In
the context of mechanical vibrations, explain and differentiate
dynamic instability and resonance phenomena related to vibrations
of linear systems.

Answers

Answer 1

The oscillations are bounded and can be controlled by adjusting the damping or the frequency of the excitation.

In mechanical vibrations, dynamic instability and resonance are two important phenomena that can occur in linear systems.

Dynamic instability occurs when a system becomes unstable due to the inherent properties of the system. In other words, if the damping in the system is insufficient to prevent oscillations, the system can exhibit dynamic instability. This can result in unbounded or exponentially growing oscillations, which can lead to failure of the system.

Resonance, on the other hand, is a phenomenon that occurs when the frequency of the excitation matches the natural frequency of the system. This can result in large amplitude oscillations, even if the external force is relatively small. In other words, resonance is a condition in which the system responds strongly to a periodic force that has a frequency close to its natural frequency. Resonance can cause large oscillations, which can be damaging to the system, especially if the frequency of the excitation is close to the natural frequency of the system.

The main difference between dynamic instability and resonance is that dynamic instability is a condition in which the system becomes unstable due to insufficient damping, while resonance is a condition in which the system responds strongly to a periodic force that has a frequency close to its natural frequency. In both cases, the system can exhibit large oscillations, which can be damaging to the system. However, in dynamic instability, the oscillations are unbounded or exponentially growing, while in resonance, the oscillations are bounded and can be controlled by adjusting the damping or the frequency of the excitation.

To learn more about oscillations visit:

https://brainly.com/question/30111348

#SPJ11


Related Questions

A first-year teacher wants to retire in 40 years. The teacher plans to invest in an account with a 5.67% annual interest rate compounded
continuously. If the teacher wants to retire with at least $100,000 in the account, how much money must be initially invested? Round your answer
to the nearest dollar.
O $10,352
O $10,512
O $34,703
O $35,905

Answers

If the first-year teacher wants to retire in 40 years and plans to invest in an account with a 5.67% annual interest rate compounded continuously, retiring with at least $100,000 in the account, they must initially invest A) $10,352 (present value).

How is the present value computed?

The present value for continuous compounding is given by the formula: P = A / e^rt.

This present value that is required to earn a future value of $100,000 can be determined using an online finance calculator as follows:

Total P+I (A): $100,000.00

Annual Rate (R) = 5.67%

Time (t in years): 40 years

Result:

P = $10,351.9

= $10,352.

Thus, to have $100,000 in 40 years, the teacher should invest $10,352 now.

Learn more about continuous compounding at https://brainly.com/question/30460031.

#SPJ1

PLEASE HURRY ILL GIVE BRANILIST!!!!

Answers

The balloon that was farther from the town at the beginning, and which traveled more quickly is option D. Tasha's balloon was farther from the town at the beginning, but Henry's balloon traveled more quickly.  

What is the balloon about?

In order for us to know or to figure out which balloon had a faster journey, we can employ the speed equation:

Speed: Distance divided by time

Note that from the question, Henry's balloon was one that covered a distance of  16 miles within a span of 2 hours resulting in its velocity being 8 miles per hour and  Tasha's balloon was situated y = 5x + 25 miles away from the town.

Theis mean that its distance from the town would be y = 5(2) + 25 = 35 miles, after a duration of 2 hours. So, Tasha's balloon covered a distance of 10 miles within a span of 2 hours, showing a speed of 5 mph.

Learn more about balloon  from

https://brainly.com/question/21360487

#SPJ1

See text below

Two hot air balloons are traveling along the same path away from a town, beginning from different locations at the same time. Henry's balloon begins 15 miles from the town and is 31 miles from the town after 2 hours. The distance of Tasha's balloon from the town is represented by the function y = 5x+25.

Which balloon was farther from the town at the beginning, and which traveled more quickly?

A. Tasha's balloon was farther from the town at the beginning, and it traveled more quickly.

B. Henry's balloon was farther from the town at the beginning, and it traveled more quickly.

C. Henry's balloon was farther from the town at the beginning, but Tasha's balloon traveled more quickly.

D. Tasha's balloon was farther from the town at the beginning, but Henry's balloon traveled more quickly.


​prove if a/b = c/d = e/f

Answers

The proof that of the above expression on the condition of a/b = c/d = e/f is given below.

How can one arrive at the proof?

Given: a/b = c/d = e/f

Let e/b = e/c = k

Then, a/b = k and c/d = k, so a = kb and c = kd

Now we have:

√((a⁴ +  c⁴)/  (b⁴ + d⁴))   = √(((k b) ⁴ + ( kd )⁴ )/(b ⁴ + d ⁴)  )

= √ (k ⁴ *  (b⁴ + d⁴ ) / (b⁴ + d⁴))

= k²

Let p = 1 and q = k², then:

(p  a² + q * c²)/(p * b² + q * d²) = (a² + k² * c²)/(b² + k⁴ * d²)

= (k² *   b² + k² *    d ²)/(b ² +   k ⁴ * d ²)

= k ²

Therefore, we have shown that √ ((a ⁴ + c ⁴)/(b ⁴ + d ⁴))   = (p x a ² + q * c ²) / (p * b ² + q * d² )

if a/b =  c/ d =  e/f.


