know more about normal distribution visit :

https://brainly.com/question/15103234

#SPJ11


Related Questions








Problem Prove that the rings Z₂[x]/(x² + x + 2) and Z₂[x]/(x² + 2x + 2)₂ are isomorphic.

Answers

The map φ is a well-defined, bijective ring homomorphism between Z₂[x]/(x² + x + 2) and Z₂[x]/(x² + 2x + 2) and a proof the two rings are isomorphic.

How do we calculate?

We will find a bijective ring homomorphism between the two rings.

Let's define a map φ: Z₂[x]/(x² + x + 2) → Z₂[x]/(x² + 2x + 2) as follows:

φ([f(x)] + [g(x)]) = φ([f(x) + g(x)]) = [f(x) + g(x)] = [f(x)] + [g(x)]φ([f(x)] * [g(x)]) = φ([f(x) * g(x)]) = [f(x) * g(x)] = [f(x)] * [g(x)]

φ(1) = [1]

We go ahead to show that φ is bijective:

φ is injective:

If φ([f(x)]) = φ([g(x)]), then [f(x)] = [g(x)]

and shows that f(x) - g(x) is divisible by (x² + x + 2) in Z₂[x].

(x² + x + 2) is irreducible over Z₂[x], meaning that that f(x) - g(x) = 0 [f(x)] = [g(x)].φ is surjective:

If [f(x)] in Z₂[x]/(x² + 2x + 2), we determine an equivalent polynomial in Z₂[x]/(x² + x + 2) which is [f(x)].

Learn more about bijective ring isomorphism at:

https://brainly.com/question/32643885

#SPJ4

Find the slope of the line y=3x3 at the point (1,3).
Possible Answers:
m=1
m=9x2
m=9
m=3

Answers

The slope of the line y = 3x^3 at the point (1,3) is :

m = 9.

The slope of a line, denoted as m, represents the measure of the steepness or incline of the line. It determines how much the line rises or falls as we move horizontally along it. Mathematically, the slope is defined as the ratio of the vertical change (rise) to the horizontal change (run) between any two points on the line.

To find the slope of the line y = 3x^3 at the point (1,3), we need to take the derivative of the function with respect to x and evaluate it at x = 1.

Taking the derivative of y = 3x^3 with respect to x, we get:

dy/dx = 9x^2

Now, substituting x = 1 into the derivative, we find:

dy/dx = 9(1)^2 = 9

Therefore, the slope of the line y = 3x^3 at the point (1,3) is m = 9.

To learn more about slope visit  : https://brainly.com/question/16949303

#SPJ11

The number of hours 10 students spent studying for a test and their scores on that test are shown in the table Is there enough evidence to conclude that there is a significant linear correlation between the data? Use a=0.05. Hours, x 0 1 2 4 4 5 5 6 7 8 40 52 52 61 70 74 85 80 96

Answers

There is sufficient evidence to conclude there is significant positive linear correlation between the of hours spent studying and the test scores.

Is there linear correlation between hours & scores?

The test score corresponding to "8 hours". For the sake of this analysis, let's assume a test score of "90" for the missing value. Now, our sets of data are:

Hours, x: 0, 1, 2, 4, 4, 5, 5, 6, 7, 8

Test scores, y: 40, 52, 52, 61, 70, 74, 85, 80, 96, 90

Mean:

x = (0+1+2+4+4+5+5+6+7+8)/10

x = 4.2

y = (40+52+52+61+70+74+85+80+96+90)/10

y = 70

Compute Σ(x-x)(y-y), Σ(x-x)², and Σ(y-y)²:

x y x-x y-y (x-x)(y-y)   (x-x)² (y-y)²

0 40 -4.2 -30 126 17.64 900

1 52 -3.2 -18 57.6 10.24 324

2 52 -2.2 -18 39.6 4.84 324

4 61 -0.2 -9 1.8 0.04 81

4 70 -0.2 0 0 0.04 0

5 74 0.8 4 3.2 0.64 16

5 85 0.8 15 12 0.64 225

6 80 1.8 10 18 3.24 100

7 96 2.8 26 72.8 7.84 676

8 90 3.8 20 76 14.44 400

Σ(x-x)(y-y) = 406.8      

Σ(x-x)² = 59.56      

Σ(y-y)² = 3046      

The Pearson correlation coefficient (r):

r = Σ(x-x)((y-y)/√[Σ(x-x)²Σ(y-y)²]

r = 406.8/√(59.56*3046)

r = 0.823

The correlation coefficient r is approximately 0.823, which is close to 1. This suggests a strong positive linear correlation.

Read more about correlation

brainly.com/question/28175782

#SPJ4

let r=(x2 y2)1/2 and consider the vector field f→=ra(−yi→ xj→), where r≠0 and a is a constant. f→ has no z-component and is independent of z.

Answers

The vector field F → = r a ( -y i → + x j → ) has no z-component and is independent of z, indicating that it lies entirely in the xy-plane and does not vary along the z-axis.

The vector field is given by:

F → = r a ( -y i → + x j → )

where [tex]r = \sqrt{(x^2 + y^2)}[/tex] and a is a constant.

We can rewrite this vector field in terms of its components:

F → = ( r a ( -y ) , r a x )

To show that the vector field F → has no z-component and is independent of z, we can take the partial derivatives with respect to z:

∂ F x / ∂ z = 0

∂ F y / ∂ z = 0

Both partial derivatives are zero, which means that the vector field F → does not depend on z and has no z-component. Therefore, it is independent of z.

This indicates that the vector field F → lies entirely in the xy-plane and does not vary along the z-axis. Its magnitude and direction depend on the values of x and y, as determined by the expressions [tex]r = \sqrt{(x^2 + y^2)}[/tex]) and the constant vector a.

In summary, the vector field F → = r a ( -y i → + x j → ) has no z-component and is independent of z, indicating that it lies entirely in the xy-plane and does not vary along the z-axis.

Learn more about vector calculus here:

brainly.com/question/10164701

#SPJ4

Three randomly selected households are surveyed. The numbers of people in the households are 1, 2, and 12. Assume that samples of size n = 2 are randomly selected with replacement from the population of 1, 2, and 12. Listed below are the nine different samples. Complete parts
(a) through (c). 1, 1 1, 2 1, 12 2, 1 2, 2 2, 12 12, 1 12, 2 12, 12

a. Find the variance of each of the nine samples then summarize the sampling distribution of the variances in the format of a table representing the probability distribution of the distinct variance values.

b. Compare the population variance to the mean of the sample variances.
A. The population variance is equal to the square of the mean of the sample variances.
B. The population variance is equal to the mean of the sample variances.
C. The population variance is equal to the square root of the mean of the sample variances.

c. Do the sample variances target the value of the population variance? In general, do sample variances make good estimators of population variances? Why or why not?
A. The sample variances target the population variance therefore sample variances do not make good estimators of population variances.
B. The sample variances do not target the population variance therefore, sample variances do not make good estimators of population variances.
C. The sample variances target the population variances, therefore, sample variances make good estimators of population variances.

