Mary Bought her car for $20,000. After 5 years she decided to sell her car for a 25% increase invalue. What is the price that Mary decided to sell her car for?

Answers

Answer 1

Original Car price = $20,000

Price increase after 5 years = 25%

To calculate the price after 5 years, first multiply the original price (20,000) by the percentage increase in decimal form ( divided by 100) to obtain the increase amount:

20,000 x (25/100) = 20,000 x 0.25 = $5000

Finally, add the increase amount to the original price:

20,000+5,000 = $25,000


Related Questions

The circle has center O. Its radius is 4 cm, and the central angle a measures 30°. What is the area of the shaded region?Give the exact answer in terms of pi, and be sure to include the correct unit in your answer

Answers

Explanation

The area of a portion of a circle with radius 'r' and central angle 'a' in radians is:

[tex]A_{\text{portion}}=\frac{1}{2}\cdot r^2\cdot a[/tex]

In this problem, the radius is r = 4cm, and the angle a = 30º.

First we have to express the angle in radians:

[tex]a=30º\cdot\frac{\pi}{180º}=\frac{1}{6}\pi[/tex]

And now we can find the area of the shaded region:

[tex]\begin{gathered} A=\frac{1}{2}\cdot(4\operatorname{cm})^2\cdot\frac{1}{6}\pi \\ A=\frac{1}{2}\cdot16\operatorname{cm}^{2}\cdot\frac{1}{6}\pi=\frac{4}{3}\pi \end{gathered}[/tex]

Answer

The area of the shaded region is:

[tex]A=\frac{4}{3}\pi cm^{2}[/tex]

I have a practice problem in the calculus subject, I’m having trouble solving it properly

Answers

The limit of a function is the value that a function approaches as that function's inputs get closer and closer to some number.

The question asks us to estimate from the table:

[tex]\lim _{x\to-2}g(x)[/tex]

To find the limit of g(x) as x tends to -2, we need to check the trend of the function as we head towards -2 from both negative and positive infinity.

From negative infinity, the closest value we can get to before -2 is -2.001 according to the values given in the table. The value of g(x) from the table is:

[tex]\lim _{x\to-2^+}g(x)=8.02[/tex]

From positive infinity, the closest value we can get to before -2 is -1.999 according to the values given in the table. The value of g(x) from the table is:

[tex]\lim _{x\to-2^-}g(x)=8.03[/tex]

From the options, the closest estimate for the limit is 8.03.

The correct option is the SECOND OPTION.

Use the fact that 521•73=38, 033.Enter the exact product of 5.21•7.3

Answers

Answer: 38.033

5.21 x 7.3

= 38.033

Olivia goes out to lunch. The bill, before tax and tip, was $13.90. A sales tax of 6% was added on. Olivia tipped 23% on the amount after the sales tax was added. How much was the sales tax? Round to the nearest cent.

Answers

According to the information given in the exercise, the bill before the tax and tip was $13.90 and the sales tax of 6% was added to that amount.

By definition, you can write 6% as a Decimal number by dividing it by 100. Then, this is:

[tex]\frac{6}{100}=0.06[/tex]

Let be "t" the amount (in dollars) of the sales tax.

To find the value of "t", you can set up the following equation:

[tex]t=(13.90)(0.06)[/tex]

Finally, evaluating, you get that this is:

[tex]t=0.834[/tex]

Rounded to the nearest cent, this is:

[tex]t\approx0.83[/tex]

The answer is: $0.83

Which number line shows the solutions to x > 5? O A. A. 3642 8 2 4 6 8 B. 8 -6 -4 -2 0 2 4 6 8 c. -6-4 2 0 2 4 6 8 D. 8 8 4 2 0 2 4 6 8

Answers

The answer is option C.

thats where there are intergers greater than 5.

Can you please help me out with the a question

Answers

Arc XY = 2π • (PX)/ 4

. = 2π • 5/4

. = 6.28 • 5/4= 31.40/4 = 7.85

Then answer is

Option G) 7.854

Do you know anything about dilation!?

Answers

[tex]\begin{gathered} T^{\prime}(-6,1) \\ U^{\prime}(0,3) \\ V^{\prime}(-2,-2) \\ W^{\prime}(-5,-3) \end{gathered}[/tex]

The length of a rectangle is 6 cm more than the width. If the perimeter is 52 cm. What are the dimensions of the rectangle?