Learn more about Proof:
https://brainly.com/question/30792483
#SPJ1

finding the slope for (-2,-5) (0,5)

Answers

Answer:

The slope is 5.

Step-by-step explanation:

Pre-Solving

We are given the points (-2, -5) and (0,5).

We want to find the slope between these 2 points.

The slope (m) is written with the formula [tex]\frac{y_2-y_1}{x_2-x_1}[/tex], where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points.

Solving

Let's label the values of the points to avoid any confusion and mistakes when calculating.

[tex]x_1=-2\\y_1=-5\\x_2=0\\y_2=5[/tex]

Now, substitute into the formula.

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m = \frac{5--5}{0--2}[/tex]

This can be simplified to:

[tex]m = \frac{5+5}{0+2}[/tex]

Add the values together.

[tex]m = \frac{10}{2}[/tex]

m = 5

The slope is 5.

What is the distance between (1, 2) and (1, -10)?

Answers

The distance between the points (1, 2) and (1, -10) is 12 square units

We have to find the distance between (1, 2) and (1, -10)

The length along a line or line segment between two points on the line or line segment.

Distance=√(x₂-x₁)²+(y₂-y₁)²

=√(1-1)²+(-10-2)²

=√-12²

=√144

=12 square units

Hence,  the distance between (1, 2) and (1, -10) is 12 square units

To learn more on Distance click:

https://brainly.com/question/15172156

#SPJ1

A pulse of sound takes 1/100 seconds to travel about 25 feet to the sea floor and back. A ship stops in an area where the sea floor extends to the bottom of the sunlight zone. At this spot an echo sounder gives a pulse of sound that takes 26/100 second to travel to the sea floor and back. How deep is the ocean at the bottom of the sunlight Zone?

Answers

The depth of the ocean is 650 feets at the bottom of the sunlight zone.

The distance travelled by echo sound is given by the formula -

Speed = 2×distance/time

So, calculating the speed of sound from the formula using distance and time

Speed = 2×25/(1/100)

Speed = 50×1000

Speed of sound = 5000 feet/second

Now, calculating the distance or depth of ocean at the bottom of the sunlight zone -

Distance = (speed×time)/2

Distance = (5000×26/100)/2

Distance = 1300/2

Distance = 650 feets

Hence, the depth of ocean is 650 feets.

Learn more about echo -

https://brainly.com/question/19579065

#SPJ4

Use the figure to find the Volume.

12 un3
16 un3
20 un3

Answers

The volume of the cylinder is 12π units³.

Option A is the correct answer.

We have,

The formula for the volume V of a cylinder with radius r and height h is:

V = πr²h

Now,

Radius = 2 units

Height = 3 units

Now,

Volume.

= πr²h

= π x 2 x 2 x 3

= 12π units³

Thus,

The volume of the cylinder is 12π units³.

Learn more about cylinder here:

https://brainly.com/question/15891031

#SPJ1

A federal report indicated that 30% of children under age 6 live in poverty in West Virginia, an increase over previous years. How large a sample is needed to estimate the true proportion of children under age 6 living in poverty in West Virginia within 3% with 95% confidence?

Answers

West Virginia is needed to estimate the true proportion of children living in poverty within 3% with 95% confidence

To estimate the required sample size, we can use the formula:

n = (Z^2 * p * (1-p)) / E^2

where:

Z = the Z-score associated with the desired level of confidence (95% confidence corresponds to a Z-score of 1.96)

p = the estimated proportion of the population with the characteristic of interest (in this case, the estimated proportion of children under age 6 living in poverty in West Virginia, which is 0.3)

E = the desired margin of error (in this case, 0.03)

Substituting the given values, we get:

n = (1.96^2 * 0.3 * (1-0.3)) / 0.03^2

Simplifying:

n = 601.78

Rounding up to the nearest whole number, we get:

n = 602

Therefore, a sample of at least 602 children under age 6 from West Virginia is needed to estimate the true proportion of children living in poverty within 3% with 95% confidence.

To learn more about confidence visit:

https://brainly.com/question/13067956

#SPJ11

Find all the complex roots. Write the answer in exponential

form. The complex fourth roots of 3−33i. Z0= z1= z2= z3=

Answers

The complex fourth roots of 3−33i are: [tex]z_0[/tex] = 3.062[tex]e^{(-21.603)}[/tex], [tex]z_1[/tex] = 1.513[tex]e^{(22.247)}[/tex], [tex]z_2[/tex] = 0.3826[tex]e^{(22.247)}[/tex] and [tex]z_3[/tex] = 1.198[tex]e^{(76.247)}[/tex].