Answers

(a) a summary table of the sampling distribution of variances, with distinct variance values and their corresponding probabilities.

(b) B. The population variance is equal to the mean of the sample variances.

(c) is B. The sample variances do not target the population variance, and in general, sample variances do not make good estimators of population variances.

(a) Variance of each of the nine samples:

To find the variance of each sample, we use the formula for sample variance: s² = Σ(x - x bar)² / (n - 1), where x is the individual value, x bar is the sample mean, and n is the sample size.

The nine samples and their variances are as follows:

1, 1: Variance = 0

1, 2: Variance = 0.5

1, 12: Variance = 55

2, 1: Variance = 0.5

2, 2: Variance = 0

2, 12: Variance = 55

12, 1: Variance = 55

12, 2: Variance = 55

12, 12: Variance = 0

Summary table of the sampling distribution of variances:

Distinct Variance Value | Probability

0 | 0.333

0.5 | 0.222

55 | 0.444

(b) Comparison of population variance to the mean of sample variances:

The population variance is the variance of the entire population, which in this case is {1, 2, 12}. To find the population variance, we use the formula: σ² = Σ(x - μ)² / N, where σ² is the population variance, x is the individual value, μ is the population mean, and N is the population size.

Calculating the population variance: σ² = (0 + 1 + 121) / 3 = 40.6667

Calculating the mean of the sample variances: (0 + 0.5 + 55) / 3 = 18.5

Therefore, the answer is B. The population variance is equal to the mean of the sample variances.

(c) Estimation of population variance by sample variances:

In general, sample variances do not make good estimators of population variances. The sample variances in this case do not target the value of the population variance. As we can see, the sample variances are different from the population variance. This is because sample variances are influenced by the specific values in the samples, which can lead to variability in their estimates. Therefore, sample variances may not accurately reflect the true population variance. To estimate the population variance more accurately, larger and more representative samples are needed.

The answer is B. The sample variances do not target the population variance, and in general, sample variances do not make good estimators of population variances.

To learn more about variance, click here: brainly.com/question/9304306

#SPJ11

NetFlorist makes two gift packages of fruit. Package A contains 20 peaches, 15 apples and 10 pears. Package B contains 10 peaches, 30 apples and 12 pears. NetFlorist has 40000 peaches, 60000 apples and 27000 pears available for packaging. The profit on package A is R2.00 and the profit on B is R2.50. Assuming that all fruit packaged can be sold, what number of packages of types A and B should be prepared to maximize the profit? What is the maximum profit? (a) Use the information above to formulate an LPP. Indicate what each decision variable represents. [5] (b) Write the LPP in standard normal form. [1] (c) Using the simplex method, solve the LPP. For each simplex tableau, clearly indicate the basic and nonbasic variables, the pivot, row operations and basic feasible solution.

Answers

To maximize profit, NetFlorist should prepare 1000 packages of type A and 800 packages of type B, resulting in a maximum profit of R3750.

To formulate the linear programming problem (LPP), let's denote the number of packages of type A as x and the number of packages of type B as y. The objective is to maximize the profit, which can be represented as follows:

Maximize: 2x + 2.5y

There are certain constraints based on the availability of fruit:

20x + 10y ≤ 40000 (peaches constraint)

15x + 30y ≤ 60000 (apples constraint)

10x + 12y ≤ 27000 (pears constraint)

Additionally, the number of packages cannot be negative, so x ≥ 0 and y ≥ 0.

Converting this LPP into standard normal form involves introducing slack variables to convert the inequality constraints into equality constraints. The standard normal form of the LPP can be represented as:

Maximize: 2x + 2.5y + 0s1 + 0s2 + 0s3

Subject to:

20x + 10y + s1 = 40000

15x + 30y + s2 = 60000

10x + 12y + s3 = 27000

x, y, s1, s2, s3 ≥ 0

Using the simplex method, we can solve this LPP. Each iteration involves selecting a pivot element, performing row operations, and updating the basic feasible solution. The simplex tableau represents the values of the decision variables and slack variables at each iteration.

Learn more about simplex method

brainly.com/question/30387091

#SPJ11

You have been hired by a college foundation to conduct a survey of graduates. a) If you want to estimate the percentage of graduates who made a donation to the college after graduation, how many graduates must you survey if you want 93% confidence that your percentage has a margin of error of 3.25 percentage points? b) If you want to estimate the mean amount of charitable contributions made by graduates, how may graduates must you survey if you want 98% confidence that your sample mean is in error by no more than $70? (Based on result from a pilot study, assume that the standard deviation of donations by graduates is $380.)

Answers

a)you must survey 243 graduates to estimate the percentage of graduates who made a donation to the college after graduation with a margin of error of 3.25 percentage points and 93% confidence.

b) you must survey 183 graduates to estimate the mean amount of charitable contributions made by graduates with a margin of error of $70 and 98% confidence.

a)The formula to calculate the sample size is given by:

[tex]$$n = \frac{(Z)^2 \times p \times (1-p)}{(E)^2}$$[/tex]

Where: p = proportion of graduates who made a donation (unknown)

We can take p=0.5, which gives the maximum sample size and the sample size will be more conservative.

Sample size n=[tex]($$(Z)^2 \times p \times (1-p)$$)/($$(E)^2$$)[/tex]

Substituting the values, we get;

[tex]$$n = \frac{(1.81)^2 \times 0.5 \times (1-0.5)}{(3.25/100)^2}$$[/tex]

n = 242.04

  ≈ 243 graduates (rounded to the nearest integer).

Therefore, you must survey 243 graduates to estimate the percentage of graduates who made a donation to the college after graduation with a margin of error of 3.25 percentage points and 93% confidence.

b) Margin of error (E) = $70

Confidence level (C) = 98%

Critical value (Z) = 2.33 (from Z-table)

The formula to calculate the sample size is given by:

[tex]$$n = \frac {(Z)^2 \times \sigma^2}{(E)^2}$$[/tex] Where:

σ = standard deviation of donations by graduates= $380

We have to use the sample size formula for this problem.

Substituting the values, we get;

[tex]$$n = \frac{(2.33)^2 \times (380)^2}{(70)^2}$$[/tex]

n = 182.74

  ≈ 183 graduates (rounded to the nearest integer).

Therefore, you must survey 183 graduates to estimate the mean amount of charitable contributions made by graduates with a margin of error of $70 and 98% confidence.

To know more about percentage, visit

brainly.com/question/13450942

#SPJ11

Find the area bounded by the given curves: y² = x +4 and x + 2y = 4 is?
a. 9
b. 19
c. 72
d. 36

Answers

The area bounded by the curves y² = x + 4 and x + 2y = 4 is 72 square units.(option c)

To find the area bounded by the curves, we need to determine the points of intersection first. We can solve the system of equations formed by the two curves to find these points.

By substituting x + 2y = 4 into y² = x + 4, we can rewrite the equation as (4 - 2y)² = y² + 4. Expanding this equation gives 16 - 16y + 4y² = y² + 4. Simplifying further leads to 3y² + 16y - 12 = 0. By factoring or using the quadratic formula, we find y = 1 and y = -4/3 as the solutions.

