Liz is collecting aluminum cans for a school fundraiser. So far, she has collected 16 cans, which is 20% of her goal. How many cans must she collect to reach her goal?Parts A & B

Liz Is Collecting Aluminum Cans For A School Fundraiser. So Far, She Has Collected 16 Cans, Which Is

Answers

Answer 1

Given the word problem, we can deduce the following information:

1. Liz collected 16 cans, which is 20% of her goal.

To determine the number of cans that Liz needs to collect to reach her goal, we use below equation:

[tex]0.20x=16[/tex]

where:

x= total number of cans that Liz needs to collect

So,

[tex]\begin{gathered} 0.20x=16 \\ \text{Simplify} \\ x=\frac{16}{0.20} \\ x=80 \end{gathered}[/tex]

Hence, the total number of cans is 80.

A.

To complete the double number line, we must determine first the other percent values. It the goal is 100%, we must subtract 20% from 100% and divide it by 4 to get the remaining percent values. So,

[tex]\frac{100-20}{4}=20[/tex]

So the other percent values are:

0%

20%

20%+20%=40%

40%+20%=60%

60%+20%=80%

80%+20%=100%

To determine the amount of cans for each percent value,the process is shown below:

[tex]80(\frac{40}{100})=32[/tex][tex]\begin{gathered} 80(.6)=48 \\ \end{gathered}[/tex][tex]80(.8)=64[/tex][tex]80(\frac{100}{100})=80[/tex]

Therefore, the answer for double number line is:

Cans : 0 16 32 48 64 80

Percent : 0% 20% 40% 60% 80% 100%

B.

Based on the information gathered from A, for every 16 cans Liz collects, she adds 20% toward her goal. She will have 32 cans if she reaches 40% of her goal. Liz must collect 80 cans to reach her goal.


Related Questions

Describe the transformation from the graph of f to the graph of h. Write an equation that represents h in terms of x. Look at image for example. Let’s do problem number 11

Answers

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given functions.

[tex]\begin{gathered} f(x)=-(x+5)^2-6 \\ h(x)=\frac{1}{3}f(x) \end{gathered}[/tex]

STEP 2: Explain the transformation that occurs

What are Vertical Stretches and Shrinks?

While translations move the x and y intercepts of a base graph, stretches and shrinks effectively pull the base graph outward or compress the base graph inward, changing the overall dimensions of the base graph without altering its shape. When a graph is stretched or shrunk vertically, the x -intercepts act as anchors and do not change under the transformation.

This can be explained further as:

For the base function f (x) and a constant k > 0, the function given by:

[tex]\begin{gathered} h(x)=k\cdot f(x) \\ A\text{ vertical shrinking of f\lparen x\rparen by k factor where }0Calculate the equation that represents h in terms of x[tex]\begin{gathered} f(x)=-(x+5)^2-6 \\ h(x)=\frac{1}{3}\cdot f(x)=\frac{1}{3}\cdot-(x+5)^2-6 \end{gathered}[/tex]

Hence, the transformation from the graph is a vertical shrinking by 1/3 factor and the equation that represents h in terms of x is given as:

[tex]\frac{1}{3}\times(-(x+5)^2-6)[/tex]

Solve the equation-3 + a = 13a = ???

Answers

ANSWER

a = 16

EXPLANATION

To solve for a we have to add 3 on both sides of the equation:

[tex]\begin{gathered} -3+3+a=13+3 \\ a=16 \end{gathered}[/tex]

The graph below and to the left shows the time of sunsets occurring every other day during September in a certain town. The graph at the lower right shows the time of sunsets on either the 21st or 22nd day of each month for an entire year in the same town. The vertical axis is scaled to reflect hours after midnight. Round to 4 decimal places. a) Find a linear model for the data in the graph at the left. Include units to your variables. b) Find a cosine model for the data in the graph to the right. Include units to your variables,

Answers

A) Given the points (1,18.35) and (29,17.5), we can find the linear model with the following formulas:

[tex]\begin{gathered} \text{slope:} \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{71.5-18.35}{29-1}=\frac{-0.85}{28}=-0.03 \\ \text{equation of the line:} \\ y-y_1=m(x-x_1) \\ \Rightarrow y-18.35=-0.03(x-1)=-0.03x+0.03 \\ \Rightarrow y=-0.03x+0.03+18.35=-0.03x+18.38 \\ y=-0.03x+18.38 \end{gathered}[/tex]

therefore, the linear model is y = -0.03x+18.38

B)We have the general cosine model:

[tex]y(t)=A+B\cos (\omega(t-\phi))[/tex]

Where A is the vertical shift, B is the amplitude, w is the frequency and phi is the phase shift.