To find the complex fourth roots of 3-33i, we can use the polar form of the complex number:

3-33i = 33∠(-86.41)

Then, the nth roots of this complex number are given by:

[tex]z_k[/tex] = [tex]33^{(1/n)}[/tex] × ∠((-86.41 + 360k)/n) for k = 0, 1, 2, ..., n-1

For n = 4, we have:

[tex]z_0[/tex] = [tex]33^{(1/4)}[/tex] × ∠(-86.41/4) ≈ 3.062∠(-21.603°)

[tex]z_1[/tex] = [tex]33^{(1/4)}[/tex] × ∠(88.99/4) ≈ 1.513∠(22.247°)

[tex]z_2[/tex] = [tex]33^{(1/4)}[/tex] × ∠(196.99/4) ≈ 0.3826∠(49.247°)

[tex]z_3[/tex] = [tex]33^{(1/4)}[/tex] × ∠(304.99/4) ≈ 1.198∠(76.247)

So the complex fourth roots of 3-33i are approximate:

[tex]z_0[/tex] = 3.062[tex]e^{(-21.603)}[/tex]

[tex]z_1[/tex] = 1.513[tex]e^{(22.247)}[/tex]

[tex]z_2[/tex] = 0.3826[tex]e^{(22.247)}[/tex]

[tex]z_3[/tex] = 1.198[tex]e^{(76.247)}[/tex]

Learn more about the complex roots at

https://brainly.com/question/5498922

#SPJ4

You spin the spinner and flip a coin. Find the probability of the compound event is not spinning 5

Answers

The probability of the compound event of spinning a 5 and flipping heads is 1/12.

Assuming that the spinner is fair and each outcome is equally likely, the probability of spinning a 5 is:

P(spinning 5) = number of ways to get 5 / total number of outcomes

P(spinning 5) = 1 / 6

Now, assuming that the coin is fair and has an equal probability of landing on heads or tails, the probability of flipping heads is:

P(flipping heads) = number of ways to get heads / total number of outcomes

P(flipping heads) = 1 / 2

To find the probability of the compound event of spinning 5 and flipping heads, we multiply the probability of spinning 5 by the probability of flipping heads:

P(spinning 5 and flipping heads) = P(spinning 5) x P(flipping heads)

P(spinning 5 and flipping heads) = (1/6) x (1/2)

P(spinning 5 and flipping heads) = 1/12.

To learn more about the probability;

brainly.com/question/11234923

#SPJ1

The complete question:

You spin the spinner and flip a coin. Find the probability of the compound event. The probability of spinning number 5 and flipping heads is__.

And spinner sample space is {1, 2, 3, 4, 5, 6}

The length of a diagonal of a square is 37√2 millimeters. Find the perimeter of the square

Answers

The perimeter of the square based on the dimensions of the diagonal is 145.27 millimeters.

We will begin with calculating the side of square from the diagonal of square. It will form right angled triangle and hence the formula will be represented as -

diagonal² = 2× side²

Keep the value of diagonal

(37✓2)² = 2× side²

Side² = 2638/2

Side² = 1319

Side = ✓1319

Side = 36.32 millimetres

Perimeter of the square = 4 × side

Perimeter = 145.27 millimeters

Thus, the perimeter of the square is 145.27 millimeters.

Learn more about square -

https://brainly.com/question/479529

#SPJ4

Suppose that X is an exponentially distributed random variable with lambda = 0.47 . Find each of the following probabilities:
A. P(X > 1) =
B. P(X > 0.36) =
C. P(X < 0.47) =
D. P(0.32 < X < 2.46) =

Answers

The requested probabilities are: A. P(X > 1) ≈ 0.628;                                  B. P(X > 0.36) ≈ 0.844; C. P(X < 0.47) ≈ 0.226;                                              D. P(0.32 < X < 2.46) ≈ 0.524

The probability density function of an exponentially distributed random variable with parameter lambda is given by:

f(x) = lambda * e^(-lambda * x), for x >= 0

The cumulative distribution function (CDF) of X is given by:

F(x) = P(X <= x) = 1 - e^(-lambda * x), for x >= 0

Using the given value of lambda = 0.47, we can solve for each probability as follows:

A. P(X > 1) = 1 - P(X <= 1) = 1 - (1 - e^(-0.47 * 1)) = e^(-0.47) ≈ 0.628

B. P(X > 0.36) = 1 - P(X <= 0.36) = 1 - (1 - e^(-0.47 * 0.36)) = e^(-0.1692) ≈ 0.844

C. P(X < 0.47) = P(X <= 0.47) = 1 - e^(-0.47 * 0.47) ≈ 0.226

D. P(0.32 < X < 2.46) = P(X <= 2.46) - P(X <= 0.32) = (1 - e^(-0.47 * 2.46)) - (1 - e^(-0.47 * 0.32)) ≈ 0.524

Know more about probabilities here:

https://brainly.com/question/13604758

#SPJ11

What is the value of x?

