It's in the photo, it's a bit to hard to type out.

It's In The Photo, It's A Bit To Hard To Type Out.

Answers

Answer 1

Perpendicular lines have slopes that are negative reciprocals.

If two perpendicular lines have slopes m1 and m2, then we have the following equation:

[tex]m_1=-\frac{1}{m_2}[/tex]

Then, we can analyze each pair.

a) In this case, both lines have the same slope (m = 1/5). They are parallel, not perpendicular.

b) In this case, the slopes are different. They are reciprocals (m1 = 1/m2), but they are not negative reciprocals, so they are not perpendicular.

c) In this case the slopes are the negative of each other (2/3 and -2/3), but they are not negative reciprocals. Then, they are not perpendicular.

d) In this case, the slopes are negative reciprocals:

[tex]-\frac{1}{m_2}=-\frac{1}{-\frac{3}{2}}=\frac{1}{\frac{3}{2}}=\frac{2}{3}=m_1[/tex]

Then, this lines are perpendicular.

Answer: Option d.


Related Questions

A pair of parallel lines is cut by a transversal, as shown (see figure):Which of the following best represents the relationship between angles p and q?p = 180 degrees − qq = 180 degrees − pp = 2qp = q

Answers

we know that

In this problem

that means

answer isp=q

A)State the angle relationship B) Determine whether they are congruent or supplementary C) Find the value of the variable D) Find the measure of each angle

Answers

Answer:

a) Corresponding

b) Congruent, since they have the same measure.

c) p = 32

d) 90º

Step-by-step explanation:

Corresponding angles:

Two angles that are in matching corners when two lines are crossed by a line. They are congruent, that is, they have the same measure.

Item a:

Corresponding

Item b:

Congruent, since they have the same measure.

Item c:

They have the same measure, the angles. So

3p - 6 = 90

3p = 96

p = 96/3

p = 32

Item d:

The above is 90º, and the below is the same. So 90º

What is the surfacearea of the cone?2A 225π in²B 375m in²C 600T in²D 1000 in 225 in.15 in.

Answers

We are given a cone whose radius is 15 inches and slant height is 25 inches. We need to solve for its surface area.

To find the surface area of a cone, we use the following formula:

[tex]SA=\pi rl+\pi r^2[/tex]

where r = radius and l = slant height.

Let's substitute the given.

[tex]\begin{gathered} SA=\pi(15)(25)+\pi(15^2) \\ SA=375\pi+225\pi \\ SA=600\pi \end{gathered}[/tex]

The answer is 600 square inches.

Answers asap please

Answers

x ≥ 1 or x ≥ 3 is inequality of equations .

What do you mean by inequality?

The allocation of opportunities and resources among the people who make up a society in an unequal and/or unfair manner is known as inequality. Different persons and contexts may interpret the word "inequality" differently.The equals sign in the equation-like statement 5x 4 > 2x + 3 has been replaced by an arrowhead. It is an illustration of inequity. This indicates that the left half, 5x 4, is larger than the right part, 2x + 3, in the equation.

9 - 4x ≥ 5

 4x ≥ 9 - 5

 4x ≥ 4

   x ≥ 1

4( - 1 + x) -6 ≥ 2

-4 + 4x - 6 ≥ 2

4x ≥ 2 + 8

4x ≥ 10

 x  ≥ 10/4

x ≥  5/2

x ≥ 2.5

x ≥ 1 or x ≥ 3

Learn more about inequality

brainly.com/question/28823603

#SPJ13

Determine whether the arc is a minor arc, a major arc, or a semicircle of R. Questions 25 nd 27

Answers

We can find the missing angles using the drawing below.

Then,

[tex]\begin{gathered} 360=60+60+55+x+y \\ \text{and} \\ 55+y=x \\ \Rightarrow240=2(55+y) \\ \Rightarrow120=55+y \\ \Rightarrow y=65 \\ \Rightarrow x=120 \end{gathered}[/tex]

Therefore

25)

Arc JML covers an angle equal to 65+55+60=180; thus, ArcJML is a semicircle of R.

27)

(c) Given that q= 8d^2, find the other two real roots.