First, we can find the vertical shift with the following formula:

[tex]A=\frac{y_{\max }+y_{\min }}{2}[/tex]

in this case, we have that the maximum value for y is 19.47 and the minimum value for y is16.18, then:

[tex]A=\frac{19.47+16.18}{2}=17.825[/tex]

next, we can find the amplitud with the following formula:

[tex]B=y_{\max }-A[/tex]

We have then:

[tex]B=19.47-17.825=1.645[/tex]

Now, notice that the graph will repeat every 356 values for t, then, for the frequency we have the following expression:

[tex]\omega=\frac{2\pi}{356}=\frac{\pi}{178}[/tex]

To find the phase shift, notice that for the point (172,19.47), we have the following:

[tex]\begin{gathered} y(172)=19.47 \\ \Rightarrow17.825+1.645\cos (\frac{\pi}{178}(172-\phi))=19.47 \\ \Rightarrow1.645\cos (\frac{\pi}{178}(172-\phi))=1.645 \\ \Rightarrow\cos (\frac{\pi}{178}(172-\phi))=1 \end{gathered}[/tex]

notice that if the cosine equals 1, then its argument must equal to 0, then, we have:

[tex]\begin{gathered} \frac{\pi}{178}(172-\phi)=0 \\ \Rightarrow172-\phi=0 \\ \Rightarrow\phi=172 \end{gathered}[/tex]

we have that the phase shift is phi = 172, then, the final cosine model is:

[tex]y(x)=17.825+1.465\cos (\frac{\pi}{178}(x-172))[/tex]

6. Write a quadratic function whose graph has a vertex of (-4,-2) and passes through the point (-3,1).

Answers

[tex]y=a(x-h)^2+k[/tex]

(h,k) are the coordinates of the vertex.

Use the given point (x,y) and the vertex (h,k) in the equation above to find the value of a:

Point: (-3 ,1) x = -3 y=1

Vertex: (-4 , -2) h= -4 k=-2

[tex]\begin{gathered} 1=a(-3-(-4))^2+(-2) \\ 1=a(-3+4)^2-2 \\ 1=a(1)^2_{}-2 \\ 1=a-2 \\ 1+2=a \\ 3=a \end{gathered}[/tex]

Use the vertex and a to write the equation:

[tex]\begin{gathered} y=3(x-(-4))^2+(-2) \\ \\ \\ y=3(x+4)^2-2 \end{gathered}[/tex]

What is the missing coefficient of the x-term of the product (−x−5)^2 after it has been simplified?−25−101025

Answers

Given:

The terms is

[tex](-x-5)^2[/tex]

Required:

What is the missing coefficient of the x-term of the product after it has been simplified?

Explanation:

We have to find the missing coefficient of the x term of the given product

We know

[tex](a-b)^2=a^2-2ab+b^2[/tex]

So,

[tex](-x-5)^2=x^2+10x+25[/tex]

Therefore, the missing coefficient of the x-term is 10.

Answer:

Therefore, the missing coefficient of the x-term is 10.

can somone hep me please

Answers

Hi

a) = (8x2) x (10 ‐³ x10 ‐⁴)

= 8 x 2 you get 16 then 10‐³-⁴

16 x 10 ‐⁷

= 1.6 x 10¹ x 10 ‐⁷

= 1.6 x 10 ‐⁶

final answer

1.6 x 10 ‐⁶

[tex]f(x) = (x - 2) ^{2}(x + 3)(x + 1)^{2} [/tex]the multiplicity of the root x=2 is...?

Answers

The solution of the factor with power 2 in the function f(x) can be found as:

(x-2)=0

x=2.

So, the root is x=2.