Substituting these values back into x + 2y = 4, we can determine the corresponding x-values as x = 2 and x = 4/3.

Now, we can integrate the difference of the curves with respect to y from y = -4/3 to y = 1 to find the area bounded by the curves. The integral of (x + 4) - (x + 2y) with respect to y gives the area as ∫(4 - 2y) dy from -4/3 to 1, which equals 72.

Therefore, the area bounded by the given curves is 72 square units, which corresponds to option c.

Learn more about system of equations here:

https://brainly.com/question/20067450

#SPJ11

use a reference angle to write cos(47π36) in terms of the cosine of a positive acute angle.

Answers

To write cos(47π/36) in terms of the cosine of a positive acute angle, we can use the concept of reference angles.

The reference angle is the positive acute angle formed between the terminal side of an angle in standard position and the x-axis. In this case, the angle 47π/36 is in the fourth quadrant, where cosine is positive.

To find the reference angle, we subtract the angle from the nearest multiple of π/2 (90 degrees). In this case, the nearest multiple of π/2 is 48π/36 = 4π/3.

Reference angle = 4π/3 - 47π/36 = (48π - 47π) / 36 = π / 36

Since cosine is positive in the fourth quadrant, we can express cos(47π/36) in terms of the cosine of the reference angle:

cos(47π/36) = cos(π/36)

Therefore, cos(47π/36) is equal to the cosine of π/36, a positive acute angle.

To know more about quadrant visit-

brainly.com/question/31502282

#SPJ11


(Discrete Math, Boolean Algebra)



Show that F(x,y,z) = xy + xz + yz is 1 if and only if at least two
of the variables x, y, and z are 1

Answers

To show that F(x, y, z) = xy + xz + yz is 1 if and only if at least two of the variables x, y, and z are 1, we can analyze the expression and consider all possible combinations of values for x, y, and z.

If at least two of the variables x, y, and z are 1, then the corresponding terms xy, xz, or yz in the expression will be 1, and their sum will be greater than or equal to 1. Therefore, F(x, y, z) will be 1.

Conversely, if F(x, y, z) = 1, we can examine the cases when F(x, y, z) equals 1:

1. If xy = 1, it implies that both x and y are 1.

2. If xz = 1, it implies that both x and z are 1.

3. If yz = 1, it implies that both y and z are 1.

In each of these cases, at least two of the variables x, y, and z are 1.

Hence, we have shown that F(x, y, z) = xy + xz + yz is 1 if and only if at least two of the variables x, y, and z are 1.

Learn more about Boolean Algebra here: brainly.com/question/32080036

#SPJ11

Consider the following linear transformation of R³: T(X1, X2, X3) =(-9. x₁-9-x2 + x3,9 x₁ +9.x2-x3, 45 x₁ +45-x₂ −5· x3). (A) Which of the following is a basis for the kernel of T? No answer given) O((-1,0, -9), (-1, 1,0)) O [(0,0,0)} O {(-1,1,-5)} O ((9,0, 81), (-1, 1, 0), (0, 1, 1)) [6marks] (B) Which of the following is a basis for the image of T? O(No answer given) O ((2,0, 18), (1,-1,0)) O ((1,0,0), (0, 1, 0), (0,0,1)) O((-1,1,5)} O {(1,0,9), (-1, 1.0), (0, 1, 1)} [6marks]

Answers

(A) The basis for the kernel of T is {(0, 0, 0)}. (B) The basis for the image of T is {(1, 0, 9), (-1, 1, 0), (0, 1, 1)}.

A) The kernel of a linear transformation T consists of all vectors in the domain that get mapped to the zero vector in the codomain. To find the basis for the kernel, we need to solve the equation T(x₁, x₂, x₃) = (0, 0, 0). By substituting the values from T and solving the resulting system of linear equations, we find that the only solution is (x₁, x₂, x₃) = (0, 0, 0). Therefore, the basis for the kernel of T is {(0, 0, 0)}.

B) The image of a linear transformation T is the set of all vectors in the codomain that can be obtained by applying T to vectors in the domain. To find the basis for the image, we need to determine which vectors in the codomain can be reached by applying T to some vectors in the domain. By examining the possible combinations of the coefficients in the linear transformation T, we can see that the vectors (1, 0, 9), (-1, 1, 0), and (0, 1, 1) can be obtained by applying T to suitable vectors in the domain. Therefore, the basis for the image of T is {(1, 0, 9), (-1, 1, 0), (0, 1, 1)}.

Learn more about codomain here:

https://brainly.com/question/17311413

#SPJ11

Suppose the following: P and Tare independent events Pr|P|T] = . Pr[T] = Find Pr [PT] 10/45 4/45 8/45 O None of the others are correct 09/45 O 7/45 .

Answers

Based on the given information, we have Pr(|P ∩ T|) = 0 and Pr(T) = 4/45. We need to find Pr(P ∩ T). Among the given options, the correct answer is "None of the others are correct".

The formula used to calculate the probability of the intersection of two events is Pr(A ∩ B) = Pr(A) * Pr(B|A), where Pr(A) represents the probability of event A and Pr(B|A) represents the conditional probability of event B given that event A has occurred. In this case, we are given Pr(|P ∩ T|) = 0, which implies that the probability of the intersection of events P and T is zero. However, we are not provided with the value of Pr(P), which is necessary to calculate Pr(P ∩ T). Without the probability of event P, we cannot determine the probability Pr(P ∩ T) solely based on the given information.

To know more about probability here: brainly.com/question/31828911

#SPJ11

Find the limit (if it exists). (If an answer does not exist, enter DNE.)
( 5/x+∆x -5 - x) / Δx
lim
Ax→0+

Answers

To find the limit as Δx approaches 0 of the expression (5/(x+Δx) - 5 - x)/Δx, we can apply the limit definition. Let's simplify the expression first:

(5/(x+Δx) - 5 - x)/Δx = (5 - 5(x+Δx) - x(x+Δx))/(Δx(x+Δx))

Expanding and simplifying further:

= (5 - 5x - 5Δx - x - xΔx)/(Δx(x+Δx))

= (-5x - xΔx - 5Δx)/(Δx(x+Δx))

= -x(5 + Δx)/(Δx(x+Δx)) - 5Δx/(Δx(x+Δx))

= -x/(x+Δx) - 5/(x+Δx)

Now, we can take the limit as Δx approaches 0:

lim Δx→0+ (-x/(x+Δx) - 5/(x+Δx))

As Δx approaches 0, the denominators x+Δx approach x. Therefore, we have:

lim Δx→0+ (-x/x - 5/x)

= lim Δx→0+ (-1 - 5/x)

= -1 - lim Δx→0+ (5/x)

As x approaches 0, 5/x approaches infinity. Therefore, the limit is:

= -1 - (∞)

= -∞

Hence, the limit of the expression as Ax approaches 0+ is -∞.