Answers

Polynomials

Given the equation:

[tex]x^5-3x^4+mx^3+nx^2+px+q=0[/tex]

Where all the coefficients are real numbers, and it has 3 real roots of the form:

[tex]x_1=\log _2a,x_2=\log _2b,x_3=\log _2c[/tex]

It has two imaginary roots of the form: di and -di. Recall both roots must be conjugated.

a) Knowing the sum of the roots must be equal to the inverse negative of the coefficient of the fourth-degree term:

[tex]\begin{gathered} \log _2a+\log _2b+\log _2c+di-di=3 \\ \text{Simplifying:} \\ \log _2a+\log _2b+\log _2c=3 \\ \text{Apply log property:} \\ \log _2(abc)=3 \\ abc=2^3 \\ abc=8 \end{gathered}[/tex]

b) It's additionally given the values of a, b, and c are consecutive terms of a geometric sequence. Assume that sequence has first term a1 and common ratio r, thus:

[tex]a=a_1,b=a_1\cdot r,c=a_1\cdot r^2[/tex]

Using the relationship found in a):

[tex]\begin{gathered} a_1\cdot a_1\cdot r\cdot a_1\cdot r^2=8 \\ \text{Simplifying:} \\ (a_1\cdot r)^3=8 \\ a_1\cdot r=2 \end{gathered}[/tex]

As said above, the real roots are:

[tex]x_1=\log _2a,x_2=\log _2b,x_3=\log _2c[/tex]

Since b = a1*r, then b = 2, thus:

[tex]x_2=\log _22=1[/tex]

One of the real roots has been found to be 1. We still don't know the others.

c) We know the product of the roots of a polynomial equals the inverse negative of the independent term, thus:

[tex]\log _2a_1\cdot2\cdot\log _2(a_1\cdot r^2)\cdot(di)\cdot(-di)=-q[/tex]

Since q = 8 d^2:

[tex]\begin{gathered} \log _2a_1\cdot2\cdot\log _2(a_1\cdot r^2)\cdot(di)\cdot(-di)=-8d^2 \\ \text{Operate:} \\ 2\log _2a_1\cdot\log _2(a_1\cdot r^2)\cdot(-d^2i^2)=-8d^2 \\ \log _2a_1\cdot\log _2(a_1\cdot r^2)=-8 \end{gathered}[/tex]

From the relationships obtained in a) and b):

[tex]a_1=\frac{2}{r}[/tex]

Substituting:

[tex]\begin{gathered} \log _2(\frac{2}{r})\cdot\log _2(2r)=-8 \\ By\text{ property of logs:} \\ (\log _22-\log _2r)\cdot(\log _22+\log _2r)=-8 \end{gathered}[/tex]

Simplifying:

[tex]\begin{gathered} (1-\log _2r)\cdot(1+\log _2r)=-8 \\ (1-\log ^2_2r)=-8 \\ \text{Solving:} \\ \log ^2_2r=9 \end{gathered}[/tex]

We'll take the positive root only:

[tex]\begin{gathered} \log _2r=3 \\ r=8 \end{gathered}[/tex]

Thus:

[tex]a_1=\frac{2}{8}=\frac{1}{4}[/tex]

The other roots are:

[tex]\begin{gathered} x_1=\log _2\frac{1}{4}=-2 \\ x_3=\log _216=4 \end{gathered}[/tex]

Real roots: -2, 1, 4

solve by square roots: 16k^2-1=24

Answers

we have

[tex]16k^2-1=24​[/tex]

step 1

Adds 1 both sides

[tex]\begin{gathered} 16k^2-1+1=24​+1 \\ 16k^2=25 \end{gathered}[/tex]

step 2

Divide by 16 both sides

[tex]\begin{gathered} \frac{16}{16}k^2=\frac{25}{16} \\ \text{simplify} \\ k^2=\frac{25}{16} \end{gathered}[/tex]

step 3

Applying square root both sides

[tex]k=\pm\frac{5}{4}[/tex]

Allison earns $6,500 per month at her job as a principal the chart below shows the percentages of her budget. how much does Allison pay for her mortgage

Answers

Total earning for Allison is $6,500 per year

mortage = 24.6%

he spent 24.6% of his salary on mortgage

24.6 / 100 x 6500

0.246 x 6500

= $ 1599

He spent $1,599 on mortgage

use Pythagoras rule to find the slant height of a cone a height of 8 and base radius of 6cm

Answers

The Pythagoras rule states that the square hypotenuse is equal to the sum of the squares of the other two sides

In this case, we are given both sides' measures and are asked about the hypotenuse. We leave the hypotenuse on the left side alone by applying the square root on both sides

L = √64+36

L= √100

L = 10

Which expression is equivalent to ( 43.4-2)-2 ?