Answers

The value of the variable x for the arc angle m∠AB and the angle it subtends at the center of the circle C is equal to 73.

What is angle subtended by an arc at the center

The angle subtended by an arc of a circle at it's center is twice the angle it substends anywhere on the circles circumference. Also the arc measure and the angle it subtends at the center of the circle are directly proportional.

Thus:

3x - 46 = x + 98

3x - x = 98 + 46 {collect like terms}

2x = 146

x = 146/2 {divide through by 2}

x = 73

Therefore, the value of the variable x for the arc angle m∠AB and the angle it subtends at the center of the circle C is equal to 73.

Read more about angle here:https://brainly.com/question/24423151

#SPJ1

The U. S. Department of Transportation maintains statistics for mishandled bags per 1,000 airline passengers. In the first nine months of 2010, Delta had mishandled 3. 52 bags per 1,000 passengers. If you believe that the number of mishandled bags follows a Poisson Distribution, what is the probability that in the next 1,000 passengers, Delta will have:

1 No mishandled bags: 2 Four or fewer mishandled bags:

3 At least one mishandled bag:

4 At least two mishandled bags:

Answers

The probability that in the next 1,000 passengers

1 No mishandled bags: 0.0295

2 Four or fewer mishandled bags: 0.3449

3 At least one mishandled bag:  0.9705.

4 At least two mishandled bags:  0.8672

1. To discover the likelihood of no misused sacks within the next 1000 travelers, able to utilize the Poisson dispersion equation:

P(X = 0) =[tex]e^(-λ) * (λ^0)[/tex] / 0!

Where λ is the anticipated number of misused sacks per 1000 travelers, which is rise to 3.52.

P(X = 0) =[tex]e^(-3.52) * (3.52^0)[/tex] / 0!

P(X = 0) = 0.0295

Hence, the likelihood of no misused sacks within the other 1000 passengers is 0.0295.

2. To discover the likelihood of  fewer misused packs within another 1000 travelers, we will utilize the total Poisson dispersion:

P(X ≤ 4) = Σ k=0 to 4 [[tex]e^(-λ) * (λ^k)[/tex]/ k! ]

P(X ≤ 4) = [[tex]e^(-3.52) * (3.52^0) / 0! ] + [ e^(-3.52) * (3.52^1) / 1! ] + [ e^(-3.52) * (3.52^2) / 2! ] + [ e^(-3.52) * (3.52^3) / 3! ] + [ e^(-3.52) * (3.52^4)[/tex]/ 4! ]

P(X ≤ 4) = 0.3449

Subsequently, the likelihood of fewer misused sacks within another 1000 travelers is 0.3449.

3. To discover the likelihood of at least one misused sack within the following 1000 travelers, able to utilize the complementary likelihood:

P(X ≥ 1) = 1 - P(X = 0)

P(X ≥ 1) = 1 - 0.0295

P(X ≥ 1) = 0.9705

Subsequently, the likelihood of at slightest one misused pack within the following 1000 passengers is 0.9705.

4. To discover the likelihood of at slightest two misused sacks within the other 1000 travelers, we can utilize the complementary likelihood once more:

P(X ≥ 2) = 1 - P(X = 0) - P(X = 1)

P(X ≥ 2) = 1 - 0.0295 - [ [tex]e^(-3.52) * (3.52^1)[/tex] / 1! ]

P(X ≥ 2) = 1 - 0.0295 - 0.1033

P(X ≥ 2) = 0.8672

Subsequently, the likelihood of at slightest two misused packs within the following 1000 travelers is 0.8672. 

To know more about probability refer to this :

https://brainly.com/question/24756209

#SPJ4

The plane passing through the point P(1,3,4) with normal vector 2i+63 +7k has equation x+3y+4z=48 · Answer Ο Α True O B False

Answers

The equation of the plane passing through point P with normal vector 2i + 6j + 7k is x + 3y + 4z = 48.

A: True.

The equation of a plane in 3D space is given by Ax + By + Cz = D, where A, B, C are the components of the normal vector and D is the distance from the origin to the plane along the direction of the normal vector.

In this case, the normal vector is 2i + 6j + 7k, so A = 2, B = 6, and C = 7. To find D, we can substitute the coordinates of the given point P into the equation of the plane:

2(1) + 6(3) + 7(4) = D

2 + 18 + 28 = D

D = 48

Therefore, the equation of the plane passing through point P with normal vector 2i + 6j + 7k is x + 3y + 4z = 48.

To learn more about passing visit:

https://brainly.com/question/29136569

#SPJ11

A manufacturer knows that their items have a normally distributed lifespan, with a mean of 6.3 years, and standard deviation of 1.6 years. If 25 items are picked at random, 8% of the time their mean life will be less than how many years? Give your answer to one decimal place.

Answers

The mean life of the 25 items will be less than 5.9 years (rounded to one decimal place) 8% of the time.

