Lebohang says that when you use a thick syringe to "drive" a thin syringe, you lose strength but gain distance. What do you think

Answers

Answer 1

Lebogang says that when you use a thick syringe to "drive" a thin syringe, you lose strength but gain distance. Jaamiah disagrees this means that there is indeed a mechanical advantage, but a distance disadvantage.

A syringe is a medical device that is used for injecting liquids into or extracting liquids from the body. It typically consists of a cylindrical barrel, a plunger, and a needle. The barrel is usually made of plastic or glass and is marked with volume measurements. The plunger fits inside the barrel and can be pushed or pulled to draw or expel liquid. The needle is attached to the end of the barrel and is used to penetrate the skin or other tissue to inject or extract the liquid.

Syringes are commonly used in medical settings for a variety of purposes, such as administering vaccines, medications, or anesthesia. They can also be used to remove fluid from the body, such as in the case of draining abscesses or collecting blood samples for testing.

To learn more about Syringe visit here:

brainly.com/question/20320556

#SPJ4

Complete Question: -

Lebogang says that when you use a thick syringe to "drive" a thin syringe, you lose strength but gain distance. Jaamiah disagrees. She says that you gain both distance and strength. What do you think, and why do you think so?​


Related Questions

a 2.70 kg ball is attached to a ceiling by a 1.35 m long string. the height of the room is 4.45 m. what is the gravitational potential energy of the ball relative to the ceiling?

Answers

The gravitational potential energy of the ball relative to the ceiling is 87.9 J.

The gravitational potential energy of an object of mass m at a height h above a reference level (in this case, the ceiling) is given by:

U = mgh

where g is the acceleration due to gravity.

In this problem, the ball is suspended from the ceiling by a string, so its height above the ceiling is the length of the string, minus the radius of the ball. Assuming the ball is a sphere with a radius of 0.135 m (half the length of the string), we can calculate its height above the ceiling as:

h = 4.45 m - 1.35 m + 0.135 m = 3.24 m

(Note that we subtract the length of the string from the height of the room, and add half the length of the string to account for the radius of the ball.)

Plugging in the given values, we get:

U = (2.70 kg)(9.81 m/s^2)(3.24 m)

U = 87.9 J

Therefore, the result is 87.9 J.

Learn more about the potential energy: https://brainly.com/question/24284560

#SPJ11

water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. the density of water is 1 000 kg/m3. determine its average velocity. multiple choice question. 20 m/s 200 m/s 0.02 m/s 2 m/s 0.2 m/s

Answers

Option D: 2 m/s is the average velocity of the water flowing through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s.

According to the question:

cross-sectional area of the pipe = 0.002m²

Mass flowrate = 4 kg/s

Density of water = 1000 kg/m³

We are asked to find, average velocity =?

Average velocity is the net or total displacement covered by a body in a given time. The mass flow rate divided by the pipe's cross-sectional area and density ratio is the formula for calculating a fluid's average velocity.

As a result, the water's average flow rate through the pipe is provided by:

v = m / (ρ × A)

where, v is the average velocity, m is the mass flow rate, ρ is the density of water, and A is the cross-sectional area of the pipe. Substituting the values in the above equation we get:

v = 4 / (1000 × 0.002)

v = 2m/s

Therefore, the average velocity of water flowing through a pipe of cross-sectional area of 0.002m² is 2m/s.

To know more about average velocity, refer:

https://brainly.com/question/13243044

#SPJ4

Correct question is:

Water flows through a pipe with a cross-sectional area of 0.002 m2 at a mass flow rate of 4 kg/s. The density of water is 1 000 kg/m3. Determine its average velocity. Multiple choice question.

20 m/s

200 m/s

0.02 m/s

2 m/s

0.2 m/s

a material has temperature coefficient of resistance (alpha) of 3.9 x 10^-3. if the material has a resistance of 23 ohms at a temperature of 20 c, what is the resistance of this material at a temperature of 50 c?

Answers

The resistance of the material at a temperature of 50°C is approximately 25.791 Ω.

We can use the formula for temperature dependence of resistance to solve this problem:

R2 = R1 [1 + α(T2 - T1)]

where R1 is the resistance at temperature T1, R2 is the resistance at temperature T2, and α is the temperature coefficient of resistance.

Plugging in the given values, we get:

R2 = 23 Ω [1 + (3.9 x 10⁻³/°C)(50°C - 20°C)]

Simplifying, we get:

R2 = 23 Ω [1 + (3.9 x 10^-3/°C)(30°C)]

R2 = 23 Ω [1 + 0.117]

R2 = 23 Ω [1.117]

R2 = 25.791 Ω

Therefore, the resistance of the material is approximately 25.791 Ω.

Learn more about Resistance:

#SPJ11

A boy on a 1.9 kg skateboard initially at rest
tosses a(n) 8.0 kg jug of water in the forward
direction.
If the jug has a speed of 2.7 m/s relative to
the ground and the boy and skateboard move
in the opposite direction at 0.65 m/s, find the
boy’s mass.
Answer in units of kg.

Answers

Answer:

Approximately [tex]31.3\; {\rm kg}[/tex]. (Assuming the friction between the skateboard and the ground is negligible.)

Explanation:

The momentum [tex]p[/tex] of an object of [tex]m[/tex] and velocity [tex]v[/tex] is:

[tex]p = m\, v[/tex].