Answers

EXPLANATION

The expression that is equivalent to (43,4 - 2)-2 is given appyling the distributive property as follows:

-86.8 + 4 = -82.8

Parallel to x = -4 and passing through the point (-3,-5)find the equation of the line

Answers

A line of the form x = a, where "a" is a number is a VERTICAL LINE. The graph of the line x = - 4 is shown below:

The line that is parallel to this will also be a vertical line of the form x = a.

The line parallel passes through (-3, -5). So, this will have equation

x = - 3

Answer[tex]x=-3[/tex]

If the area of the rectangle to be drawn is 12 square units, where should points C and D be located, if they lie vertically below A and B, to make this rectangle?

Answers

Answer:

C(2,-2), D(-1,-2)

Explanation:

The area of a rectangle is calculated using the formula:

[tex]A=L\times W[/tex]

• From the graph, AB = 3 units.

,

• Given that the area = 12 square units

[tex]\begin{gathered} 12=3\times L \\ L=\frac{12}{3}=4 \end{gathered}[/tex]

This means that the distance from B to C and A to D must be 4 units each.

Count 4 units vertically downwards from A and B.

The coordinates of C and D are:

• C(2,-2)

,

• D(-1,-2)

The first option is correct.

Select all of the expressions approval to c⁶/d⁶:

answers:
(cd-¹)⁶
c¹²d¹⁸/c²d³
c⁸d⁹/c²d³
c⁶d-⁶
c-⁶d⁶
(c‐¹d)-⁶​

Answers

Answer:

is = c⁸d/d³

hope it helps

mark me brainliest

Check picture pls this is geometry work

Answers

Answer:

45

scalene

acute

Step-by-step explanation:

Answer: The triangle classified by the sides is 59 degrees.  The triangle is classified by the angel is 1

Step-by-step explanation:

help meeeee pleaseeeee!!!





thank you

Answers

The values of f(0), f(2) and f(-2) for the polynomial f(x) = [tex]-x^{3} +7x^{2} -2x+12[/tex] are 12, 28 and 52 respectively.

According to the question,

We have the following function:

f(x) = [tex]-x^{3} +7x^{2} -2x+12[/tex]

Now, in order to find the value of f(0), we will put 0 in place of x.

f(0) = [tex]-0^{3} +7(0)^{2} -2(0)+12[/tex]

f(0) = 0+7*0-0+12

(More to know: when a number is multiplied with 0 then the result is always 0 even the number being multiplied with zero is in lakhs.)

f(0) = 0+0-0+12

f(0) = 12

Now, in order to find the value of f(2), we will put 1 in place of x:

f(2) = [tex]-2^{3} +7(2)^{2} -2(2)+12[/tex]

f(2) = -8+7*4-4+12

f(2) = -8+28-4+12

f(2) = 40 -12

f(2) = 28

Now, in order to find the value of f(2), we will put -2 in place of x:

f(-2) = [tex]-(-2)^{3} +7(-2)^{2} -2(-2)+12[/tex]

f(-2) = -(-8) + 7*4+4+12

f(-2) = 8+28+4+12

f(-2) = 52

Hence, the value of f(0) is 12, f(2) is 28 and f(-2) is 52.

To know more about polynomial here

https://brainly.com/question/20121808

#SPJ1

Rolls are being prepared to go to grocery stores. Divide 72 rolls into 2 groups so the ratio is 3 to 5

Answers

The number of rolls divided in the two groups so that the ratio is 3 to 5 is 27 and 45 respectively.

According to the question,

We have the following information:

Rolls are being prepared to go to grocery stores.

Now, we have to divide 72 rolls into 2 groups so the ratio is 3 to 5.