We'll use the concepts of normal distribution, mean, standard deviation, and the z-score.

Step 1: Calculate the standard error of the mean. Standard error = (Standard deviation) / sqrt(Number of items) Standard error = 1.6 / sqrt(25) = 1.6 / 5 = 0.32 years

Step 2: Find the z-score corresponding to the 8% probability. We look for the z-score in a standard normal distribution table, which tells us that 8% of the time (0.08 probability), the z-score is approximately -1.4.

Step 3: Use the z-score formula to find the mean life (x) that corresponds to this probability. Z = (x - Mean) / Standard error -1.4 = (x - 6.3) / 0.32

Step 4: Solve for x. x - 6.3 = -1.4 * 0.32 x = 6.3 - (1.4 * 0.32) x ≈ 5.852

The mean life of the 25 items will be less than 5.9 years (rounded to one decimal place) 8% of the time.

Learn more about mean,

https://brainly.com/question/19243813

#SPJ11

Clark finds that in an average month, he spends $35 on things he really doesn't need and can't afford. About how much does he spend on these items in a year?

Answers

Clark would spend about $420 on these items in a year.

Given that Clark finds that in an average month, he spends $35 on things he really doesn't need and can't afford.

If Clark spends $35 on things he doesn't need or can't afford in an average month, then he would spend:

$35/month x 12 months/year = $420/year

Therefore, Clark would spend about $420 on these items in a year.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

In Problems 1 through 16, transform the given differential equation or system into an equivalent system of first-order differential equations.x(3)−2x′′+x′=1+tet.

Answers

The equivalent system of first-order differential equations for the given problem is: 1. dv1/dt = v2 2. dv2/dt = v3 3. dv3/dt = 2v2 - v1 + 1 + t*e ^t

Given differential equation: x''' - 2x'' + x' = 1 + t*e ^t

Step 1: Define new variables.
Let's introduce new variables:
v1 = x'
v2 = v1'
v3 = v2'

Now we have:
v1 = x'
v2 = v1'
v3 = v2'

Step 2: Rewrite the given equation using new variables.
Substitute the new variables into the given differential equation:
v3 - 2v2 + v1 = 1 + t*e ^t

Step 3: Write the equivalent system of first-order differential equations.
Now we have the following equivalent system of first-order differential equations:
dv1/dt = v2
dv2/dt = v3
dv3/dt = 2v2 - v1 + 1 + t*e ^t

So, the equivalent system of first-order differential equations for the given problem is:

1. dv1/dt = v2
2. dv2/dt = v3
3. dv3/dt = 2v2 - v1 + 1 + t*e ^t

Learn more about differential equations here:

brainly.com/question/25731911

#SPJ11

You need to set a 5-digit PIN, but adjacent digits in the PIN
cannot be identical. You are permitted to use the digits 0-9.

Answers

There are 59,049 possible 5-digit PINs where adjacent digits cannot be identical, and you are permitted to use digits 0-9.

To determine the number of possible 5-digit PINs where adjacent digits cannot be identical and using the digits 0-9, follow these steps:

Step 1: Consider the first digit. Since there are no restrictions, you have 10 choices (0-9).

Step 2: For the second digit, you can't have it identical to the first digit. Therefore, you have 9 choices left.

Step 3: For the third digit, it can't be identical to the second digit. So, you again have 9 choices.

Step 4: Similarly, for the fourth digit, you have 9 choices.

Step 5: Finally, for the fifth digit, you have 9 choices.

Now, multiply the choices for each digit together: 10 × 9 × 9 × 9 × 9 = 59,049.

So, there are 59,049 possible 5-digit PINs where adjacent digits cannot be identical, and you are permitted to use digits 0-9.

Learn more about Combinations: https://brainly.com/question/13387529

#SPJ11

To solve an equation,___ the variable, or get it alone on one side of the equation

Answers

To solve an equation, you need to isolate the variable or get it alone on one side of the equation.

Finding the value of the variable is the fundamental goal when solving an equation. You can achieve this by placing the variable alone on one side of the equation or by isolating it. A number of mathematical procedures must be carried out in order to accomplish this while maintaining the equality of the equation and simplifying the expression containing the variable.

The secret is to alter the equation so that the variable term is on its own by adding, removing, multiplying, or dividing both sides by the same number. By using the necessary mathematical procedures, the solution can be derived after the variable has been isolated.

Learn more about equation:

brainly.com/question/14686792

#SPJ4

Please help i dont know how to do this

Aaron hikes from his home to a park by walking 3 km at a bearing of N 30" E. Then 6 km due east, and then 4 km at a bearing of N 50° E. What are the magnitude and direction of the vector that represents the straight path from Aaron's home to the park? Round the magnitude to the nearest tenth and the direction to the nearest degree

Answers

The magnitude and direction of the vector that represents the straight path from Aaron's home to the park are approximately 8.5 km and N 34° E, respectively.