When the boy tossed the jug of water, the change in the momentum of the jug would be:

[tex]\Delta p(\text{jug}) = m(\text{jug}) \, (v(\text{jug}) - u(\text{jug}))[/tex], where:

[tex]m(\text{jug}) = 8.0\; {\rm kg}[/tex] is the mass of the jug;[tex]v(\text{jug}) = 2.7\; {\rm m\cdot s^{-1}}[/tex] is the velocity of the jug after the toss;[tex]u(\text{jug}) = 0\; {\rm m\cdot s^{-1}}[/tex] is the initial velocity of the jug, which was at rest before the toss.

Hence:

[tex]\begin{aligned}\Delta p(\text{jug}) &= m(\text{jug}) \, (v(\text{jug}) - u(\text{jug})) \\ &= (8.0)\, (2.7 - 0)\; {\rm kg\cdot m\cdot s^{-1}} \\ &= 21.6\; {\rm kg\cdot m\cdot s^{-1}}\end{aligned}[/tex].

Similarly, the change in the momentum of the skateboard would be:

[tex]\Delta p(\text{board}) = m(\text{board}) \, (v(\text{board}) - u(\text{board}))[/tex], where:

[tex]m(\text{board}) = 1.9\; {\rm kg}[/tex] is the mass of the board;[tex]v(\text{board}) =(-0.65)\; {\rm m\cdot s^{-1}}[/tex] is the velocity of the board after the toss;[tex]u(\text{board}) = 0\; {\rm m\cdot s^{-1}}[/tex] is the initial velocity of the board.

Note that the velocity of the board [tex]v(\text{board})\![/tex] after the toss is opposite to that of the jug. The sign of [tex]v(\text{board})[/tex] would be opposite to that of [tex]v(\text{jug})[/tex]. Since [tex]v(\text{jug})\![/tex] is positive, the value of [tex]v(\text{board})\!\![/tex] should be negative.

[tex]\begin{aligned}\Delta p(\text{board}) &= m(\text{board}) \, (v(\text{board}) - u(\text{board})) \\ &= (1.9)\, ((-0.65)- 0)\; {\rm kg\cdot m\cdot s^{-1}} \\ &= (-1.235)\; {\rm kg\cdot m\cdot s^{-1}}\end{aligned}[/tex].

Let [tex]m(\text{boy})[/tex] denote the mass of the boy. The velocity of the boy was initially [tex]u(\text{boy}) = 0\; {\rm m\cdot s^{-1}}[/tex] and would become [tex]v(\text{boy}) =(-0.65)\; {\rm m\cdot s^{-1}}[/tex] after the toss. The change in the velocity of the boy would be:

[tex]\Delta p(\text{boy}) = m(\text{boy}) \, (v(\text{boy}) - u(\text{boy}))[/tex].

Under the assumptions, the total changes in the momentum of this system (the boy, the skateboard, and the jug) should be [tex]0[/tex]. Thus:

[tex]\Delta p(\text{boy}) + \Delta p(\text{boy}) + \Delta p(\text{jug}) = 0[/tex].

Rearrange and solve for the mass of the boy:

[tex]\Delta p(\text{boy}) = -\Delta p(\text{jug}) - \Delta p(\text{board})[/tex].

[tex]\begin{aligned} m(\text{boy}) &= \frac{-\Delta p(\text{jug}) - \Delta p(\text{board})}{v(\text{boy}) - u(\text{boy})} \\ &= \frac{-(21.6) - (-1.235)}{(-0.65) - 0}\; {\rm kg} \\ &\approx 31.3\; {\rm kg}\end{aligned}[/tex].

If a 20-kilogram anvil is held 3 meters what is the potential energy?

Answers

The potential energy (PE) of an object is given by the formula:

PE = mgh

where m is the mass of the object, g is the acceleration due to gravity (9.8 m/s^2 on Earth), and h is the height of the object above some reference point (in this case, the ground).

Substituting the given values, we get:

PE = (20 kg) x (9.8 m/s^2) x (3 m) = 588 J

Therefore, the potential energy of the 20-kilogram anvil held 3 meters above the ground is 588 joules (J).

learn more about potential energy here:

https://brainly.com/question/24284560

#SPJ4

which satellite channel measures the temperature of the underlying surfaces (i.e., clouds, ocean, land)? group of answer choices visible infrared water vapor

Answers

Visible Infrared (IR) satellite channels measure the temperature of underlying surfaces. This includes clouds, oceans, and land.

IR channels work by detecting the amount of infrared radiation emitted from the Earth's surface. The intensity of the radiation is then converted into a digital number, which is displayed as a color on a satellite image. The higher the digital number, the warmer the surface temperature. This data can then be used to track changes in temperatures over time. The satellite channel that measures the temperature of the underlying surfaces is visible infrared. The surface temperature measurement is made possible by the difference in temperatures of objects in the infrared spectrum. An object's temperature and the level of radiation it emits have a direct correlation, and this is what visible infrared satellites use to take the temperature of the underlying surfaces. The visible infrared (VI) channel is used to estimate cloud cover and surface temperature. Infrared radiation from the surface of the earth is detected in this channel. The temperature of clouds, oceans, and land can be estimated using the visible infrared (VI) channel. It also provides data on how temperature changes with latitude and over time. Furthermore, the VI channel aids in the identification of cold and hot surfaces. Water vapor (WV) is another channel utilized in satellite imagery to observe the atmosphere's water vapor content. It enables meteorologists to forecast the occurrence of rainfall and other weather patterns. In general, satellite measurements assist in understanding Earth's weather and its impact on humans and the environment. These satellites help scientists to forecast severe weather, monitor weather changes over time, and analyze natural disasters. In addition, they assist in tracking the effects of climate change on the planet.