Answers

LA rectangle has two pairs of sides of the same length. If we call W to the width of the rectangle, we know that the length is 6cm more. If we call L the length of the rectangle:

[tex]L=W+6[/tex]

The perimeter of a rectangle is twice the length plus twice the width:

[tex]Perimeter=2L+2W[/tex]

Since we know that the perimeter is 52 cm, we can write the system of equations:

[tex]\begin{cases}L={W+6} \\ 2L+2W=52{}\end{cases}[/tex]

We can substitute the first equation into the second one:

[tex]2(W+6)+2W=52[/tex]

And solve:

[tex]2W+12+2W=52[/tex][tex]\begin{gathered} 4W=52-12 \\ . \\ W=\frac{40}{4}=10\text{ }cm \end{gathered}[/tex]

We know that W = 10cm, we can now find L:

[tex]L=10+6=16\text{ }cm[/tex]

Thus, the dimensions of the rectangle are:

Length: 16 cm

Width: 10 cm

The distance around a water fountian is 150 inches what is the distance from the edge of the fountian to the center

Answers

Answer:

The distance from the edge of the fountain to the centre is approximately 23.87 inches.

The water fountain forms a circle. The distance around the water fountain is the circumference of the circle formed.

Therefore,

circumference = 2πr

150 = 2πr

The distance from the edge of the fountain to the centre is the radius of the circle formed. Therefore,

75 = πr

r = 75 / 3.14159

r = 23.8732616287

r = 23.87 inches

The distance from the edge of the fountain to the centre is approximately 23.87 inches.

what is 9/36 simplified?

Answers

Answer:

1/4

Step-by-step explanation:

it can be simplified by dividing both the numerator and denominator with 9.

Solution -:

[tex] \displaystyle \large{ \sf{ \frac{9}{36}}} [/tex]

[tex]\displaystyle \large{ \sf{ \frac{9}{36} = \frac{ \cancel9}{ \cancel3 \cancel6} }}[/tex]

[tex]\displaystyle \large{ \bf{ = \frac{1}{4} }}[/tex]

simplest form is 1/4

Deter mine the intervals for which the function shown below is increasing

Answers

Answer:

The interval at which the function is increasing is from x = -2 to x = 0. In interval notation, it is (-2, 0).

Explanation:

See the graph below for the pattern of the function.

As you can see above, from x = -∞ until x = -2, the value of the function decreases from y = +∞ to y = -7.

Then, starting at x = -2 to x = 0, the value of the function increases from y = -7 to y = -3.

Lastly, starting at x = 0 to +∞, the value of the function decreases again from y = -3 to -∞.

Hence, the interval at which the function is increasing is at (-2, 0).

give two-sided of a triangle, find a range of a possible side length of the third side 24 and 52

Answers

For a triangle to be possible with 3 given lengths, the largest side must be lower than the sum of the two remaining sides.

Let L be the length of the third side. There are two cases:

If L is the largest side, then:

[tex]\begin{gathered} L<24+52 \\ \Rightarrow L<76 \end{gathered}[/tex]

If L is not the largest side, then the largest side has a measure of 52 and:

[tex]\begin{gathered} 52<24+L \\ \Rightarrow52-24Since both conditions should meet for a triangle to be formed, then:[tex]28Therefore, the range of possible values for L is:[tex]undefined[/tex]

What should you do to finish solving this equation?6y + 4y + 90 = 36010y + 90 = 360Add 90 then divide by 102 subtract 90 then multiply by 10Add 10 then multiply by 904Subtract 90 then divide by 10O 102O 304h

Answers

answer is substract 90 then divide by 10

What value of t makes the following equation true?

5t−2=6t−7

Answers

After working out the problem, the answer is 5

An isosceles right triangle has 6 cm legs . Find the length of the hypotenuse

Answers

Step-by-step explanation:

we have a right-angled triangle.

so, we can use Pythagoras

c² = a² + b²

c is the Hypotenuse, a and b are the legs.

in our case

c² = 6² + 6² = 36 + 36 = 72

c = Hypotenuse = sqrt(72) = 8.485281374... cm

Answer:

hypotenuse = √72 (or 8.49)

Step-by-step explanation:

An isosceles right triangle has 6 cm legs . Find the length of the hypotenuse

isosceles right triangle = 2 equal side and 2 equal angles

we use the Pythagorean theorem (In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides)

hypotenuse² = 6² + 6²

hypotenuse² = 36 + 36

hypotenuse² = 72

hypotenuse = √72 (or 8.49)

If the area of a rectangular field is x2 – 3x + 4 units and the width is 2x – 3, then find the length of the rectangular field.x2- 3 x + 42 x − 3 unitsx2 - 3x + 4 units2x - 3 units3x + 4 units

Answers

Solution

We are given the following

[tex]\begin{gathered} Area=x^2-3x+4 \\ \\ Width=2x-3 \\ \\ Length=? \end{gathered}[/tex]

Using the Area of a Rectangle we have

[tex]\begin{gathered} Area=lw \\ \\ l=\frac{A}{w} \\ \\ l=\frac{x^2-3x+4}{2x-3} \end{gathered}[/tex]

Therefore, the answer is

[tex]\frac{x^{2}-3x+4}{2x-3}units[/tex]

Simplify cot(t)/csc(t)-sin(t) to a single trig function

Answers

The single trig function that simplifies the function is sec(t)

How can we simplify the function?