The multiplicity is the power of the factor (x-2) with its root given as x=2.

So, the multiplicity of the root x=2 is 2.

Soue se compound inequality and give your answer in intentel notation- 10 AND-80-72-1

Answers

S= (-4, 1 ]

1) Solving that compounded inequality

4x +6 > -10 and -8x+7 ≥ -1

2) Let's start by 4x +6 > -10

4x +6 > -10 Subtracting 6 from both sides

4x > -10-6

4x > -16 Dividing both sides by 4

x > -4

And with -8x+7 ≥ -1

-8x+7 ≥ -1 Subtract 7 from both sides

-8x ≥ -1 -7

-8x ≥ -8 Multiply by -1

8x ≤ 8

x ≤ 1

3) Graphing the solution interval:

So the solution is the interval S= (-4, 1 ] not including x= -4 and including the value x = 1

A class had a quiz where scores ranged from 0 to 10.N(s) models the number of students whose score on the quiz was s.What does the statement N(8) > N(5) mean?Group of answer choicesA score of 8 is greater than a score of 5.There are more students who scored 8 than students who scored 5.There are 8 students who scored higher than 5.

Answers

The expression N(s) models the number of students that got a score "s" on the quiz.

Then the expression N(8) represents the number of students that scored 8 on the quiz.

And N(5) represents the number of students that scored 5 on the quiz.

[tex]N(8)>N(5)[/tex]

Can be read as: "The number of students whose score on the quiz was 8 is greater than the number of students whose score on the quiz was 5"

Therefore, you can conclude that there were more students who scored 8 than students who scored 5. (option 2)

Melina made a scale drawing of a building.She used a scale in which 0.5 inch represents 1 foot. Which graph represents this relationship?

Answers

From the graph, the y - axis 10 uints while the x - axis is 5 units

The x - axis is labeled inches and its half of the feet

For every half inch on x - axis you have 1 feet

The graph that displays the scale is graph D

The answer is OPTION D

Solve the inequality X - (5 - 3x) = 2x - 1

Answers

hi,

x - (5 - 3x) = 2x - 1

x - 5 + 3x = 2x - 1

x - 2x + 3x = -1 + 5

2x = 4

x = 4/2

x =< 2

[tex]\text{ x }\leq\text{ 2}[/tex]

The result is letter A, the first choice

Use a calculator to evaluate the expression. (Do not round until the final answer. Then round to three decimal places as needed.)

Answers

2.303

1) For the following expression:

[tex]\frac{\ln30+\ln15}{\log_{10}30+\log_{10}15}[/tex]

We can simplify that and then round it off to the nearest thousandth:

2) Let's rewrite them simplifying using the logarithm property of multiplication:

[tex]\begin{gathered} \frac{\ln30+\ln15}{\log_{10}30+\log_{10}15}= \\ \frac{\ln(30\cdot15)}{\log_{10}30+\log_{10}15}= \\ \frac{\ln(30\cdot15)}{\log_{10}(30\cdot15)}= \\ \frac{\ln(450)}{\log_{10}(450)}= \end{gathered}[/tex]

Note that the base of the Natural Log is the Euler's number "e" so let's move on now using the calculator, finally:

[tex]\frac{\ln(450)}{\log_{10}(450)}=\frac{6.10924}{2.65321}=2.30258\ldots\approx2.303[/tex]

Note that only at the last step we have rounded it off. And that's the

answer

Let f(x)=5x.Let g(x)=5x−7.Which statement describes the graph of g(x)with respect to the graph of f(x)? g(x)is translated 7 units down fromf(x).g(x)is translated 7 units left fromf(x).g(x)is translated 7 units right from f(x).g(x)is translated 7 units up fromf(x).

Answers

Given

[tex]\begin{gathered} f(x)=5x \\ g(x)=5x-7 \end{gathered}[/tex]

According to rules of transformation:

f(x)+c shift c units up and f(x)-c shift c units down.

For the given function g(x) = 5x-7, 7 is being subtracted from 5x.

Where 5x is represented by f function.

Therefore, we could apply the rules of transformation f(x)-c shift c units down.

Here the value of c is 7.