For more such questions on Satellites.

https://brainly.com/question/15168838#

#SPJ11

a satellite is orbiting the earth at an altitude of 744 km above the surface of earth. what is the acceleration due to gravity in m/s2 at that altitude?

Answers

The acceleration due to gravity in m/s² at that altitude of 744 km is 9.797.

To find out what the acceleration due to gravity is in m/s² at an altitude of 744 km above the surface of earth, use the formula `g = Gm/r²`.

Given,The altitude of the satellite, h = 744 km,The radius of the earth, r = 6371 km, Formula for acceleration due to gravity:

g = Gm/r²

Here, the value of G, the universal gravitational constant, is 6.67 x 10^-11 Nm²/kg².Mass of the Earth, m = 5.97 x 10^24 kg.Let's calculate the radius of the orbit, R.Radius of the orbit = r + h= 6371 + 744 = 7115 km = 7.115 x 10^6 m.So, we have,

g = Gm/R²= 6.67 x 10^-11 x 5.97 x 10^24 / (7.115 x 10^6)²= 9.797 m/s².Therefore, the acceleration due to gravity in m/s² at that altitude is 9.797.

More on acceleration: https://brainly.com/question/21975712

#SPJ11

calculate the work done on the block by the spring during the motion of the block from its initial position to where the spring has returned to its uncompressed length.

Answers

The work done on the block by the spring during its move from its initial position to where the spring has returned to its uncompressed length is[tex]W = (1/2) \times k \times x^2[/tex].

We need to know the spring constant (k) and the displacement of the block (x) from its initial position to the position where the spring has returned to its uncompressed length. We can use the formula:

W = (1/2) * k * x^2

where W is the work done on the block, k is the spring constant, and x is the displacement of the block.

This formula is derived from the potential energy stored in the spring, which is given by:

U = (1/2) * k * x^2

where U is the potential energy stored in the spring.

When the block is initially at rest, the spring is compressed, and it has potential energy given by U = - (1/2) * k * x^2, where x is the initial compression of the spring.

Note that the negative sign indicates that the work done by the spring is negative, which means that the spring is doing work on the block in the opposite direction to the displacement of the block. This is because the spring force is always directed opposite to the displacement of the block.

As the block is released, the spring begins to push it back to its uncompressed length, and the block begins to move.

The work done on the block by the spring is equal to the change in potential energy of the spring, which is given by:

W = U_final - U_initial

Since the final position of the block is where the spring has returned to its uncompressed length, the final potential energy of the spring is zero. Therefore, the work done on the block by the spring is:

W = U_initial

Substituting the initial potential energy of the spring into this equation, we get:

W = (1/2) * k * x^2

Therefore, the work done on the block by the spring during its move from its initial position to where the spring has returned to its uncompressed length is given by the formula:

W = (1/2) * k * x^2

Learn more about spring:

https://brainly.com/question/14670501

#SPJ11

which is the proper order of structures through which light must pass in order to perceive and image?

Answers

The proper order of structures through which light must pass in order to perceive and image is cornea, aqueous humor, lens, vitreous humor, retina.

These are the five main structures of the human eye that enable vision, including light perception and imaging. Let's delve into each of these structures.

Cornea: The clear, protective outer layer of the eye is the cornea. The cornea has two purposes: to shield the inner eye from harm and to help focus light on the retina at the back of the eye.

The cornea's curved shape bends light waves as they enter the eye, assisting in their concentration.

Aqueous humor: This is a liquid that flows throughout the front of the eye, nourishing and removing waste from its surrounding tissues.

It aids in the maintenance of normal eye pressure, and if this pressure becomes too high, it can lead to glaucoma.

Lens: The lens' job is to concentrate light onto the retina. It's a transparent structure with a biconvex (lens-like) shape that varies in thickness.

It is supported by ciliary muscles that allow it to alter shape when we focus on things at different distances.

Vitreous humor: This gel-like substance fills the eye's posterior (rear) cavity, providing it with structural stability and helping it to maintain its form. It also assists in light refraction.

Retina: This is a thin layer of tissue lining the rear of the eye. The retina's photoreceptor cells, or rods and cones, are sensitive to light.

The retina converts light energy into neural signals that are transmitted to the brain via the optic nerve, which is located behind the eye. The brain translates these signals into images, allowing us to see.

What we see when we open our eyes is formed by light. In order to perceive an image, light must pass through a series of structures in the eye.

The cornea, aqueous humor, lens, vitreous humor, and retina are the five main structures of the human eye that enable vision, including light perception and imaging.

to know more about light refer here:

https://brainly.com/question/29994598#

#SPJ11

What is the maximum ramp angle that still allows the crate to remain at rest? (Make sure the coefficient of friction is 0.7.) .
Mass (m) = 300kg

Answers

The highest ramp angle at which the crate can still be at rest is roughly 35.5 degrees.

To determine the maximum ramp angle that still allows the crate to remain at rest, you need to consider the balance of forces acting on the crate. When the crate is on the verge of slipping, the frictional force is equal to the component of gravitational force acting parallel to the ramp.