We can solve this problem by using vector addition. Let's break down Aaron's path into three vectors:

1. The first vector is 3 km at a bearing of N 30° E, which we can represent as a vector with components <2.598, 1.5>.

2. The second vector is 6 km due east, which we can represent as a vector with components <6, 0>.

3. The third vector is 4 km at a bearing of N 50° E, which we can represent as a vector with components <2.828, 3.053>.

To find the vector that represents the straight path from Aaron's home to the park, we need to add these three vectors together. We can do this by adding their components:

<2.598, 1.5> + <6, 0> + <2.828, 3.053> = <11.426, 4.553>

So the vector that represents the straight path from Aaron's home to the park has a magnitude of √(11.426² + 4.553²) = 12.3 km (rounded to the nearest tenth) and a direction of tan⁻¹(4.553/11.426) = 21° (rounded to the nearest degree) north of east.

To know more about vector, visit,

https://brainly.com/question/31289115

#SPJ4

dy Find the general solution of r = y2 – 1 dr

Answers

The general solution of the given differential equation is:
y = (r^(1/2)) * (1 + Ce^(2r^(1/2))) or y = (r^(1/2)) * (-1 + Ce^(2r^(1/2)))
where C is the constant of integration.

To find the general solution of r = y^2 - 1 dr, we need to separate the variables and integrate both sides. We can start by rearranging the equation as:
dr/(y^2 - 1) = dy/r

Now, we can integrate both sides. On the left side, we can use partial fractions to make the integration easier. We can write:
dr/(y^2 - 1) = [1/(2*(y-1))] - [1/(2*(y+1))] dy

Integrating both sides, we get:
1/2 * ln|y-1| - 1/2 * ln|y+1| = ln|r| + C
where C is the constant of integration.

We can simplify this as:
ln|(y-1)/sqrt(r)| - ln|(y+1)/sqrt(r)| = 2C

Using logarithmic properties, we can simplify further as:
ln|[(y-1)/sqrt(r)] / [(y+1)/sqrt(r)]| = 2C
ln|[(y-1)/(y+1)]| = 2C

Exponentiating both sides, we get:
|[(y-1)/(y+1)]| = e^(2C)

Taking the positive and negative cases separately, we get:
(y-1)/(y+1) = e^(2C)

or
(y-1)/(y+1) = -e^(2C)

Solving for y in each case, we get the general solution as:

y = (r^(1/2)) * (1 + Ce^(2r^(1/2))) or y = (r^(1/2)) * (-1 + Ce^(2r^(1/2)))

where C is the constant of integration. This is the general solution of the given differential equation.

To learn more about differential equations visit : https://brainly.com/question/1164377

#SPJ11

In

A
B
C
,

C
is a right angle and
sin

A
=
4
5
.
What is the ratio of cos A?

Answers

Answer:

cos A = 45

Step-by-step explanation:

90 - sin A = 45 = cos A

90 Minus whatever the cos value for the angle is = the sin and vice versa.

the average monthly residential gas bill for black hills energy customers in cheyenne, wyoming is (wyoming public service commission website). how is the average monthly gas bill for a cheyenne residence related to the square footage, number of rooms, and age of the residence? the following data show the average monthly gas bill for last year, square footage, number of rooms, and age for typical cheyenne residences. average monthly gas number of bill for last year age square footage rooms $70.20 16 2537 6 $81.33 2 3437 8 $45.86 27 976 6 $59.21 11 1713 7 $117.88 16 3979 11 $57.78 2 1328 7 $47.01 27 1251 6 $52.89 4 827 5 $32.90 12 645 4 $67.04 29 2849 5 $76.76 1 2392 7 $60.40 26 900 5 $44.07 14 1386 5 $26.68 20 1299 4 $62.70 17 1441 6 $45.37 13 562 4 $38.09 10 2140 4 $45.31 22 908 6 $52.45 24 1568 5 $96.11 27 1140 10 a. develop an estimated regression equation that can be used to predict a residence's average monthly gas bill for last year given its age. round your answers to four decimals.

Answers

An estimated regression equation that can be used to predict a residence's average monthly gas bill for last year given its age is [tex]$\hat{y} = 115.14 - 3.167x$[/tex]. The average monthly gas bill for last year increases by $0.2456 on average.

Using age as the predictor variable and average monthly gas bill as the response variable, we can use linear regression to develop an estimated regression equation:

[tex]$\hat{y} = b_0 + b_1 x$[/tex]

where [tex]\hat{y}[/tex] is the predicted average monthly gas bill, x is the age of the residence, b₀ is the intercept and b₁ is the slope.