Answer: g(x) is translated 7 units down from f(x)

2) Add or subtract the following polynomials: (5pts each) 1) (98-7x' +5x-3)+(2x* +4x'-6x-8) = ii) (8x* +6x - 4x2 -2)-(3x* – 5x – 7x+9)=

Answers

When we are adding/subtracting polynomials, we add or subtract like terms.

For example,

x^2 added with x^2 terms

x^4 added with x^4 terms

numbers (constants) added with numbers etc.

2 i)[tex](9x^5-7x^2+5x-3)+(2x^4+4x^3-6x-8)[/tex]

Since we are "adding" the 2nd parenthesis polynomial, we can take out the parenthesis and put them in order and them simply add/subtract(!) The steps are shown below:

[tex]\begin{gathered} (9x^5-7x^2+5x-3)+(2x^4+4x^3-6x-8) \\ =9x^5-7x^2+5x-3+2x^4+4x^3-6x-8 \\ =9x^5+2x^4+4x^3-7x^2+5x-6x-3-8 \\ =9x^5+2x^4+4x^3-7x^2-x-11 \end{gathered}[/tex]

Note: there were like terms with "x's" and "constants". We added/subtracted them only.

Leo is constructing a tangent line from point Q to circle P. What is his next step? Mark the point of intersection of circle P and segment PQ. Construct arcs from point P that are greater than half the length of segment PQ. Construct a circle from point Q with the radius PQ. Plot a new point R and create and line perpendicular to segment PQ from point R

Answers

Explanation

The next step to constructing a tangent line from Q to circle P is to construct the perpendicular bisector of the segment PQ.

For this, Leo can construct arcs from point P and from point Q that are greater than half the length of segment PQ.

Answer

The next step is to construct arcs from point P that are greater than half the length of segment PQ.

5. There are 9.75 ounces of Cinnamon Toast Crunch in a bowl. Additional cereal ispoured into the bowl at a rate of 1.5 ounces per second. How many ounces are inthe bowl after 3 seconds?

Answers

Question:

There are 9.75 ounces of Cinnamon Toast Crunch in a bowl. Additional cereal is poured into the bowl at a rate of 1.5 ounces per second. How many ounces are in the bowl after 3 seconds?

Solution:

If additional cereal is poured into the bowl at a rate of 1.5 ounces per second, then in 3 seconds the additional cereal into the bowl is 1.5x 3 = 4.5 ounces. Thus after 3 seconds, the bowl has the original amount that it already had and the new aggregate:

9.75 ounces + 4.5 ounces = 14.25

then, the correct answer is:

14.25

Use the figures to estimate the area under the curve for the given function using four rectangles.

Answers

To calculate the area for the upper (left) graph, we can use x = 1, 2, 3 and 4 to find the upper limit of each rectangle:

[tex]\begin{gathered} f(1)=\frac{3}{1}+3=6\\ \\ f(2)=\frac{3}{2}+3=4.5\\ \\ f(3)=\frac{3}{3}+3=4\\ \\ f(4)=\frac{3}{4}+3=3.75 \end{gathered}[/tex]

Since the x-interval of each rectangle is 1 unit, the area of each rectangle is given by its y-value, so we have:

[tex]\begin{gathered} A=f(1)+f(2)+f(3)+f(4)\\ \\ A=6+4.5+4+3.75=18.25 \end{gathered}[/tex]

Now, for the bottom (right) graph, the limits of the rectangles are x = 2, 3, 4 and 5.

So, let's find the value of f(5):

[tex]f(5)=\frac{3}{5}+3=3.6[/tex]

So the area is given by:

[tex]\begin{gathered} A=f(2)+f(3)+f(4)+f(5)\\ \\ A=4.5+4+3.75+3.6=15.85 \end{gathered}[/tex]

In the rhombus m<1 = 160 what are m<2 and m<3. This diagram is not drawn to scale. Show all work

Answers

We are given a rhombus shape.

The measure of angle ∠1 = 160°

Recall that in a rhombus, the oppsite angles are equal, this means ∠1 = ∠2

So, ∠2 = 160°

Recall that the sum of all four interior angles in a rhombus must be equal to 360°

The diagonal line divides the angles in half.