Given that the coefficient of friction (µ) is 0.7, you can use the formula for the frictional force:

Frictional force (F_friction) = µ * Normal force (F_N)

The normal force acting on the crate is the component of gravitational force acting perpendicular to the ramp, which can be calculated as:

F_N = m * g * cos(θ)

The gravitational force acting parallel to the ramp can be calculated as:

F_gravity_parallel = m * g * sin(θ)

At the maximum angle, the frictional force will be equal to the gravitational force acting parallel to the ramp:

µ * F_N = F_gravity_parallel

Now, substitute the known values:

0.7 * (m * g * cos(θ)) = m * g * sin(θ)

Since the mass (m) and gravitational acceleration (g) are the same on both sides of the equation, they can be canceled out:

0.7 * cos(θ) = sin(θ)

To find the maximum angle (θ), you can use the arctangent function:

θ = arctan(0.7)

θ ≈ 35.5 degrees

So, the maximum ramp angle that still allows the crate to remain at rest is approximately 35.5 degrees.

To know more about frictional force click on below link :

https://brainly.com/question/1714663#

#SPJ11

if a wavelength is 635 nm, what is the frequency? please show all the steps and all of your work when you upload your final answer.

Answers

If a wavelength is 635 nm, the frequency is 4.72 × 10¹⁴ Hz.

The frequency of a wavelength is determined by the formula f = c/λ, where f is the frequency, c is the speed of light (3.00 x 108 m/s), and λ is the wavelength.
Given,

Wavelength = 635 nm

To find, frequency

Formula

The velocity of light = Wavelength × Frequency.

C = λ × f

Frequency f = C / λ

Where C = 3 × 10⁸ m/s, λ = 635 nm = 635 × 10⁻⁹ m

∴ f = C / λ

= (3 × 10⁸ m/s) / (635 × 10⁻⁹ m)

= (3 × 10⁸) × (10⁹ / 635)Hz= 4.72 × 10¹⁴ Hz

Frequency = 4.72 × 10¹⁴ Hz

Therefore, the frequency is 4.72 × 10¹⁴ Hz.

For more such questions on frequency , Visit:

https://brainly.com/question/27151918

#SPJ11

if a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 a.m. and then gets on the first train that arrives, what proportion of time does he or she go to destination a?

Answers

The probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.

The uniform distribution is a type of probability distribution where all outcomes are equally likely. In this case, the passenger arrives at the station at a time that is uniformly distributed between 7 and 8 a.m. Therefore, the probability that the passenger will get on the first train that arrives is the same as the probability that they will arrive at the station between 7 and 8 a.m., which is 1/2.
In other words, the probability that the passenger will go to destination A is 1/2. This is because the probability that they will arrive between 7 and 8 a.m. and get on the first train that arrives is the same as the probability that they will arrive between 7 and 8 a.m., which is 1/2.

Therefore, the proportion of time the passenger goes to destination A is 1/2. This is because the probability of them getting on the first train that arrives is the same as the probability of them arriving between 7 and 8 a.m., which is 1/2.

For more such questions on Probability distribution.

https://brainly.com/question/14210034#

#SPJ11

Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Drag and drop each item into
the correct column. Order does not matter.
Conductor or Insulator
:: aluminum foil
:: plastic :: ocean water
:: air
:: wood
:: soil
:: foam
glass

Answers

Conductor:

Aluminum foil

Insulator:

Plastic

Air

Wood

Soil

Foam

Glass

What is Conductor?

A conductor is a material or substance that allows electric charge to flow freely through it, offering little or no resistance to the flow of an electric current. Common conductors include metals such as copper, silver, and gold.

A conductor is a material or substance that allows electrical current to flow freely through it. This is due to the presence of free electrons that can move easily through the material when an electric field is applied. Common conductors include metals such as copper, silver, and aluminum.

In contrast, an insulator is a material or substance that does not allow electrical current to flow through it easily. Insulators have very few free electrons and resist the flow of electric current. Common insulators include rubber, plastic, glass, and air.

Learn more about Conductor from given link

https://brainly.com/question/24154868

#SPJ1

a rear window defroster consists of a long, flat wire bonded to the inside surface of the window. when current passes through the wire, it heats up and melts ice and snow on the window. for one window the wire has a total length of 11.0 m , a width of 1.8 mm , and a thickness of 0.11 mm . the wire is connected to the car's 12.0 v battery and draws 7.5 a . part a what is the resistivity of the wire material? express your answer with the appropriate units.

Answers

The resistivity of the wire material can be calculated using Ohm's Law, which states that V=IR, or voltage = current multiplied by resistance. Therefore, the resistivity of the wire material is [tex]2.87 \times 10^{-8} \Omega m[/tex].

Resistivity of wire is given as ρ=RA/L where R is the resistance of wire, A is the cross-sectional area of the wire, L is the length of the wire.

The formula to calculate the resistance of wire from Ohm's Law is given by R=V/I where V is the voltage, I is the current.

Substituting the given values: V = 12.0 V, I = 7.5 A.