Using the given data, we can find the values of b₀ and b₁:

[tex]$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 17.6$[/tex]

[tex]$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 55.906$[/tex]

[tex]$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = 8.564$[/tex]

[tex]$s_y = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}} = 24.193$[/tex]

[tex]$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = -0.577$[/tex]

[tex]$b_1 = r \frac{s_y}{s_x} = -3.167$[/tex]

[tex]$b_0 = \bar{y} - b_1 \bar{x} = 115.14$[/tex]

Therefore, the estimated regression equation is:

[tex]$\hat{y} = 115.14 - 3.167x$[/tex]

where [tex]\hat{y}$[/tex] is the predicted average monthly gas bill and x is the age of the residence.

This equation suggests that as the age of the residence increases by one year, the average monthly gas bill for last year increases by $0.2456 on average.

Learn more about regression equation here:

brainly.com/question/17079948

#SPJ11

sphere $\mathcal{s}$ is tangent to all 12 edges of a cube with edge length 6. find the volume of the sphere.

Answers

The sphere is tangent to all 12 edges, meaning that it just touches each edge at one point without intersecting it.
First, we need to find the radius of the sphere. Since the sphere is tangent to each edge, it can be thought of as inscribed within the cube.

Drawing a diagonal of the cube creates a right triangle with legs of length 6. Using the Pythagorean theorem, we find that the length of the diagonal is $6\sqrt{3}$.
Since the sphere is inscribed within the cube, its diameter is equal to the diagonal of the cube. Therefore, the radius of the sphere is half of the diagonal, which is $\frac{1}{2}(6\sqrt{3}) = 3\sqrt{3}$.

Now that we have the radius of the sphere, we can use the formula for the volume of a sphere: $V = \frac{4}{3}\pi r^3$. Substituting in the value for the radius, we get:

$V = \frac{4}{3}\pi (3\sqrt{3})^3 \approx 113.10$

So the volume of the sphere is approximately 113.10 cubic units.
To find the volume of the sphere tangent to all 12 edges of a cube, we'll first need to determine the sphere's radius.

1. Consider the cube with edge length 6. Let's focus on one of its vertices.
2. At this vertex, there are 3 edges, each tangent to sphere S.
3. Since the sphere is tangent to all these edges, they form a right-angled triangle inside the sphere, with the edges being its legs and a diameter of the sphere being its hypotenuse.
4. Let r be the radius of sphere S.
5. Using the Pythagorean theorem, we have: (2r)^2 = 6^2 + 6^2 + 6^2
6. Simplifying, we get: 4r^2 = 108
7. Solving for r, we have: r^2 = 27, so r = √27

Now, we can find the volume of the sphere using the formula:

Volume = (4/3)πr^3

8. Substitute the value of r into the formula: Volume = (4/3)π(√27)^3
9. Simplifying, we get: Volume ≈ 36π(√27)

Thus, the volume of sphere S tangent to all 12 edges of the cube with edge length 6 is approximately 36π(√27) cubic units.

Learn more about tangent at : brainly.com/question/19064965

#SPJ11

find the equation of the line that is purpendicular to y= -2/3x and contains the point (4,-8)

Answers

Answer:

y = 3/2x-14

Step-by-step explanation:

      The given line is y=-2/3x. So, the slope of the given line is -2/3.

Now, we have to find the perpendicular line to y= -2/3x passing through the point (4,-8).

       The product of two perpendicular lines is -1.

m1.m2 = -1.

-2/3.m2= -1

m2 = 3/2

        Now, we need to find the equation of the line passing through the point (4,-8) with slope 3/2.

The equation of slope-point form is (y-y1) = m(x-x1)

        y-(-8) = 3/2 (x-4)

        y+8 = 3/2x -6

Now, we have to add 6 on both sides.

        y + 8 + 6 = 3/2x - 6 + 6.

        y + 14 = 3/2x

        y = 3/2x - 14.

A scatter plot is shown on the coordinate plane.

scatter plot with points plotted at 1 comma 5, 1 comma 8, 2 comma 4, 3 comma 5, 3 comma 6, 5 comma 6, 6 comma 4, 7 comma 2, 9 comma 1, and 10 comma 1

Which two points would a line of fit go through to best fit the data?

(6, 4) and (9, 1)
(3, 5) and (10, 1)
(1, 8) and (5, 6)
(1, 5) and (7, 3)

Answers

Answer:

I believe (3, 5) and (10, 1) is the answer

Step-by-step explanation:

HELPPP MEEEEEE FAST PLEASE!

Answers

The area of the composite figure is

120 square ft

How to find the area of the composite figure

The area is calculated by dividing the figure into simpler shapes.

The simple shapes used here include

rectangle andtriangle

Area of rectangle = length x width

= 12 x 7

= 84 square ft

Area of triangle = 1/2 base x height

= 1/2 x 12 x 6

= 36 square ft

Total area

= 84 square ft + 36 square ft

=  120 square ft

Learn more about area of rectangle at

https://brainly.com/question/2607596

#SPJ1

The dog shelter has Labradors, Terriers, and Golden Retrievers available for adoption. If P(terriers) = 15%, interpret the likelihood of randomly selecting a terrier from the shelter.