This means that angle 3 and angle x are equal.

[tex]\begin{gathered} 160\degree+160\degree+2(\angle3+x)=360\degree_{} \\ 320\degree+2(\angle3+x)=360\degree \\ 2(\angle3+x)=360\degree-320\degree \\ 2(\angle3+x)=40\degree \\ \angle3+x=\frac{40\degree}{2} \\ \angle3+x=20\degree \end{gathered}[/tex]

Since we know that ∠3 and ∠x are equal then

∠3 = 10° and ∠x = 10°

Therefore,

∠2 = 160°

∠3 = 10°

Use quadratic regression to find the equation of a quadratic function that fits the given points. x 0 1 2 3. Y. 49 50.4 39.5. 21

Answers

The regression Quadratic equation y = 49 + 7.55x - 6.15x².

What is Regression Equation?

The technique of finding the equation of a parabola that most closely matches a collection of data is known as quadratic regression. The graph points that make up the parabola-shaped shape of this set of data are given. The parabola's equation is written as y = ax² + bx + c, where a never equals zero.

For data presented as ordered pairs, you can calculate the model's degree by identifying differences between dependent values. The model will be linear if the initial difference has the same value. The model will be quadratic if the second difference has the same value as the first.

As, we know the Quadratic model

Quadratic model, y = a + bx + cx²

Now, value of

a = 49

b = 7.55

c = -6.15

Then, the Regression Quadratic model is

y = 49 + 7.55x - 6.15x²

Learn more about regression Quadratic equation here:

https://brainly.com/question/12602761

#SPJ1

Which system of inequalities is shown?-5O A. y>xy<4OB. y> xy> 4C. y< xy<4OD. y< xy> 45

Answers

Given:

a graph of the inequalities is given.

Find:

we have to find the correct inequalities.

Explanation:

From the graph , it is observed that the value of y > x and y < 4,

Therefore, the correct inequalities are y > x,

y < 4.

Hence, correct option is A.

the volume v of a fixed amount of a gas variety directly as the temperature T and inversely as the pressure P. suppose that V =42cm3 when T=84 kelvin and P=8kg/cm2 find the temperature when V =74cm3 and P=10 kg/cm2

Answers

ok

I'll use the law of gases to solve this problem

V1 = 42 cm^3

T1 = 84 °K

P = 8 Kg/cm^2

T2 = x

V2 = 74 cm^3

P2 = 10 kg/cm^2

Equation

P1V1/T1 = P2V2/T2

Solve for T2

T2 = P2V2T1 / P1V1

Substitution

T2 = (10*74*84) / (8*42)

Simplification

T2 = 62160 / 336

Result

T2 = 185°K

I need help finding the exact perimeter. Special right triangles.

Answers

Answer:

The exact perimeter of the square is;

[tex]56\sqrt[]{2}[/tex]

Explanation:

Given the square in the attached image.

The length of the diagonal is;

[tex]d=28[/tex]

Let l represent the length of the sides;

[tex]\begin{gathered} l^2+l^2=28^2 \\ 2l^2=784 \\ l^2=\frac{784}{2} \\ l^2=392 \\ l=\sqrt[]{392} \\ l=14\sqrt[]{2} \end{gathered}[/tex]

The perimeter of a square can be calculated as;

[tex]\begin{gathered} P=4l \\ P=4(14\sqrt[]{2}) \\ P=56\sqrt[]{2} \end{gathered}[/tex]

Therefore, the exact perimeter of the square is;

[tex]56\sqrt[]{2}[/tex]

Is the slope the same or different?Is the Y-intercept same or different?Is there infinitely many solutions or not?

Answers

Answer:

Explanation:

Here, we want to answer the questions given

a) To answer this, we have to write the equations in the slope-intercept form:

The slope-intercept form is:

[tex]y\text{ = mx + b}[/tex]

m is the slope while b is the y-intercept

The equations would be:

[tex]\begin{gathered} y\text{ = 7x-2} \\ y\text{ = 7x-2} \end{gathered}[/tex]

We can see that the equations are same

Since the equations are same, the slope is same which is 7

b) The y-intercept value is same too

c) Since the equations are same, there are infinitely many solutions for the system of equations

what are three requirements for fully defining a reference point?