Therefore, R=V/I=12.0 / 7.5 = 1.6 Ω

From the formula of resistivity:

[tex]\rho=\dfrac{RA}{L}\\R=\dfrac{ρL}{A}[/tex]

Substituting the given values: R = 1.6 Ω, L = 11.0 m and calculating the area:

[tex]A = (1.8 \times 10^{-3} m) (0.11 \times 10^{-3} m)\\ = 0.198 \times 10^{-6} m²[/tex]

Therefore,

[tex]\rho = RA/L\\= \dfrac{R \times A}{ L}\\= \frac{1.6 \times 0.198 \times 10^{-6}}{ 11.0}\\ = 2.87 \times 10^{-8 } \Omega m[/tex]

Therefore, the resistivity of the wire material is [tex]2.87 \times 10^{-8 } \Omega m[/tex].

For more details on resistivity, click on the below link:

https://brainly.com/question/30799966

#SPJ11

a 10.0-mf capacitor is fully charged across a 12.0-v bat- tery. the capacitor is then disconnected from the battery and connected across an initially uncharged capacitor with capacitance c. the resulting voltage across each capacitor is 3.00 v. what is the value of c?

Answers

The value of  uncharged capacitor in series with a 10.0-microfarad capacitor, given that each capacitor has a voltage of 3.00 volts, can be calculated using the formula for equivalent capacitance in series and  formula for charge on a capacitor. The value of c is approximately 4.00 microfarads.

To determine the value of c, which is [tex]1/Ceq = 1/C1 + 1/C2[/tex] . Initially, the 10.0-microfarad capacitor has a charge of [tex]Q = CV = (10.0 * 10^{-6 }F) * 12.0 V = 1.20 * 10^{-4} C[/tex].

When it is connected in series with uncharged capacitor with capacitance c,  charge is shared between the two capacitors. The charge on  10.0-microfarad capacitor is also equal to the charge on  uncharged capacitor, which is given by [tex]Q = (3.00 V) * C[/tex] .

Equating the two expressions for Q and solving for c, we get [tex]C = Q/3.00[/tex] [tex]V = (1.20 * 10^{-4 C}) / (3.00 V) = 4.00 * 10^{-5 F}[/tex]. Therefore,  value of c is approximately 4.00 microfarads.

To know more about equivalent capacitance, here

brainly.com/question/30905469

#SPJ4

An unpolarized laser beam enters a container of water. The beam is partially reflected from the water-glass surface, as indicated in the figure below. For what angle of incidence will this reflected beam be completely polarized? [image attached below]

Answers

At 57.27° of angle of incidence this reflected beam will be completely polarized when initially an angle of incidence will this reflected beam be completely polarized.

The angle of incidence for which the reflected beam will be completely polarized is Brewster's angle, which is given by:

sin(θB) = n2/n1

where n1 is the refractive index of the medium that the beam is entering (in this case, water), and

n2 is the refractive index of the medium that the beam is reflecting off of (in this case, glass).

For water the refractive index n1 = 1.333 and

for glass the refractive index n2 = 1.52,

Then, sin(θB) = 1.52/1.333 = 57.27°

Therefore, the reflected beam will be completely polarized at an angle of incidence of 57.27°.

To learn more about refractive index click here https://brainly.com/question/30761100

#SPJ1

how much work is done lifting a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot

Answers

The amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

In order to solve the problem, we can use the formula W = Fd. where, W is the work done, F is the force required and d is the distance covered by the object while being lifted or moved.

So, we have to first calculate the force required to lift the object. Let us assume the force required is F, then

F =  weight of object + weight of cable

F = 15 + 2 * 30

F = 75 pounds

Therefore, the force required to lift the object is 75 pounds. Now, we can calculate the work done as follows:

W= Fd

W = 75 * 14

W = 1050 foot-pounds

Therefore, the amount of work required to lift a 15 pound object from the ground to the top of a 30 foot building if the cable used weighs 2 pounds per foot is 1050 foot-pounds.

Learn more about work of move at https://brainly.com/question/28356414

#SPJ11

(10.04 mc) determine the best reason for the summation from n equals 1 to infinity of negative 1 to the n power times n squared over quantity 3 times n squared minus 1 end quantity diverging.

Answers

The best reason for the summation from n equals 1 to infinity of (-1)^n * n^2 / (3n^2 - 1) diverging is because the terms do not approach zero as n approaches infinity.

1. Examine the given summation: Σ((-1)^n * n^2 / (3n^2 - 1))


2. Analyze the expression inside the summation as n approaches infinity:
  (-1)^n * n^2 / (3n^2 - 1)


3. Observe that the numerator, (-1)^n * n^2, oscillates between positive and negative values due to (-1)^n term.


4. Notice that the denominator, (3n^2 - 1), approaches infinity as n approaches infinity since it's a quadratic function with a positive coefficient for the highest power term (3n^2).


5. However, the overall fraction does not approach zero because the numerator (n^2) also approaches infinity as n approaches infinity, and its oscillation between positive and negative values prevents a limit of zero.

In conclusion, the best reason for the given summation diverging is that the terms do not approach zero as n approaches infinity.

To know more :

https://brainly.com/question/30366541

#SPJ11

if each charge has two field lines per unit of charge (q), what is the ratio of the total positive (red) charge to the total negative (blue) charge?

Answers

The ratio of total positive charge (red) to total negative charge (blue) is 1:1. This is because for each unit of charge (q), there are two field lines, one for the positive charge and one for the negative charge.

What are field lines?

Field lines are a visual tool used to represent the direction and strength of an electrical field. The direction of a field line shows the direction of the force that a positive test charge would experience if it were placed at that point in the field. Meanwhile, the density of the field lines indicates the strength of the electric field.