Likely
Unlikely
Equally likely and unlikely
This value is not possible to represent probability of a chance event

Answers

The likelihood of randomly selecting a terrier from the shelter would be unlikely. That is option B

How to calculate the probability of the selected event?

The formula that can be used to determine the probability of a selected event is given as follows;

Probability = possible event/sample space.

The possible sample space for terriers = 15%

Therefore the remaining sample space goes for Labradors and Golden Retrievers which is = 75%

Therefore, the probability of selecting the terriers at random is unlikely when compared with other dogs.

Learn more about probability here:

https://brainly.com/question/24756209

#SPJ1

Casey went to her favorite pizza place where she always bought lunch for $5.50. When she got to the restaurant, she was surprised to see the pizza now cost $6. What percentage was the pizza marked up?

A. between 8% and 9%
B. between 9% and 10%
C. between 10% and 11%
D. between 11% and 12%

Answers

Answer:

option B.

Step-by-step explanation:

The original price of Casey's favorite pizza was $5.50, but now it costs $6. To find the percentage markup, we can use the formula:

(markup / original price) * 100%

The markup is the difference between the new price and the original price:

$6.00 - $5.50 = $0.50

So the markup is $0.50.

Using the formula above:

(markup / original price) * 100% = ($0.50 / $5.50) * 100% = 9.09%

Therefore, the pizza was marked up by about 9%, which is option B.

Other Questions
How many chromosomes does J. Evans have? In which of the following cases is it most likely that an increase in the size of a tax will increase tax revenue?A. The size of the tax before the increase was medium relative to the size of the market.B. **The size of the tax before the increase was small relative to the size of the market.**C. The size of the tax before the increase was large relative to the size of the market.D. An increase in the size of a tax will always increase tax revenue. Assume that the following method is called on 5 threads. How many times is the mutex locked/unlocked in the following code? using Guard = std::lock_guard; // This method is called from 5 threads void thrMain(int& x, std::mutex& m) { for (int i = 0; (i < 10); i++) { Guard lock(m); x++; } } It takes a team of 9 builders 10 days to build a wall. How many extra days will it take a team of 5 builders to build the same wall? Assume that all builders are working at the same rate. Optional working Answ extra days What diagnosis ofLoss of Consciousness (LOC) Physical Exam What do you understand about Count Draculas character from this excerpt? A. He is glad to have spent his life in familiar surroundings. B. He finds life in Transylvania to be quiet and peaceful. C. He is bored of the slow pace of Transylvania and wants a change. D. He is eager to practice his language skills with native speakers. Question 23 of 40 View Policies Current Attempt in Progress Consider the coordinate vectors [w]s = [ 8 ] , [q]s = [5] , [B]s = [-8][ -2] [2] [ 7][ 3 ] [4] [ 4][ 1](a) Find w if S is the basis in {(3, 1, 4), (2,5,6), (1, 4, 8)}. W = (?, ?, ?) (b) Find q if S is the basis in x^2 +1, x^2 1, 2x 1. q = ___ (c) Find B if S is the basis in [3 6] , [0 -1] , [0 -8] , [1 0][3 -6] [-1 0] [-12 -4] [-1 2]B = ( ? ) The patient is a 68-year-old male with urinary retention and enlarged prostate gland. He has failed conservative treatment and presents for TURP. What is the ICD-10-CM code(s)? the logic of the insertion sorting algorithm may reach a state where there exists only one value in the unsorted list. true or false Problem 1: A W14x99 of A992 steel is used as a beam with lateral support at 10 ft intervals. Assume that Cb=1. 0 and compute the nominal flexural strength 45 yo F presents with coffee-ground emesis for the last three days. Her stool is dark and tarry. She has a history of intermittent epigastric pain that is relieved by food and antacids. What the diagnose? When you have two or more similar ideas to express in writing, use parallelism toA) show that the ideas are related.B) show that the ideas are of unequal importance.C) show that the ideas are redundancies.D) eliminate overly long words and phrases.E) incorporate infinitives. A body part which lies closest to the point of attachment of an extremity is said to be PLEASE HELP! Explain why the equation y=5 is a function but x=5 is not a function. Why should you use a inoculating needle when making smears from solid media? An inoculating loop from liquid media? Which formula can be used to find the nth term of the following geometric sequence? 2 9 , 2 3 , 2, 6, 15.Marla and Kelly purchased flowers. Marlapurchased 7 roses for x dollars each and 10daisies for y dollars each. She spent $40.50 onthe flowers. Kelly bought 3 roses and 15daisies at the same cost as Marla. She spent$30.75 on her flowers. The system ofequations below represents this situation.7x+10y = 40.53x + 15y = 30.75Which statement below is correct? The circle below has center o and its radius is 7 yd. Given that m northouse points out that there are three principles related to the actions of ethical leaders; which of the following is not one of them? How is earths surface most likely to change in a cold place that experiences rainfall