Learn more about limits here: brainly.com/question/6597204
#SPJ11

a)An experiment was conducted to investigate two factors using the analysis of variance. The
first factor has 3 levels, while the second factor has 4 levels. If two data points (n=2) were
collected at each combination of the factors, the total degrees of freedom of the experiment
are:
b)An experiment was conducted to investigate two factors using the analysis of variance. The
first factor has 2 levels, while the second factor has 5 levels. If two data points (n=3) were
collected at each combination of the factors, the total degrees of freedom of the experiment are:

Answers

(a) The total degree of freedom of the experiment is 14.

(b) The total degree of freedom of the experiment is 4.

If two data points were collected at each combination of the factors, the total degrees of freedom of the experiment is given by the formula: (n-1)Total degrees of freedom = (k1 - 1) + (k2 - 1) + [(k1 - 1) × (k2 - 1)]

Where n is the number of data points collected at each combination of factors, k1 is the number of levels of the first factor, and k2 is the number of levels of the second factor.

a) In this problem, there are 3 levels for the first factor and 4 levels for the second factor.

Therefore, using the formula above, the total degrees of freedom of the experiment can be calculated as follows:

(2-1)(3-1)+[ (4-1)(3-1)] = 2(2) + 6(2) = 4 + 12 = 16 degrees of freedom.

However, since two data points were collected at each combination of the factors, 2 degrees of freedom should be subtracted from the total degrees of freedom.

Hence, the final answer is: Total degrees of freedom = 16 - 2 = 14 degrees of freedom.

b)In this problem, there are 2 levels for the first factor and 5 levels for the second factor. Therefore, using the formula given above, the total degrees of freedom of the experiment can be calculated as follows:

(3-1)(2-1)+[ (5-1)(2-1)] = 2 + 4(1) = 6 degrees of freedom.

However, since two data points were collected at each combination of the factors, 2 degrees of freedom should be subtracted from the total degrees of freedom. Hence, the final answer is:

Total degrees of freedom = 6 - 2 = 4 degrees of freedom.

To know more about the degree of freedom visit:

https://brainly.com/question/30080141

#SPJ11

(a) The total degree of freedom of the experiment is 14.

(b) The total degree of freedom of the experiment is 4.

Given that,

a) The first factor has 3 levels, while the second factor has 4 levels.

b)  The first factor has 2 levels, while the second factor has 5 levels.

We know that,

When two data points were collected at each combination of the factors, the total degrees of freedom of the experiment is, (n-1)

Total degrees of freedom = (k₁ - 1) + (k₂ - 1) + [(k₁ - 1) × (k₂ - 1)]

Where n is the number of data points collected at each combination of factors, k₁ is the number of levels of the first factor, and k₂ is the number of levels of the second factor.

a) Since, there are 3 levels for the first factor and 4 levels for the second factor.

Therefore, the total degrees of freedom of the experiment can be calculated as follows:

(2 - 1)(3 - 1) +[ (4-1)(3-1)]

= 2(2) + 6(2)

= 4 + 12

= 16 degrees of freedom.

However, since two data points were collected at each combination of the factors, 2 degrees of freedom should be subtracted from the total degrees of freedom.

Hence, the final answer is:

Total degrees of freedom = 16 - 2

                                       = 14 degrees of freedom.

b) Since, there are 2 levels for the first factor and 5 levels for the second factor.

Therefore, the total degrees of freedom of the experiment can be calculated as follows:

(3-1)(2-1)+[ (5-1)(2-1)]

= 2 + 4(1)

= 6 degrees of freedom.

However, since two data points were collected at each combination of the factors, 2 degrees of freedom should be subtracted from the total degrees of freedom. Hence, the final answer is:

Total degrees of freedom = 6 - 2

                                        = 4 degrees of freedom.

Learn more about the subtraction visit:

https://brainly.com/question/17301989

#SPJ4




Consider the above data set. Determine the 18 th percentile: Determine the 72 th percentile: 27, 15, 39, 18, 42, 41, 48, 29, 42, 50, 29, 38, 13, 5, 39, 21, 18

Answers

The 18th percentile of the given data set is 13, while the 72nd percentile is 42.

In the given data set, the 18th percentile refers to the value below which 18% of the data points fall. To determine this value, we arrange the data in ascending order: 5, 13, 15, 18, 18, 21, 29, 29, 38, 39, 39, 41, 42, 42, 48, 50. Since 18% of the data set consists of 2.88 data points, we round up to 3. The 3rd value in the sorted data set is 13, making it the 18th percentile.

Similarly, to find the 72nd percentile, we calculate the value below which 72% of the data points fall. Again, arranging the data in ascending order, we find that 72% of 16 data points is 11.52, which we round up to 12. The 12th value in the sorted data set is 42, making it the 72nd percentile.

To learn more about percentile, click here:

brainly.com/question/159402

#SPJ11

5. Find the equation of the line that is tangent to the curve f(x)= (3x³-7x²+5)(x³+x-1) at the point (0,-5). (use the product rule)

Answers

Using the product rule, the equation of the line that is tangent to the curve f(x) = (3x³-7x²+5)(x³+x-1) at the point (0,-5) is: y = 5x - 5

To find the equation of the line that is tangent to the curve f(x)= (3x³-7x²+5)(x³+x-1) at the point (0,-5), you need to use the product rule. The product rule is a method for taking the derivative of a product of two functions. It states that the derivative of the product of two functions is equal to the first function times the derivative of the second function plus the second function times the derivative of the first function. That is, if f(x) and g(x) are two functions, then the derivative of f(x)g(x) is given by:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

To find the equation of the line that is tangent to the curve f(x)= (3x³-7x²+5)(x³+x-1) at the point (0,-5), we can use the product rule as follows:

f(x) = (3x³-7x²+5)(x³+x-1)g(x) = x

Let's find the first derivative of f(x) using the product rule.

f'(x) = (3x³-7x²+5) * [3x²+1] + [9x²-14x](x³+x-1)f'(x) = (3x³-7x²+5) * [3x²+1] + (9x²-14x)(x³+x-1)

Now, we can find the slope of the tangent at x=0, which is f'(0).f'(0) = (3*0³ - 7*0² + 5)(3*0² + 1) + (9*0² - 14*0)(0³ + 0 - 1)f'(0) = 5

Let the equation of the tangent be y = mx + b.

We know that it passes through the point (0,-5), so -5 = m(0) + b, or b = -5.

We also know that the slope of the tangent is f'(0), so m = 5.

Therefore, the equation of the line that is tangent to the curve f(x) = (3x³-7x²+5)(x³+x-1) at the point (0,-5) is: y = 5x - 5

More on product rule: https://brainly.com/question/29198114

#SPJ11

Given the functions g(x)=√x and h(x)=x2−4, state the domains of the following functions using interval notation.
a) g(x)h(x)
b) g(h(x))
c) h(g(x))

Answers

The domain of [tex]h(g(x)) is [2, ∞).[/tex]

Given the functions [tex]g(x)=√x and h(x)=x² − 4,[/tex] the domains of the following functions using interval notation are:

a) g(x)h(x)The domain of g(x) is x ≥ 0.