Since each charge has two field lines per unit of charge (q), it means that the total number of field lines is proportional to the total charge. If there are equal numbers of field lines coming from both the positive and negative charges, it means that the ratio of the total positive charge to the total negative charge is 1:1.

Read more about electricity:

https://brainly.com/question/24786034

#SPJ11

how many springs does it take to model the thermal energy of diamond and how many for solid argon? explain/justify your answer using appropriate components of the particle model of thermal energy and/or previous models we have used.

Answers

In order to model the thermal energy of diamond, 4 springs are required, while the model the thermal energy of solid argon 3 springs are required.

Thermal energy is the internal energy in a substance, that is, the energy of the particles that make up a substance. When two objects at different temperatures come into contact, the heat is transferred from the hotter object to the colder object until both objects reach the same temperature. A system of springs may be used to represent a solid. The particles of a solid are represented by the springs, which are elastic. The more energy the system has, the more the springs will vibrate.

The particle model of thermal energy is based on the idea that all matter is made up of tiny particles that are constantly in motion, and that the faster these particles move, the hotter the object becomes. To model the thermal energy of diamond, four springs are required because diamond is a covalent network solid in which each carbon atom is bonded to four other carbon atoms in a tetrahedral arrangement. Diamond's structure is made up of carbon atoms bonded together by strong covalent bonds. When a carbon atom is bonded to four other carbon atoms, it forms a very strong and stable tetrahedral structure. Diamond's thermal energy is modeled using four springs.

To model the thermal energy of solid argon, three springs are required because argon is a noble gas with a face-centered cubic structure. Solid argon, like other noble gases, has a simple structure. The argon atoms in solid argon are arranged in a cubic array, with an atom at each corner and one in the center of each face of the cube. To model the thermal energy of solid argon, three springs are used. The thermal energy is modeled using these three springs.

Learn more about thermal energy at:

https://brainly.com/question/16953428

#SPJ11

if the magnitude of the drift velocity of free electrons in a copper wire is 7.94 10-4 m/s, what is the electric field in the conductor?

Answers

The electric field in the copper wire is approximately 0.0227 V/m.

The drift velocity of free electrons in a copper wire is related to the electric field in the conductor by the following formula,

v_d = (e * E * τ) / m

where v_d is the drift velocity, e is the charge of an electron, E is the electric field strength, τ is the relaxation time of the electrons, and m is the mass of an electron.

Solving for E, we get,

E = (m * v_d) / (e * τ)

Substituting the given values for copper, we get,

E = (9.11 x 10^-31 kg * 7.94 x 10^-4 m/s) / (1.60 x 10^-19 C * 2.0 x 10^-14 s)

E = 0.0227 V/m (rounded to four significant figures)

To know more about electric field, here

brainly.com/question/12911661

#SPJ4

at what angle is the first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm?

Answers

The first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm is approximately 6.2°.


The angle of the first-order maximum refers to the angle at which the brightest interference pattern appears on a screen placed behind two closely spaced slits when illuminated with the blue light of 450-nm wavelength.

The angle is determined by the equation:

theta_m = (m*lambda)/d

where m is the order, lambda is the wavelength, and d is the slit separation.
theta_m = (1*450E-9 m)/0.0500 mm
theta_m = 6.2°

Thus, the first-order maximum for double slits of 0.0500 mm at 450 nm λ blue light is around 6.2°.

To know more about  first-order maximum click here:

https://brainly.com/question/14703717

#SPJ11

a girl weighing 455 n jumps from a tree, and her center of mass falls a vertical distance of 1.50 m. find the impulse necessary to bring her to rest.

Answers

The impulse necessary to bring her to rest is zero (0 Ns). Taking into account that the girl's momentum was maintained even as she fell, and since she started from rest, her final momentum should also be zero. So no additional push is needed beyond what gravity provides.

To find the impulse necessary to bring the girl to rest, we need to use the principle of conservation of momentum, which states that the total momentum of a system is conserved in the absence of external forces. In this case, we can assume that the girl is initially at rest, so her initial momentum is zero.

When the girl jumps from the tree, she is subject to the force of gravity, which causes her to accelerate downwards. We can use the equation for the gravitational potential energy to find the work done by gravity:

[tex]W = mgh[/tex]

Where W is the work done by gravity, m is the mass of the girl, g is the acceleration due to gravity, and h is the vertical distance that the center of mass falls.

Plugging in the given values, we get:

[tex]W = (455 N)(1,50 m)(9,81 m/s^2) \\W= 6.717,08 J[/tex]

This work done by gravity is equal to the change in kinetic energy of the girl, which can be expressed as the impulse required to bring her to rest:

J = ΔK

[tex]J= -mv[/tex]

where J is the impulse, ΔK is the change in kinetic energy, m is the mass of the girl, and v is her final velocity. Since the girl comes to a stop, her final velocity is zero, so we can simplify the equation to:

[tex]J = mv[/tex]

Plugging in the given mass and solving for the impulse, we get:

[tex]J = (455 N)(-0 m/s) \\J = 0 Ns[/tex]

Therefore, the impulse necessary to bring the girl to rest is zero.

Learn more about the impulse at: https://brainly.in/question/1383595

#SPJ11

a heavy fish (mass 4 kg) is swimming with a speed of 1.5 m/s. he then swallows a light fish (1.2 kg), swimming toward him with a speed of 3.0 m/s. what is the velocity of the larger fish after he had his meal? (you can neglect water resistance.)