Answers

1 - reference point should consist of abstract coordinates.

2- it should be stationary

3- it should be related to all the variables in the frame.

ava's family drove to disneyland for spring break. Her mom and dad shared the driving duties for a total of 24 hours. Her mom drove 75 miles per hour, and her dad drove 60 miles per hour. If they drove a total of 1,710 miles, how many hours did each person drive for?

Answers

Total driving time =24

Mom drove =75 mile per hours

Dad drove = 60 miles per hours

Total distance =1710

Let

[tex]\begin{gathered} \text{ mom driving time =}^{}t_1 \\ \text{dad driviving time=}^{}t_2 \\ \text{Mom driving distance =}x \\ \text{ So dad driving distance=}^{}1710-x \end{gathered}[/tex]

Total time:

[tex]t_1+t_2=24[/tex]

Formula:

[tex]\text{ Spe}ed=\frac{\text{ Distance}}{\text{ Time}}[/tex]

For Ava's mom:

[tex]\begin{gathered} \text{Speed}=\frac{\text{ Distance}}{\text{ time}} \\ 75=\frac{x}{t_1} \\ x=75t_1^{} \end{gathered}[/tex]

For Ava's dad:

[tex]\begin{gathered} \text{ Spe}ed=\frac{\text{ Distance}}{\text{ Time}} \\ 60=\frac{1710-x}{t_2} \\ 60t_2=1710-x \\ x=1710-60t_2 \end{gathered}[/tex]

Put the value of "x" then:

[tex]\begin{gathered} x=75t_1 \\ x=1710-60t_2 \\ so\colon \\ 75t_1=1710-60t_2 \\ 75t_1+60t_2=1710 \\ 15(5t_1+4t_2)=15\times114 \\ 5t_1+4t_2=114 \end{gathered}[/tex]

Solve the both eq then:

[tex]\begin{gathered} t_1+t_2=24 \\ 4t_1+4t_2=96 \\ 5t_1+4t_2=114 \\ \text{then:} \\ 5t_1-4t_1+4t_2-4t_2=114-96 \\ t_1=18 \\ \end{gathered}[/tex]

So Ava's mom drive 18 hours

[tex]\begin{gathered} t_1+t_2=24 \\ 18+t_2=24 \\ t_2=24-18 \\ t_2=6 \end{gathered}[/tex]

Ava's dad driving 6 houras

What 3D shape will be formed when the following are rotated around the axis

Answers

a)

A washer will be formed

b)

A cone will be formed

C)

A sphere will be formed

In New York, the tax on a property assessed at $520,000 is $10,400. If tax rates are proportional in this city, how much would the tax be on a property assessed at $370,000? Answer: $

Answers

Given that the tax on a property assessed at $520,000 is $10,400 and the tax

At the airport, the new runway will be parallel to a nearby highway. The equation that represents the highway is 6y = 8x - 11. Which equation could represent the new runway? A. 9y = 12x + 5B. 9x = 12y + 8C. 12y = -9x + 2 D. 12x = -9y + 4

Answers

At the airport, the new runway will be parallel to a nearby highway. The equation that represents the highway is 6y = 8x - 11. Which equation could represent the new runway?



A. 9y = 12x + 5

B. 9x = 12y + 8

C. 12y = -9x + 2

D. 12x = -9y + 4

______________________________________________________

Parallel equations have the same slope

6y = 8x - 11

y= 8/6 x - 11/6

y= 4/3 x-11/6

y = m x +b (m is the slope )

_____________________________________________

You need to find the other equation with the same slope

____________________________

A. 9y = 12x + 5

y = 12/ 9 x + 5/9

y = 4/3 x + 5/9

_________________________

B. 9x = 12y + 8

12 y= 9x-8

y= 9/ 12 x- 8/12

y= 3/4 x - 4/6

discarded

________________________

C. 12y = -9x + 2

y = -9/12 x + 2/12

y = -3/4 x + 1/6

discarded

_________________________

D. 12x = -9y + 4

12x -4 = -9y

y = -12/9 x +4/9

y = -4/3 x+4/9

discarded

_______________

So then, A 9y = 12x + 5 is the equation that could represent the new runway because is parallel to the highway 6y = 8x - 11.