The domain of h(x) is all real numbers.

The domain of[tex]g(x)h(x)[/tex] is the intersection of the domains of g(x) and h(x).

Thus, the domain of [tex]g(x)h(x)[/tex] is [tex][0, ∞).b) g(h(x))[/tex]

The domain of h(x) is all real numbers.

Thus, the domain of h(x) is (-∞, ∞).

The domain of [tex]g(x) is x ≥ 0.[/tex]

This means that [tex]x² − 4 ≥ 0.x² ≥ 4x ≥ ±2[/tex]

The domain of g(h(x)) is the set of all x values such that x² − 4 ≥ 0.

Thus, the domain of [tex]g(h(x)) is (-∞, -2] U [2, ∞).c) h(g(x))[/tex]

The domain of g(x) is x ≥ 0.

The domain of h(x) is all real numbers.

Thus, the domain of h(x) is (-∞, ∞).

The range of [tex]g(x) is [0, ∞). x² − 4 ≥ 0x² ≥ 4x ≥ ±2[/tex]

The domain of [tex]h(g(x))[/tex] is the set of all x values such that x² ≥ 4.

Thus, the domain of[tex]h(g(x)) is [2, ∞).[/tex]

Know more about the domain here:

https://brainly.com/question/26098895

#SPJ11

Suppose that a sample of 41 households revealed that individuals spent on average about $112.36 on annuals for their garden each year with a standard deviation of about $7.79. In an independent survey of 21 households, it was reported that individuals spent an average of $121.03 on perennials per year with a standard deviation of about $10.54. If the amount of money spent on both types of plants is normally distributed, find a 99% confidence interval for the difference in the mean amount spent on annuals and perennials each year.

Answers

The 99% confidence interval for the difference in the mean amount spent on annuals and perennials each year is $6.05 Or, the interval is approximately ($2.62, $14.72). Hence, option (D) is the correct answer.

We are given the following information:

Sample size for annuals = 41

Sample mean for annuals = $112.36

Sample standard deviation for annuals = $7.79

Sample size for perennials = 21

Sample mean for perennials = $121.03.

Sample standard deviation for perennials = $10.54

Let µ1 be the mean amount spent on annuals per year and µ2 be the mean amount spent on perennials per year. We need to find a 99% confidence interval for the difference in the mean amount spent on annuals and perennials each year.

Therefore, the 99% confidence interval for the difference in the mean amount spent on annuals and perennials each year is:

$8.67 ± (2.678)($2.258)

≈ $8.67 ± $6.05

Or, the interval is approximately ($2.62, $14.72). Hence, option (D) is the correct answer.

To learn more about confidence interval, visit:

brainly.com/question/13067956

#SPJ11

Solve the given (matrix) linear system: 12 X + 4 ( x=1 321x+(3cos() X' = 2et B. Solve the given (matrix) linear system: 11 0 0 X' = 1 5 1 x 12 4 -3 C. Solve by finding series solutions about x=0: (x - 3)y + 2y' + y = 0

Answers

(i) The given linear system: x1 = 1/11x2 = 8/11x3 = 1

(ii) The solution of the differential equation is y = x³ (1 + 2x + 4x² + …)

The question involves finding solutions for three problems:

(i) Solving the given (matrix) linear system:

12X + 4(x=1) 321x + (3cos())

X' = 2et

(ii) Solving the given (matrix) linear system: 11 0 0 X' = 1 5 1 x 12 4 -3

(iii) Solving by finding series solutions about x=0: (x - 3)y + 2y' + y = 0

(i)To solve the given linear system:

12X + 4(x=1) 321x + (3cos())

X' = 2et11 0 0

X' = 1 5 1 x 12 4 -3

We write the given system in a matrix form as:

⎡12     4      0⎤   ⎡ x1 ⎤   ⎡321x + 3cos ()⎤⎢ 1   321     0⎥ ⎢ x2 ⎥

= ⎢     2et      ⎥⎣0      0     -3⎦   ⎣ x3 ⎦   ⎣      0            ⎦

Solving the above matrix equation gives:

x1 = (321x + 3cos())/12x2

= 2et/321 - 1604x3

= 0

(ii)To solve the given linear system:11 0 0 X' = 1 5 1 x 12 4 -3

We write the given system in a matrix form as:

⎡11     0     0⎤   ⎡ x1 ⎤   ⎡1⎤⎢ 1     5     1⎥ ⎢ x2 ⎥ = ⎢5⎥⎣12     4    -3⎦   ⎣ x3 ⎦   ⎣0⎦

Solving the above matrix equation gives:

x1 = 1/11x2

= 8/11x3

= 1

(iii)To solve the differential equation:(x - 3)y + 2y' + y = 0

we first assume the solution to be in the form:y = Σn=0 ∞ an xn

Substituting in the given equation, we get:

Σn=0 ∞ (an xn - 3an xn + 2an+1 xn + an xn)

= 0

Grouping like powers of x, we have:

Σn=0 ∞ (an - 3an + an) xn + Σn

=0 ∞ 2an+1 xn = 0

Σn=0 ∞ (-an) xn + Σn=0 ∞ 2an+1 xn = 0

Σn=0 ∞ (-an + 2an+1) xn

= 0

Thus, we have:an = 2an+1

For n = 0, we have: a0 = 2a1

For n = 1, we have: a1 = 2a2a nd so on

Substituting the value of a1 in the equation a0 = 2a1, we have:

a0 = 4a2

Similarly, a1 = 2a2

Thus, we have:an = 2nan+1for all n ≥ 1

The series solution for the given differential equation can be written as:

y = a0 x³ + a1 x⁴ + a2 x⁵ + …

Thus, we have: y = a0 x³ + 2a0 x⁴ + 4a0 x⁵ + …

Taking a0 = 1, we have:y = x³ (1 + 2x + 4x² + …)

Know more about the matrix equation

https://brainly.com/question/27929071

#SPJ11

Vectors (1.-1.1.1) and w(1,1,-1, 1) are orthogonal. Determine values of the scalars a, b that minimise the length of the difference vector dz-w where z (1.3.2.-1) and wa-u+b.v. Sav

Answers

To find the values of the scalars a and b that minimize the length of the difference vector dz - w, where z = (1, 3, 2, -1) and w = (1, 1, -1, 1), we need to minimize the magnitude of the vector dz - w.

The difference vector dz - w can be expressed as dz - w = (1, 3, 2, -1) - (a, a, -a, a) + b(1, -1, 1, 1).

Expanding this, we get dz - w = (1 - a + b, 3 - a - b, 2 + a - b, -1 - a + b).

To minimize the length of dz - w, we need to find the values of a and b such that the magnitude of dz - w is minimized.

The magnitude of dz - w is given by ||dz - w|| = sqrt((1 - a + b)^2 + (3 - a - b)^2 + (2 + a - b)^2 + (-1 - a + b)^2).