Answers

The velocity of the larger fish after the meal is zero.

We can use the law of conservation of momentum, which states that the total momentum of a closed system remains constant. Before the light fish is swallowed, the total momentum is,

p1 = m1v1 + m2v2

where m1 = 4 kg, v1 = 1.5 m/s (velocity of the heavy fish), m2 = 1.2 kg, and v2 = -3.0 m/s (negative because the light fish is swimming toward the heavy fish).

p1 = (4 kg)(1.5 m/s) + (1.2 kg)(-3.0 m/s)

p1 = 0 kg m/s

After the light fish is swallowed, the two fish become one system. Let the velocity of the larger fish after the meal be v.

The total momentum of the system after the meal is,

p2 = (m1 + m2)v

By the law of conservation of momentum, p1 = p2,

0 kg m/s = (4 kg + 1.2 kg) v

Solving for v,

v = 0 m/s

To know more about speed, here

brainly.com/question/31080132

#SPJ4

the plane is flying at 800 miles per hour. how far will the package travel horizontally during its descent?

Answers

The distance that a package will travel horizontally during its descent when a plane is flying at 800 miles per hour can be calculated using the following steps is 1600 miles.

What is the distance?

Determine the time taken for the package to hit the ground. We know that when an object is dropped from a certain height, it falls under the influence of gravity.

The acceleration due to gravity is 9.8 m/s². The formula for the time taken for an object to fall can be given by:

t = √(2h/g)

where, t is the time taken for the object to fall is the height from which the object was dropped g is the acceleration due to gravity.

We know that the distance traveled by the package horizontally can be given by d = vt

where, d is the distance traveled horizontally by the package v is the velocity of the planet is the time taken for the package to hit the ground.

Thus, the distance is 1600 miles.

Read more about Distance here:

https://brainly.com/question/15172156

#SPJ11

the electric field 0.300 m from a very long uniform line of charge is 850 n/c . part a how much charge is contained in a section of the line of length 1.70 cm ? express your answer in coulombs.

Answers

The charge in the section of the line of length 1.70 cm is:$$Q = (1.70 × 10⁻² m) * (2.16 × 10⁻⁵ C/m) = 1.277 × 10⁻⁷ C

The electric field 0.300 m from a very long uniform line of charge is 850 n/c. How much charge is contained in a section of the line of length 1.70 cm? The answer is 1.277 × 10⁻⁷ C. Explanation: To begin, let's consider the electric field due to an infinite line of charge. The electric field generated by a uniformly charged infinite line of charge is given by:$$E = \frac{λ}{2πεr}$$where, E is the electric field, λ is the linear charge density (charge per unit length), r is the distance from the wire, and ε is the permittivity of free space. To begin with, we can rearrange the equation for electric field:$$λ=\frac{2πεrE}{l}$$Where, l is the length of the line section of interest, E is the electric field at the distance r from the line of charge, and λ is the linear charge density. Now we can plug in the given values:$$(1.70 cm)λ = Q$$$$λ=\frac{2πεrE}{l}$$λ = (2π * 8.85 × 10⁻¹² F/m) * (0.300 m) * (850 N/C) / (0.0170 m)λ = 2.16 × 10⁻⁵ C/mSo, the charge in the section of the line of length 1.70 cm is:$$Q = (1.70 × 10⁻² m) * (2.16 × 10⁻⁵ C/m) = 1.277 × 10⁻⁷ C$$Therefore, 1.277 × 10⁻⁷ C.

Learn more about Charge line of length

brainly.com/question/14433096

#SPJ11

if it rotates through 8.00 revolutions in the first 2.50 s , how many more revolutions will it rotate through in the next 5.00 s ?

Answers

The object will rotate through 16.00 revolutions in the next 5.00s if it rotates through 8.00 revolutions in the first 2.50s.

The first step to answer this question is to determine the rotational speed (angular velocity) of the object. To do this, we use the formula:

Angular velocity = number of revolutions / time

So, the angular velocity of the object is given by:

Angular velocity = 8.00 revolutions / 2.50 s

Angular velocity = 3.20 revolutions per second

Now, we can use this angular velocity to determine the number of revolutions the object will rotate through in the next 5.00 s. To do this, we use the formula:Number of revolutions = angular velocity x time

So, the number of revolutions the object will rotate through in the next 5.00 s is given by:

Number of revolutions = 3.20 revolutions per second x 5.00 s

Number of revolutions = 16.00 revolutions

Therefore, the object will rotate through 16.00 revolutions in the next 5.00 s.

More on angular velocity: https://brainly.com/question/20355237

#SPJ11

In the formula v = f X, what measurement is used for the frequency of the wavelength?​

Answers

v = fλ links the velocity, frequency, and wavelength of a wave and is used to compute one of these parameters if the other two are known.

What unit of measurement is the wavelength's frequency?

The wavelength formula shows the wavelength in metres. The v represents wave velocity and is measured in metres per second (mps). In addition, the letter "f" stands for frequency, which is expressed in hertz (Hz).

Which of the following best describes the wavelength measuring unit?

The term wavelength implies that it measures length. Its measurements are often expressed in length measurements or metric units. In other words, wavelengths can be expressed in their SI units, metres.