Trigonometry deals with the functions of angles and how they're applied.

Given cot(t)/csc(t)-sin(t)

since csc(t) =  1/sin(t) , we have:

[tex]\frac{ cot(t)}{csc(t)-sin(t)} = \frac{cot(t)}{\frac{1}{sin(t)} - sin(t) }[/tex]

[tex]\frac{ cot(t)}{csc(t)-sin(t)} = \frac{cot(t)}{\frac{1-sin^{2}(t) }{sin(t)} }[/tex]

since:

cos²(t) = 1 - sin²(t)

Therefore we have:

cot(t) / csc(t)-sin(t) = cot(t)/ cos²(t)/sin(t)

cot(t) / csc(t)-sin(t) = cot(t) / cos(t).cos(t)/sin(t)

Since  cos(t) / sin(t) = 1/tan(t) = cot(t)

Therefore:

cot(t) / csc(t)-sin(t) = cot(t)/ cot(t)×cos(t)

cot(t) / csc(t)-sin(t) = 1/cos(t)

Since   1/cost = sec(t)

Finally, cot(t) / csc(t)-sin(t) is sec(t).

Learn more about trigonometry on:

https://brainly.com/question/24438369

#SPJ1

Find how many years it would take for an investment of $4500 to grow to $7900 at an annual interest rate of 4.7% compounded daily.

Answers

To answer this question, we need to use the next formula for compound interest:

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

From the formula, we have:

• A is the accrued amount. In this case, A = $7900.

,

• P is the principal amount. In this case, $4500.

,

• r is the interest rate. In this case, we have 4.7%. We know that this is equivalent to 4.7/100.

,

• n is the number of times per year compounded. In this case, we have that n = 365, since the amount is compounded daily.

Now, we can substitute each of the corresponding values into the formula as follows:

[tex]A=P(1+\frac{r}{n})^{nt}\Rightarrow7900=4500(1+\frac{\frac{4.7}{100}}{365})^{365t}[/tex]

And we need to solve for t to find the number of years, as follows:

1. Divide both sides by 4500:

[tex]\frac{7900}{4500}=(1+\frac{0.047}{365})^{365t}[/tex]

2. Applying natural logarithms to both sides (we can also apply common logarithms):

[tex]\ln \frac{7900}{4500}=\ln (1+\frac{0.047}{365})^{365t}\Rightarrow\ln \frac{7900}{4500}=365t\ln (1+\frac{0.047}{365})[/tex]

3. Then, we have:

[tex]\frac{\ln\frac{7900}{4500}}{\ln(1+\frac{0.047}{365})}=365t\Rightarrow4370.84856503=365t[/tex]

4. And now, we have to divide both sides by 365:

[tex]\frac{4370.84856503}{365}=t\Rightarrow t=11.9749275754[/tex]

If we round the answer to two decimals, we have that t is equal to 11.97 years.

nd the Geometry meand of 4 and 15.

Answers

we know that

the geometric mean is the product of all the numbers in a set, with the root of how many numbers there are

so

In this problem we have two numbers

so

the geometric mean is equal to

[tex]\begin{gathered} \sqrt[=]{4\cdot15} \\ \sqrt[]{60} \\ 2\sqrt[]{15} \end{gathered}[/tex]

9) Write an equation of a line that is steeper than y- 6x + 2

Answers

[tex]\begin{gathered} y=-6x+2 \\ y^{^{\prime}}=-6 \\ \end{gathered}[/tex]

If two lines intersect and one of the angles formed has a measure of 67°, which of the following statements are true? Explain your answers.

Answers

Intersecting Lines

When two lines intersect, four angles are formed at the point of intersection.

Two pairs of angles are vertical, i.e., they have the same measure.

Two pairs of angles are complementary (or linear) therefore their sum adds up to 180°.

We are given one of the angles that has a measure of 67°.

Then, another angle also measures 67° (the vertical peer).

One of the other angles is 180° - 67° = 113°

The other angle also measures 113° (the other vertical peer).

According to the facts found above, the following statements are true:

* Vertical angles are congruent, therefore another angle must equal 67°

* The lines form linear pairs

* The lines form complementary angles

* Two of the angles formed measure 113°

* Two of the angles formed will have a sum of 180°

Note: The last statement should read "Two pairs of angles formed..."

Evaluate 7a - 5b when a = 3 and b = 4 .