To minimize this expression, we can differentiate it with respect to a and b, set the derivatives equal to zero, and solve for a and b.

Differentiating with respect to a and b, we obtain a system of equations:

(1 - a + b)(-1) + (3 - a - b)(-1) + (2 + a - b)(1) + (-1 - a + b)(-1) = 0,
(1 - a + b)(1) + (3 - a - b)(1) + (2 + a - b)(-1) + (-1 - a + b)(1) = 0.

Solving this system of equations will give us the values of a and b that minimize the length of dz - w.

Please note that the equations provided do not include the vectors u and v, making it impossible to determine the values of a and b without additional information.

 To  learn more about vector click here:brainly.com/question/30958460

#SPJ11

What's 2+2+4 divided by 8 times 9+175- 421 times 9 +321

Answers

The solution to the expression using order of operations is: -80580

How to solve order of operations?

The order of operations for the given question is:

PEMDAS which means Parentheses, Exponents, Multiplication, Division, Addition, then subtraction.

Thus:

2+2+4 divided by 8 times 9+175- 421 times 9 +321 can be expressed as:

(2 + 2 + 4) ÷ 8 × (9 + 175 - 421) × (9 + 321)

Solving the parentheses first gives us:

8 ÷ 8 × (-237) × 340

= 1 × (-237) × 340

= -80580

Read more about order of operations at: https://brainly.com/question/550188

#SPJ1

find the volume of the solid enclosed by the paraboloids z = 4 \left( x^{2} y^{2} \right) and z = 8 - 4 \left( x^{2} y^{2} \right).

Answers

We are given that two paraboloids are given by the following equations:z = 4(x^2y^2)z = 8 - 4(x^2y^2)We need to find the volume of the solid enclosed by these two paraboloids.

Let's first graph the paraboloids to see how they look. The graph is shown below:Volume enclosed by the two paraboloidsThe solid that we need to find the volume of is the solid enclosed by the two paraboloids. To find the volume, we need to find the limits of integration. Let's integrate with respect to x first. The limits of x are from -1 to 1. To find the limits of y, we need to solve the two equations for y. For the equation z = 4(x^2y^2), we get y = sqrt(z/(4x^2)). For the equation z = 8 - 4(x^2y^2), we get y = sqrt((8-z)/(4x^2)). Thus the limits of y are from 0 to the minimum of these two equations, which is given by y = min(sqrt(z/(4x^2)), sqrt((8-z)/(4x^2))).We are now ready to find the volume. The integral that we need to evaluate is given by:∫(∫(4(x^2y^2) - (8 - 4(x^2y^2)))dy)dx∫(∫(4x^2y^2 + 4(x^2y^2) - 8)dy)dx∫(∫(8x^2y^2 - 8)dy)dxThe limits of y are from 0 to min(sqrt(z/(4x^2)), sqrt((8-z)/(4x^2))). The limits of x are from -1 to 1. Thus we get:∫(-1)1∫0min(sqrt(z/(4x^2)), sqrt((8-z)/(4x^2)))(8x^2y^2 - 8)dydxAnswer more than 100 words:Using the above equation, we can evaluate the integral by making a substitution y = sqrt(z/(4x^2)). Thus, we get dy = sqrt(1/(4x^2)) dz. We can then replace y and dy in the integral to get:∫(-1)1∫04(x^2)(z/(4x^2))(8x^2z/(4x^2) - 8)sqrt(1/(4x^2))dzdx∫(-1)1∫04z(2z - 2)sqrt(1/(4x^2))dzdx∫(-1)1∫04z^2 - zsqr(1/(x^2))dzdx∫(-1)1∫04z^2  zsqr(1/(x^2))dzdx∫(-1)1(16/3)x^2dx∫(-1)11(16/3)dx(16/3)∫(-1)1x^2dxThe last integral can be easily evaluated to give:∫(-1)1x^2dx = (1/3)(1^3 - (-1)^3) = (2/3)Thus, we get the volume of the solid enclosed by the two paraboloids as follows:Volume = (16/3) x (2/3) = 32/9Thus, the volume of the solid enclosed by the two paraboloids is 32/9. Therefore, the main answer is 32/9.

The volume of the solid enclosed by the two paraboloids z = 4(x²y²) and z = 8 - 4(x²y²) is 32/9 cubic units. We used the limits of integration and integrated with respect to x and y.

To learn more about Integration click:

brainly.com/question/31744185

#SPJ11

The volume of the solid enclosed by the paraboloids [tex]z = 4 (x^2y^2)[/tex] and [tex]z = 8 - 4 (x^2y^2)[/tex] can be found using the triple integral. The triple integral is given as: [tex]\int\int\int[/tex] dV where the limits of the integrals depend on the bounds of the solid. The bounds can be found by equating the two paraboloids and solving for the values of x, y and z.

The two paraboloids intersect at [tex]z = 4 (x^2y^2) = 8 - 4 (x^2y^2)[/tex] which simplifies to [tex](x^2y^2) = 1/2[/tex]. Thus, the bounds of the solid are:[tex]0 \leq z \leq 4 (x^2y^2)0 \leq z \leq 8 - 4 (x^2y^2)0 \leq x^2y^2 \leq 1/2[/tex] the  bounds for x and y are symmetric and we can integrate the solid using cylindrical coordinates.

Thus, the integral becomes:[tex]\int\int\int[/tex] r dz r dr dθwhere r is the distance from the origin and θ is the angle from the positive x-axis. Substituting the bounds, we get:[tex]\int0^2\ \pi \int0\sqrt(1/2) \int4 (r^2\cos^2\ \theta\sin^2\theta) r\ dz\ dr\ d\ \theta + \int0^2\ \pi \int \sprt(1/2)^1 \int8 - 4 (r^2cos^2\thetasin^2\theta)[/tex]solving this integral, we get the volume of the solid.

he volume of the solid enclosed by the paraboloids [tex]z = 4 (x^2y^2)[/tex] and [tex]z = 8 - 4 (x^2y^2)[/tex] is given as: [tex]8\pi /3[/tex]

To know more about volume visit -

brainly.com/question/30681924

#SPJ11




Under what conditions does a conditional probability satisfy the following Pr(A/B) = Pr(A)? (5 marks) Provide an example with real life terms.

Answers

We can see here that the condition under which Pr(A/B) = Pr(A) is when event B is a subset of event A.

What is conditional probability?

Conditional probability is the probability of an event A happening, given that event B has already happened. It is calculated as follows:

Pr(A/B) = Pr(A and B) / Pr(B)

In general, conditional probability is a useful tool for understanding the relationship between two events.

Conditional probability can also be used to make predictions.