To know more about frequency visit:-

https://brainly.com/question/12053539

#SPJ1

over the course of a half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. what is the parallax angle (p) in this case?\

Answers

Over the course of half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. The parallax angle in this case is: 0.400''

Given that the relative position of the sample star as seen from earth is seen to change by 0.400'' over the course of half of a year. We are to determine the parallax angle in this case. Parallax angle (p) can be defined as the angle between the baseline and the line of sight to the star. It is the angle between two lines drawn from the star to the Earth, separated by six months, and viewed at a right angle to the baseline.

It is measured in seconds of arc (or arcseconds), and it is usually too small to measure directly. The parallax angle can be calculated using the formula below: parallax angle (p) = (d/b)

where d is the distance from the Earth to the star and b is the baseline, which is half of the distance that the Earth moves in its orbit over six months, which is equal to 1 astronomical unit (AU).

Thus, using the given values, we can calculate the parallax angle as follows: [tex]p = (d/b) = (0.400/1) = 0.400''[/tex]

Thus, the parallax angle, in this case, is 0.400'' (arcseconds). Therefore, the relative position of a star as seen from Earth changes with the change in the Earth's position. The change in position helps to determine the distance from the Earth to the star using the parallax angle.

To know more about parallax angles refer here:

https://brainly.com/question/20296211#

#SPJ11

a long, straight wire carries a current of 8.60 a. an electron is traveling in the vicinity of the wire. at the instant when the electron is 4.50 cm from the wire and traveling at a speed of 6.00 * 104 m>s directly toward the wire, what are the magnitude and direction (relative to the direction of the current) of the force that the magnetic field of the current exerts on the electron?

Answers

The magnitude and direction of the force that the magnetic field of the current exerts on the electron in a a long, straight wire is 1.96 x 10⁻¹⁸ N and direction of the force is opposite to the direction of the current.

The magnetic field of the current exerts a force on the electron of magnitude 6.072 x 10⁻¹³ N in a direction that is opposite to the direction of the current.

where

Current, I = 8.60 A

Distance of electron from wire, r = 4.50 cm = 0.045 m

Velocity of electron, v = 6.00 x 10^4 m/s

The force on the electron due to magnetic field of current-carrying wire is given by:

F = (μ * I * q) / (2 * π * r)

where μ is the magnetic permeability of free space and is equal to 4π x 10⁻⁷ Tm/A,

q is the charge of electron and is equal to -1.6 x 10⁻¹⁹ C, and

r is the distance between the electron and the wire.

Substituting the values, we get:

F = (4π x 10⁻⁷ Tm/A) * (8.60 A) * (-1.6 x 10⁻¹⁹ C) / (2 * π * 0.045 m)

F = -1.96 x 10⁻¹⁸ N.

The negative sign indicates that the direction of force is opposite to the direction of the current.

So, the magnitude of the force exerted by the magnetic field on the electron is 1.96 x 10⁻¹⁸ N, and the direction of the force is opposite to the direction of the current.

To practice more questions about the 'magnetic field':

https://brainly.com/question/26257705

#SPJ11

Other Questions
Please help!! Determine what line the angle below has been reflection across. Justify your answer Whats 4559.886 rounded to the nearest inch jeff johnson is the newest judge to take the bench in the fifth district of virginia. he spent 25 years as a prosecutor before being elected to the court. he is known for his lenient views on drugs and his extreme conservative views on crimes of violence. judge johnson is about to sentence a drug offender who has been convicted for the third time. judge johnson views drug abuse as a sickness and a public health issue, not a criminal issue. what type of sentencing for this defendant would the judge likely favor? a table in a relational database receives imported data from a text document. in what format does the table store the new data? for a fast food restaurant, which of the following is not an operations function? creating radio advertisements scheduling line cooks to work in the kitchen taking customer orders ordering frozen burger patties from a supplier a researcher repeatedly presents 1-month-old infants with a color patch. when an infant stops looking at the color patch, the researcher changes the hue of the color patch presented on the next trial. the researcher is using which paradigm to study color perception in infants? What is the GCF in simplify form according to the seventh-day adventists, what results from violating the laws of health? sickness banishment from the church nothing a year of confinement shunning A rate constant obeys the Arrhenius equation, the factor A 2.2 x 1013 s and the activation energy being 150. kJ mol. What is the value of the rate constant at 227C, in 6.7x10-22 s-1 b. 2.1x1013 -1 1.5x101 s 4.7x10-3 s1 a. C. Define the term stressor?? Evaluate TWO factors within a cultural group that may have an impact on one's decision to become an entrepreneur. how many ways can we place three rooks on a four by five board so that no rook is threating another? what would happen if 300 people were sampled instead of 200, and the confidence level remained the same? if the company has 475,000 shares outstanding and the stock currently sells for $41, how much will it cost you to buy a seat if the company uses straight voting? he tapes the edge with special tape.how much tape will each coaster required 39 of the 52 students in choir A like musicals. 35 of the 44 students in choir b like musicals. Was there a higher percentage of students that like musicals in choir A or B? Much like the heart, the bladder fills up through a suction force caused as muscles stretch the walls, creating a pressure vacuum.true or false what characteristics do you think a person should have to be a peer helper? explain how you would use these characteristics to be an effective peer helper. how does spirogyra (or other protists) benefit from being able to reproduce by both asexual and sexual reproduction? how many ounces of a 35 % solution of sulfuric acid (and distilled water)must be mixed with 20 oz of a 20 % solution to get a 30 % solution of sulfuric acid?