Now, let's take the number of rolls given to the first group to be 3x and the number of rolls given to the second group to be 5x.

So, we have the following expression:

3x+5x = 72

8x = 72

x = 72/8

x = 9

So, the number of rolls for the first group:

3x

3*9

27

Now, the number of rolls for the second group:

5x

5*9

45

Hence, the number of rolls divided in the given two group is 27 and 45.

To know more about ratio here

https://brainly.com/question/13419413

#SPJ1

I need help finding the area of the sector GPH?I also have to type a exact answer in terms of pi

Answers

Let us first change the 80° to radians.

[tex]\text{rad}=80\cdot\frac{\pi}{180}=\frac{4\pi}{9}[/tex]

so we get that the area is

[tex]\frac{2}{9}\pi\cdot12^2=144\cdot\frac{2}{9}\pi=32\pi[/tex]

so the area is 32pi square yards


Determine the probability of flipping a heads, rolling a number less than 5 on a number cube and picking a heart from a standard deck of cards.
1/12
16/60 or 4/15
13/156
112

Answers

The probability of flipping a heads is 1/2, probability of rolling a number less than 5 is 2/3, and probability of picking a heart from a standard deck of cards is 1/4.

What is probability?

Probability is a branch of mathematics that deals with numerical representations of the likelihood of an event occurring or of a proposition being true. The probability of an event is always a number b/w 0 and 1, with 0 approximately says impossibility and 1 says surity.

We can find probability using the formula:

P = required out comes/ total outcomes

In first case the required out come is only one which is heads and total outcomes include both heads and tails,

Therefore, required outcome = 1

total outcome = 2

Probability = 1/2

In second case the required out come are number less than five which are 1, 2, 3, 4 and a number cube have numbers till 6.

Therefore, required outcome = 4

total outcome = 6

Probability = 4/6 = 2/3

In third case the required out come hearts card and there are 13 hearts card in a card deck and total outcomes include all types of cards which are 52,

Therefore, required outcome = 13

total outcome = 52

Probability = 13/52 = 1/4

To know more about probability, go to link

https://brainly.com/question/13604758

#SPJ13

An empty rectangular tank measures 60 cm by 50 cm by 56 cm. It is being filled with water flowing from a tap at rate of 8 liters per minute. (a) Find the capacity of the tank (b) How long will it take to fill up (1 liter = 1000 cm

Answers

(a) The capacity of the tank is its volume, which we can calculate by multipling its sides:

[tex]V=abc=60\cdot50\cdot56=168000[/tex]

This is, 168000 cm³. It is equivalent to 168 L.

(b) If the tank is being filled at a rate of 8 liters per minute, we can find the time to fill ir by dividing its capacity by the rate:

[tex]t=\frac{168}{8}=21[/tex]

That is, it will take 21 minutos to fill it up.

The Connecticut River flows at a rate of 6 km / hour for the length of a popular scenic route. If a cruiser to travels 3 hours with the current to reach a drop-off point, but the return trip against the same current took 7 hours. Find the speed of the boat without a current?The speed of the boat without a current is ____ km/hour. (if needed, round to 2 decimal places).

Answers

Given:

Speed of current (y)= 6 km/hour

Distance = d km

Speed of boat in still water = x km/hour

Speed of the cruiser with the current= (x+6) km/hour

Speed of the cruiser against the current= (x-6) km/hour

[tex]\text{Time to travel with the stream=}\frac{d}{x+6}[/tex][tex]3=\frac{d}{x+6}[/tex][tex]3\mleft(x+6\mright)=d[/tex][tex]d=3x+18\ldots.\text{ (1)}[/tex][tex]\text{Time to travel }against\text{ the stream=}\frac{d}{x-6}[/tex][tex]7=\frac{d}{x-6}[/tex][tex]d=7x-42\ldots.\text{ (2)}[/tex]

From equation (1) and (2)

[tex]7x-42=3x+18[/tex][tex]7x-3x=18+42[/tex][tex]4x=60[/tex][tex]x=15[/tex]

Therefore the speed of the without a current is 15km/hour.