the bears have won 7 and tied 2 of their last 13 games. the not forfeited any games . which ratio correctly campares their to losses

Answers

Explanation:

Number of games won = 7

Number of games drawn = 2

Total number of games = 13

Number of games lost = Total number of games - (Number of games won + Number of games drawn)

Number of games lost = 13 - (7 + 2) = 13 - 9

Number of games lost = 7

The ratio of

Two planes, which are 2320 miles apart, fly toward each other. Their speeds differ by 80 mph. If they pass each other in 4 hours,what is the speed of each?Step 1 of 2: Use the variable x to set up an equation to solve the given problem. Set up the equation, but do not take steps to solve it.

Answers

Given the word problem, we can deduce the following information.

1. Two planes, which are 2320 miles apart, fly toward each other.

2. Their speeds differ by 80 mph.

3. They pass each other in 4 hours.

To find the speed of each plane, we use the formula:

distance = (rate)(time)

Since they are flying towards each other, the sum of both speeds is 2x+80. So,

distance = (rate)(time)

2320 miles = (2x+80 mph)(4 hrs)

Thus, the equation to solve this is:

2320 = (2x+80)(4)

Other Questions
Which of the following is a right guaranteed to citizensin the Bill of Rights?1. checks and balances2 right to remain silent3. separation of powers4 women's right to vote if a manager uses positive reinforcers, such as money and gift certificates, to shape the behavior of his or her employees, what can the manager then expect? check all that apply. A statement of Chandler's biweekly earnings is given below. What is Chandler's gross pay? 23 4u < 11 what is the answer let f ( x ) = 6356 x + 5095 . Use interval notation. Many answers are possible. in the experiment of the preceding exercise, the subjects were randomly assigned to the different treatments. what is the most important reason for this random assignment? What are gray matter and white matter, and where are they found? Paraphrase what Juliet says in lines 116-24. Even though I'm happy to be with _______, I have no joy of what's happening ______. It is too ______ and ________. It's like ___________, which stops existing as soon as you can ________ __________. which methods correctly solve for the variable x in the equation 2/5m = 8? Why were the Ouendat important to the fur trade with Europeans?O They were the first Northwest Indigenous group to have contact with Europeans.O They traded furs with Russians on the coast of Alaska.O They began supplying furs to the French in the early 1600s.O They had land stolen from them where Fort Astoria was built. octavius wants to write the equation of a line perpendicular to y=-4x + 5 that passes through the point (8,-3). Describe the mistake octavius made and write the correct equation of the line. 3(4x+1)^2-5=25 using square root property NO LINKS!! Please help me with this problem O DESCRIPTIVE STATISTICInterpreting relative frequency-histogramsStudents at a major university in Southern California are complaining about a serious housing crunch. Many of the university's students, they complain, have tocommute too far to school because there is not enough housing near campus. The university officials' response is to perform a study. The study, reported in theschool newspaper, contains the following histogram summarizing the commute distances for a sample of 100 students at the university:Relative frequencyCommute distance (in miles)Based on the histogram, find the proportion of commute distances in the sample that are at least 16 miles. Write your answer as a decimal, and do not roundyour answer Two drops of mercury each has a charge on 5.44 nC and a voltage of 235.15 V. If the two drops are merged into one drop, what is the voltage on this drop? suppose that the antenna lengths of woodlice are approximately normally distributed with a mean of inches and a standard deviation of inches. what proportion of woodlice have antenna lengths that are more than inches? round your answer to at least four decimal places. g stock e is expected to pay a dividend of $1.78 one year from today. at that time, the price of stock e is expected to be $92. today, stock e's expected return is 8%, and it is overpriced by $6.33. calculate stock e's required return Solve for w.4w-24w=0If there is more than one solution, separate them with commas.If there is no solution, click on "No solution".W =0U08Nosolution Need help determining if h. F(x)= 3^x is even, odd or neither In planning her retirement, Liza deposits some money at 4.5% interest, with twice as much deposited at 5%. Find the amount deposited at each rate if the total annual interest income is $1595.