Learn more about conditional probability on https://brainly.com/question/23382435

#SPJ4


Can someone help with this problem
please?
Solve 3 [3] = [- 85 11] [7] 20) = = – 1, y(0) = 65 - x(t) = y(t) = Question Help: Message instructor Post to forum Submit Question - 5

Answers

The solution for the given system of differential equations with the initial condition y(0) = 65 is x(t) = -1 + e^-4t (-21cos(3t) + 4sin(3t)), y(t) = 32 + e^-4t (4cos(3t) + 21sin(3t))

Given system of differential equations,3x'' + 21y' + 4x' + 85x = 0,11y'' - 21x' + 20y' = 0

The given system of differential equations can be written asX' = [x y]'(t) = [x'(t) y'(t)]'A = [3 21/4; -21/11 20]

Summary:The given system of differential equations can be written asX' = [x y]'(t) = [x'(t) y'(t)]'A = [3 21/4; -21/11 20]

Learn more about equations click here:

https://brainly.com/question/2972832

#SPJ11

Type or paste question here In an open lottery,two dice are rolled a.What is the probability that both dice will show an even number? b.What is the probability that the sum of the dice will be an odd number? c.What is the probability that both dice will show a prime number?

Answers

a. The probability that both dice will show an even number is 1/4.

b. The probability that the sum of the dice will be an odd number is 1/2.

c. The probability that both dice will show a prime number is 9/36 or 1/4.

a. To find the probability that both dice will show an even number, we need to determine the favorable outcomes (both dice showing even numbers) and the total possible outcomes. Each die has 3 even numbers (2, 4, 6) out of 6 possible numbers, so the probability for each die is 3/6 or 1/2. Since the dice are rolled independently, we multiply the probabilities together: 1/2 * 1/2 = 1/4.

b. The probability that the sum of the dice will be an odd number can be determined by finding the favorable outcomes (sums of 3, 5, 7, 9, 11) and dividing it by the total possible outcomes. There are 5 favorable outcomes out of 36 total possible outcomes. Therefore, the probability is 5/36.

c. To find the probability that both dice will show a prime number, we need to determine the favorable outcomes (both dice showing prime numbers) and the total possible outcomes. There are 3 prime numbers (2, 3, 5) out of 6 possible numbers on each die. So, the probability for each die is 3/6 or 1/2. Multiplying the probabilities together, we get 1/2 * 1/2 = 1/4.

In summary, the probabilities are: a) 1/4, b) 5/36, c) 1/4.

To learn more about probability, click here: brainly.com/question/12594357

#SPJ11


if f: G --> G' is a homomorphisms , apply FUNDAMENTAL
HOMOMORPHISM THEOREM think of f: G ----> f(G) so G/ ker(f) =~
f(G)

Answers

answer:The Fundamental Homomorphism Theorem provides a connection between the kernel of a group decagon homomorphism, its image, and the quotient of the domain of the homomorphism modulo its kernel.

For a homomorphism f: G → G', the theorem states that the kernel of f is a normal subgroup of G, and the image of f is isomorphic to the quotient group G/ker(f). Let f: G → G' be a group homomorphism.

This theorem is fundamental because it connects three important aspects of a group homomorphism: the kernel, the image, and the quotient group modulo the kernel. It provides a useful tool for studying group homomorphisms and their properties.  answer:

For a group homomorphism f: G → G', the kernel of f is defined as:ker(f) = {g ∈ G | f(g) = e'},where e' is the identity element in G'.

The kernel of f is a subgroup of G, which can be shown using the two-step subgroup test.

The image of f is defined as:f(G) = {f(g) | g ∈ G},which is a subgroup of G'. It can also be shown that the image of f is isomorphic to the quotient group G/ker(f), which is the set of all left cosets of ker(f) in G, denoted by G/ker(f) = {gker(f) | g ∈ G}

To know more about decagon visit:

https://brainly.com/question/27314678

#SPJ11

F(x)= 2x3 + zx2 - 13x +
y
When divided by (h-3), the function equals
0, when divided by (h-1) the
function equals 18. Find z & find y.
I've been struggling with this one.

Answers

the value of z is -5/2 and the value of y is 15/2.

So, z = -5/2 and y = 15/2.

To find the values of z and y, we can use the Remainder Theorem and substitute the given conditions into the polynomial function.

When divided by (h-3), the function equals 0:

We can write this condition as:

F(3) = 0

Substituting h = 3 into the function:

F(3) = 2(3)^3 + z(3)^2 - 13(3) + y

0 = 54 + 9z - 39 + y

Simplifying the equation:

9z + y + 15 = 0

y = -9z - 15

When divided by (h-1), the function equals 18:

We can write this condition as:

F(1) = 18

Substituting h = 1 into the function:

F(1) = 2(1)^3 + z(1)^2 - 13(1) + y

18 = 2 + z - 13 + y

Simplifying the equation:

z + y + 13 = 18

z + y = 5

Now, we have two equations:

[tex]9z + y + 15 = 0[/tex]

z + y = 5

Subtracting the second equation from the first equation, we get:

[tex]8z + 15 = -5[/tex]

8z = -20

z = -20/8

z = -5/2

Substituting the value of z into the second equation:

[tex](-5/2) + y = 5[/tex]

[tex]y = 5 + 5/2[/tex]

y = 15/2

To know more about function visit:

brainly.com/question/30721594

#SPJ11

Question 4 1 pts One number is 11 less than another. If their sum is increased by eight, the result is 71. Find those two numbers and enter them in order below: larger number = smaller number =

Answers

Therefore, the larger number is 37 and the smaller number is 26.

Let's assume the larger number is represented by x and the smaller number is represented by y.

According to the given information, we have two conditions:

One number is 11 less than another:

x = y + 11

Their sum increased by eight is 71:

(x + y) + 8 = 71

Now we can solve these two equations simultaneously to find the values of x and y.

Substituting the value of x from the first equation into the second equation:

(y + 11 + y) + 8 = 71

2y + 19 = 71

2y = 71 - 19

2y = 52

y = 52/2

y = 26

Substituting the value of y back into the first equation to find x:

x = y + 11

x = 26 + 11

x = 37

To know more about number,

https://brainly.com/question/29172788

#SPJ11

A boat is heading due east at 29 km/hr (relative to the water). The current is moving toward the southwest at 12 km/hr. Let b denote the velocity of the boat relative to water and denote the velocity of the current relative to the riverbed. (a) Give the vector representing the actual movement of the boat. Round your answers to two decimal places. Use the drop-down menu to indicate if the second term is negative and enter a positive number in the answer area. b + c = i (b) How fast is the boat going, relative to the ground? Round your answers to two decimal places. Velocity = i km/hr. (c) By what angle does the current push the boat off of its due east course? Round your answers to two decimal places. |0|= i degrees

Answers

The vector representing the actual movement of the boat is b + c, where b is the velocity of the boat relative to the water and c is the velocity of the current relative to the riverbed.

(a) The actual movement of the boat is the combination of its velocity relative to the water (b) and the velocity of the current relative to the riverbed (c). The vector representing the actual movement of the boat is given by b + c.

(b) To find the boat's speed relative to the ground, we need to determine the magnitude of the vector b + c. The magnitude of a vector can be found using the Pythagorean theorem. So, the boat's speed relative to the ground is the magnitude of the vector b + c.