Question 2 1 Simplify. DO NOT PUT ANY SPACES IN YOUR ANSWER. Keep you answer in fraction form. -2/5t - 6+ 2/3t + 15

Answers

-2/5t - 6 + 2/3t + 15​

Combining similar terms

(-2/5t + 2/3t) + (-6 + 15)

4/15t + 9

What is the domain of the function represented by the graph?

Answers

All real numbers (In interval form (-∞,∞) )

Given,

From the graph,

To find the domain of the function.

Now,

We know that a domain of a function is the set of the all the x-values for which the function is defined.

By looking at the graph of the function we see that it is a graph of a upward open parabola and the graph is extending to infinity on both the side of the x-axis this means that the function is defined all over the x-axis i.e. for all the real values.

Also, we know that the function will be a quadratic polynomial since the equation of a parabola is a quadratic equation and as we know polynomial is well defined for all the real value of x.

The domain of the function is:

Hence,  All real numbers (In interval form (-∞,∞) )

Learn more about Domain at:

https://brainly.com/question/28135761

#SPJ1

use the number line to find the distance between -3 and -9

Answers

Answer:

a) 6

b) 6

-6

c) 6

6

Explanation:

a) For the number line, the distance will be the difference between the endpoint and the initial point as shown;

Distance = -3 - (-9)

Distance = -3 + 9

Distance = 6units

b) -3 - (-9)

= -3 + 9

= 6

c) -9 - (-3)

= -9 + 3

= -6

d) For the modulus

|-3 - (-9)|

= |-3 + 9|

= |6|

Since the modulus of a value returns a positive value, |6| = 6

e) |-9-(-3)|

= |-9+3)|

= |-6|

Since the modulus of a negative value gives a positive value, hence;

|-6| = 6

Answer:

a) 6

b) 6

-6

c) 6

6

Explanation:

a) For the number line, the distance will be the difference between the endpoint and the initial point as shown;

Distance = -3 - (-9)

Distance = -3 + 9

Distance = 6units

b) -3 - (-9)

= -3 + 9

= 6

c) -9 - (-3)

= -9 + 3

= -6

d) For the modulus

|-3 - (-9)|

= |-3 + 9|

= |6|

Since the modulus of a value returns a positive value, |6| = 6

e) |-9-(-3)|

= |-9+3)|

= |-6|

Since the modulus of a negative value gives a positive value, hence;

|-6| = 6

keith lives 5/6 mile north of the school Karen lives 2/3 Mile North of the school what is the distance from Keith's house to Karen's house?

Answers

The distance from Keith's house to Karen's house is

= 5/6 - 2/3

= 5/6 - 4/6

= 1/6 miles

Which phrase best describes the translation from the graph y = 2(x-15)² + 3 to the graph of y = 2(x-11)² + 3?O4 units to the left4 units to the rightO 8 units to the leftO 8 units to the rightMark this and returnSave and ExitNextSubmit

Answers

Given:

it is given that a graph of the function y = 2(x-15)^2 + 3 is translated to the graph of the function y =2(x - 11)^2 + 3

Find:

we have to choose the correct option for the given translation.

Explanation:

we will draw the graphs of both the functions as following

The graph of the function y = 2(x - 15)^2 + 3 is represented by red colour and the graph of the translated function y = 2(x - 11)^2 + 3 is represented by blue colour in the above graph.

From, the graphs of both functions, it is concluded that the graph of the translated function is shifted 4 units to the left.

Line segment MN is the image of CD after a dilation by a factor k with a center at point A. Using your ruler, determine the value of k to the nearest hundredth. Show the work that leads to your answer.

Answers

Methjod th find the asnswer to thsi question.

First of mark a point on the line segment CD. Then, draw a perpendicular from that point to the a point to the line segment MN.

Then, mesure the length of the line segment.

Thus, the value of k is obtained.

Junior's brother is 1 1/2 meters tall. Junior is 1 2/5 of his brother's height. How tall is Junior? meters

Answers

To determine Junior's height you have to multiply Juniors height by multiplying 3/2 by 7/5his brother's height by 1 2/5.

To divide both fractions, first, you have to express the mixed numbers as improper fractions.

Brother's height: 1 1/2

-Divide the whole number by 1 to express it as a fraction and add 1/2

[tex]1\frac{1}{2}=\frac{1}{1}\cdot\frac{1}{2}[/tex]

-Multiply the first fraction by 2 to express it using denominator 2, that way you will be able to add both fractions

[tex]\frac{1\cdot2}{1\cdot2}+\frac{1}{2}=\frac{2}{2}+\frac{1}{2}=\frac{2+1}{2}=\frac{3}{2}[/tex]

Junior's fraction 1 2/5

-Divide the whole number by 1 to express it as a fraction and add 2/5

[tex]1\frac{2}{5}=\frac{1}{1}+\frac{2}{5}[/tex]

-Multiply the first fraction by 5 to express it using the same denominator as 2/5, that way you will be able to add both fractions:

[tex]\frac{1\cdot5}{1\cdot5}+\frac{2}{5}=\frac{5}{5}+\frac{2}{5}=\frac{5+2}{5}=\frac{7}{5}[/tex]

Now you can determine Junior's height by multiplying 3/2 by 7/5

[tex]\frac{3}{2}\cdot\frac{7}{5}=\frac{3\cdot7}{2\cdot5}=\frac{21}{10}[/tex]

Junior's eight is 21/10 meters, you can express it as a mixed number:

[tex]\frac{21}{10}=2\frac{1}{10}[/tex]

Use the Law of Sines to solve the triangle. Round your answers to two decimal places. (Let b = 5.1.)

Answers

Given:-

An image with triangle.

To find:-

The value of B,a,c.

So the laws of sines are,

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

So now we substitute the known values. we get,

[tex]\frac{\sin16}{a}=\frac{\sin B}{5.1}=\frac{\sin125}{c}[/tex]

Now we find the value of B,

Since the sum of angles of the triangle is 180. we get,

[tex]\begin{gathered} A+B+C=180 \\ 16+B+125=180 \\ B+141=180 \\ B=180-141 \\ B=39 \end{gathered}[/tex]

So substituting the value we get,

[tex]\frac{\sin16}{a}=\frac{\sin 39}{5.1}=\frac{\sin125}{c}[/tex]

Now we find the value of a. we get,

[tex]\begin{gathered} \frac{\sin16}{a}=\frac{\sin 39}{5.1} \\ \frac{0.2756}{a}=\frac{0.6293}{5.1} \\ a=\frac{0.2756\times5.1}{0.6293} \\ a=2.2335 \end{gathered}[/tex]

Now we find c. we get,

[tex]\frac{0.2756}{2.2335}=\frac{\sin 125}{c}[/tex]

So

Find the probability of getting 4 aces when 5 cards are drawn from an ordinary deck of cards

Answers

First, let's calculate the number of different hands of 5 cards that can be made, using a combination of 52 choose 5:

(a standard deck card has 52 cards)

[tex]C\left(52,5\right)=\frac{52!}{5!\left(52-5\right)!}=\frac{52\cdot51\operatorname{\cdot}50\operatorname{\cdot}49\operatorname{\cdot}48\operatorname{\cdot}47!}{5\operatorname{\cdot}4\operatorname{\cdot}3\operatorname{\cdot}2\operatorname{\cdot}47!}=\frac{52\cdot51\operatorname{\cdot}50\operatorname{\cdot}49\operatorname{\cdot}48}{120}=2,598,960[/tex]

Now, let's calculate the number of hands that have 4 aces. Since the fifth card can be any of the remaining 48 cards after picking the 4 aces, there are 48 possible hands that have 4 aces.

Then, the probability of having a hand with 4 aces is given by the division of these 48 possible hands over the total number of possible hands of 5 cards:

[tex]P=\frac{48}{2598960}=\frac{1}{54145}[/tex]

The probability is 1/54145.