(c) The angle at which the current pushes the boat off its due east course can be found by considering the angle between the vector b (boat's velocity relative to the water) and the vector b + c (actual movement of the boat). This angle can be determined using trigonometry, such as the dot product or the angle formula for vectors.

By following the steps mentioned above, the specific numerical values can be calculated and rounded to two decimal places to provide the answers for (a), (b), and (c).

to learn more about Pythagorean theorem click here:

brainly.com/question/15624595

#SPJ11

Exponent word problem
the half-life of plutonium-239 is about 25,000 years. what
percentage of a given sample will remain after 2000 years?

Answers

The percentage of plutonium-239 remaining after 2000 years is 91.43%

The half-life of Plutonium-239 is 25,000 years. Half-life refers to the time required for a radioactive substance to decay to half its original value.

The initial amount of the radioactive substance is denoted by ‘P0’.The formula to calculate the amount of radioactive substance remaining after a given time, ‘t’ is given by:P = P0 (1/2)^(t/h) Where:P = Amount of substance remaining after time ‘t’P0 = Initial amount of the substanceh = Half-life of the substancet = Time passed

Therefore, to find the amount of plutonium-239 remaining after 2000 years, we can substitute the given values in the formula:P = P0 (1/2)^(t/h)P = P0 (1/2)^(2000/25000)P = P0 (0.918)P = 0.918 P0To find the percentage of plutonium-239 remaining, we can divide the remaining amount by the initial amount and multiply by 100.% remaining = (remaining amount/initial amount) x 100%

Remaining amount = 0.918 P0Initial amount = P0% remaining = (0.918 P0/P0) x 100% = 91.43%Therefore, the percentage of plutonium-239 remaining after 2000 years is 91.43%.

Summary:To find the percentage of plutonium-239 remaining after 2000 years, we can use the formula:P = P0 (1/2)^(t/h)By substituting the given values, we get:P = 0.918 P0Therefore, the percentage of plutonium-239 remaining is: % remaining = (0.918 P0/P0) x 100% = 91.43%

Learn more about percentage click here:

https://brainly.com/question/24877689

#SPJ11

Other Questions
The extract of a plant native to Taiwan has been tested as a possible treatment for Leukemia. One of the chemical compounds produced from the plant was analyzed for a particular collagen. The collagen amount was found to be normally distributed with a mean of 65 and standard deviation of 9.3 grams per milliliter.(a) What is the probability that the amount of collagen is greater than 62 grams per milliliter? the process of decomposing roe into a series of component ratios is called Which tone is indicated by the following words and phrases from the passage: annihilation (paragraph 5), humans beings are garbage (paragraph 56), devoid of joy (paragraph 65), and rejected (paragraph 107)? Using one example each from the following four types of business: Service - (Spark New Zealand Limited) Manufacturing -(Fisher & Paykel Healthcare Ltd) Merchandising -(Noel Leeming) Hybrid -(Apple)Compare how the nature of each business affects the achievement of the businesspurpose by referring to how the focus of the business differs with purpose.Give an example of how this is reflected in their business operational structure or organisational structure for each type of business. Consider the following functions: f(x) = 2x + 4x +8.376; g(x) = x - 3 +2; h(x) = f(x)/g(x). State the domain and range of h(x) using interval notation. Consider using DESMOS to assist you. Find a real case study about group F in incoterms and state thepros and cons of that case. Suppose a company faces decreasing average cost for all quantities of Q. a) What type of industry is this? b) Draw a graph that shows quantity and price choice assuming the company is unregulated. c) Draw a graph that show profit if the government forces the company to produce at the perfect competition Q and P. Identify and analyses any strategies that the firm haspursued to manage its financial market risks.The company is Microsoft the control limits represent the range between which all points are expected to fall if the process is in statistical control.tf 2. The organizing function of managers involves: a. not allocating resources needed to perform assigned activities. b. assigning activities identified in the planning process to some person, team or department. c. determining strategic priorities for the organization as a whole. d. determining how to most effectively utilize financial resources. 3. Mass-produced products generally are: a. Prepaid, unique projects b. Produced only after ordered c. Semi-produced and completed upon order d. Held in inventory until sold a. provide information to external entities that allows them to evaluate business performance. b. have a primary focus on providing managers within the organization with reports to make good business decisions. c. summarize the company's production activities in a way that allows managers to make decisions. d. work with government lobbyists to push for more favorable accounting regulations. 4. Financial accountants: 1. (a) What are the characteristics of a Market Driven Strategy? (b) Explain the logic of pursuing a Market Driven Strategy. (c) How does an organizations distinctive capabilities contribute to developing market-driven strategy? REAL ESTATE: Please explain the difference between a Gable and a Gambrelroof. the substance that is completely consumed in a reaction is called the ______. Consider the following aggregate production function, using the same notation as in class. Y = AK L1- = What do A, K and L refer to? Which are factors of production? Why is "A" sometimes referred to as "a measure of our ignorance"? Do you think this production function is a good model for the UAE economy today? Why or why not? help please it is due in 5 minutes no joke Research results can be reported in a variety of formats: memos, infographics, slide presentations, or formally written reports. When deciding on a format, above all else, consider the audience. If the audience is the CEO, a high-level executive summary with visuals may be appropriate. A manager may want to see more detailed data and breakdowns. Some audiences may require a formal report, while others may prefer a one-page infographic. Researchers should prepare to design research reports tailored to a specific audience. This may mean creating multiple reports geared toward varied audiences.However, whatever the format, researchers should strive to include each of the following components in some capacity:PurposeMethodologyRespondent ProfileExecutive SummaryDetailed FindingsAppendices (survey instruments and respondent comments)Step 1: Find Real-world ExamplesLocate a market research report example. University or college library resources and databases are suggested places to start. While news articles featuring research results can be accepted, medical research or social research reports should be avoided. Instead, focus on reports that result in a marketing or business decision.Step 2: Evaluate the Research ReportWalk through your example by posting in the discussion board and evaluate the components of the report by comparing them to the best practices in the textbook:PurposeMethodologyRespondent ProfileExecutive SummaryDetailed FindingsAppendices (survey instruments and respondent comments)During your analysis, address the following:Is the presented data primary or secondary and is it qualitative or quantitative?If differences or components are not addressed, why is that?Who is the main audience for the report? Is the report format appropriately geared toward the main audience? How?What is communicated effectively through the report?Where are opportunities for improvement?Do the visuals in the report adequately communicate the data? Why or why not? 10.55 In a marketing class, 44 student members of virtual (Internet) project teams (group 1) and 42 members of face-to-face project teams (group 2) were asked to respond on a 1-5 scale to the question: "As compared to other teams, the members helped each other." For group 1 the mean was 2.73 with a standard deviation of 0.97, while for group 2 the mean was 1.90 with a standard deviation of 0.91. At a = .01, is the virtual team mean significantly higher? find the orthogonal decomposition of v with respect to w. perpw(v) The statement of cash flows identifies the sources and uses of the firm's cash: Multiple Choice at the beginning of the time period. at the end of the time period. between the beginning and the year end of the fiscal period. the mid-point of the year. Help need it asap please