Transform AABC by the following transformations:• Reflect across the line y = -X• Translate 1 unit to the right and 2 units down.87BА )5421-B-7-6-5-4-301245678- 1-2.-3-5-6-7-8Identify the final coordinates of each vertex after both transformations:A"B"(C"

Answers

SOLUTION

A reflection on the line y = -x is gotten as

[tex]y=-x\colon(x,y)\rightarrow(-y,-x)[/tex]

So, the coordinates of points A, B and C are

A(3, 6)

B(-2, 6)

C(3, -3)

Traslating this becomes

[tex]\begin{gathered} A\mleft(3,6\mright)\rightarrow A^{\prime}(-6,-3) \\ B(-2,6)\rightarrow B^{\prime}(-6,2) \\ C(3,-3)\rightarrow C^{\prime}(3,-3 \end{gathered}[/tex]

Now translate 1 unit to the right and 2 units down becomes

[tex]\begin{gathered} A^{\prime}(-6,-3)\rightarrow A^{\doubleprime}(-5,-5) \\ B^{\prime}(-6,2)\rightarrow B^{\doubleprime}(-5,0) \\ C^{\prime}(3,-3\rightarrow C^{\doubleprime}(4,-5) \end{gathered}[/tex]

So, I will attach an image now to show you the final translation.

Other Questions
Atrazine is one of the most widely used herbicides throughoutthe world. Some studies have shown that the chemical has affectedthe sexual development of frogs, most notably, leopard frogs (Rana pipiens).femalemaleOne study suggested that male tadpoles exposed to the herbicide develop into female frogs. These mutated female frogs, accordingto the study, have the ability to reproduce with other males. However, the mutated frogs can only produce male offspring.This case demonstrates howA. the activities of organisms can change the environments in which they live.OB. chemicals introduced to the environment by humans affect only the organisms they were designed to affect.OC. factors in the environment can change the characteristics of organisms.D. chemicals introduced to the environment by humans have no effect on the ecosystem. I need help with this If an object is thrown horizontally, travels with an average x-component of its velocity equal to 5m/s, and does not hit the ground, what will be the x-component of the displacement after 20s? A rock is thrown off of a 120 foot cliff with an upward velocity of 20 ft/s. As a result its height after t seconds is given by the formula:h(t) = 120 + 20t - 5t^2What is its height after 2 seconds?___What is its velocity after 2 seconds?____(Positive velocity means it is on the way up, negative velocity means it is on the way down.) technician a says to use masking tape temporarily over the lining material to help prevent getting grease on the lining. technician b says that grease on the brake lining can cause the brakes to grab. which technician is correct? How do the laws of exponents apply to algebraic expressions How long will it take money to double if it is invested at the following rates?(A) 7.8% compounded weekly(B) 13% compounded weekly(A) years(Round to two decimal places as needed.) help meeeeeeeeee pleaseee !!!!! pyrazole has two nitrogens (labeled 1 and 2). which of the nitrogens will react first with an acid? explain your answer and support it with any relevant structures. Carmen participated in a walkathon toraise money for the local library. Before thehour-long event began, Carmen estimatedthat she would walk 3.5 miles, but sheended up walking 4 miles. What is thepercent error for Carmen's estimate? Which sentence includes an infinitive that functions as an adjective?Vince hopes to meet new friends when he begins his karate classMy first attempt to build a snow fort ended in complete disaster.To run away seemed logical given the size of the bears teeth.Kayleigh hung balloons in the house to prepare for the birthday party Directions: Create 10 epithets for two of the characters in Macbeth (5 each) Refer to the characters from Macbeth according to modern ideas and observations, what can be said about the location of the center of our expanding universe? according to modern ideas and observations, what can be said about the location of the center of our expanding universe? the milky way galaxy is at the center. the universe does not have a center. earth is at the center. the sun is at the center. Match each expression on the left with its equivalent on the right. Some answer choices on the right will not be used.1,500 10015 What is the value of the the 9 in 194.6 I dont know how to do this help! Find the solutions to the equations 20+brainliest Which of the following does an ecologist study?OA. Interactions between living organisms and the naturalenvironmentB. Historical changes in forms of government and economicsystemsC. The effects of smaller factories on internal tradeD. The impact of technology on communications and humanrelationships what is energy coupling? what is energy coupling? the use of an enzyme to reduce ea the use of energy released from an exergonic reaction to drive an endergonic reaction the hydrolysis of atp to adp p a barrier to the initiation of a reaction On page 289, it states, "like the last strong autumn wind that rattles the trees until the remaining leaves fall, brief but powerful was their visit, signaling that the season had changed, and soon, life would begin again." What does it mean?