Answers

[tex]\begin{gathered} \text{ When evaluating, just substitute the values given assigned to the variable} \\ a=3,b=4 \\ 7a-5b \\ =7(3)-5(4) \\ =21-20 \\ =1 \end{gathered}[/tex]

many solutions can be found for the system of linear equations represented on the graph?A. no solution B. one solution C. two solution D. Infinity many solutions

Answers

The lines are not intersecting. The system of linear equations has a solution only if the lines corresponding to the equations intersect.

The general linear equation is,

y=mx+c, where m is the slope.

The slopes of lines m=2.

Since the graphs are parallel or have the same slope and will never intersect, the system of linear equations have no solution.

A cake is cut into 12 equal slices. After 3 days Jake has eaten 5 slices. What is his weekly rate of eating the cake?
5
36
35
36
cakes/week
cakes/week
1
1 cakes/week
35
01. cakes/week
4

Answers

Answer:

11.2 Slices / Week

Step-by-step explanation:

We know that Jake has eaten 5 slices of cake in 3 days. You can divide 5 / 3 to get an average of 1.6 slices of cake being eaten per day. The question asks what the weekly rate or eating the cake will be, do you need to multiple 1.6 x 7 for the total amount of cake eaten per week, which is 11.2 slices!

Answer:

11.6

explanation

we have 7 days.

7days-3days =4

in 3 days he has eaten 5 slices

again 4-3 days=1

so in 6 days he has eaten 10 slices

we have 1 day left.so if he eats 5 slices in 3 day,how many he eat slices in 1 day?5/3=1.6

10+1.6=11.6

Triangle DEF is rotated 60⁰ clockwise about the vertex to obtain triangle LMN. if the m

Answers

EXPLANATION

The measure of the angle LMN is equal to 40 degrees, then the measure of the angle LMN is the same because the rotation does not modify the angle.

What fraction is bigger 25/5 or 24/6?

Answers

[tex]\begin{gathered} \text{fraction }\frac{25}{5}\Rightarrow5 \\ \text{fraction }\frac{24}{6}\Rightarrow4 \\ So,\text{ the }\frac{25}{5}\text{ is the bigger than }\frac{24}{6} \end{gathered}[/tex]

100 points!!!!
PLS WRITE IN SLOPE INTERCEPT FORM
–18y + 8 = 12x
SOLVE FOR Y

Answers

Answer: y = (-2/3)x + (4/9)

Step-by-step explanation:

y = mx + b is the form expected

-18y + 8 = 12x

subtract 8 from both sides

-18y = 12x - 8

divide both sides by -18

y = (12x/-18) - (8/-18)

Simplify the negatives and pull x out of the parenthesis (this only works if x is in the numerator).

y = (-12/18)x + 8/18

Simplify the fractions

y = (-2/3)x + 4/9

Answer:

The required value of y is,

y = -(2/3)x + (4/9)

Step-by-step explanation:

Given equation,

→ -18y + 8 = 12x

The slope-intercept form is,

→ y = mx + b

Let's rewrite the equation,

→ y = mx + b

→ -18y + 8 = 12x

→ -18y = 12x - 8

→ -y = (12x - 8)/18

→ -y = (2/3)x - (4/9)

→ y = -(2/3)x + (4/9)

Hence, this is the answer.

can you please help me. I am running out of time and I really need this grade.

Answers

A system of equations is consistent if the system has a solution and it is inconsistent if it has no solution.

Since the lines intersect at a point, the system has a solution and the solution is unique.

If a system has a unique solution, then the system is independent.

Therefore, the given system of equations is consistent and independent. It has a unique solution.

find the missing lenghts, the triangle in each pair are similar.

Answers

Since the triangles are similar, we have that

[tex]\frac{50}{40}=\frac{x}{52}[/tex]

then

[tex]x=\frac{52\times50}{40}=65[/tex]then the answer will be D) 65

Last year, Kevin had $10,000 to invest. he invested some of it in an account that paid 6% simple interest per year, and he invested the rest in an account that paid 10% simple interest per year. after one year, he received a total of $920 in interest. how much did he invest in each account?first account:second account:

Answers

Simple interest is represented by the following expression:

[tex]\begin{gathered} I=\text{Prt} \\ \text{where,} \\ I=\text{ interest} \\ P=\text{principal} \\ r=\text{interest rate in decimal form} \\ t=\text{ time (years)} \end{gathered}[/tex]

We need to create a system of equations:

Let x be the money invested in the account that paid 6%

Let y be the money invested in the account that paid 10%

So, he received a total of $920 in interest, then:

[tex]920=0.06x+0.1y\text{ (1)}[/tex]

And we know that money invested must add together $10,000:

[tex]x+y=10,000\text{ (2)}[/tex]

Then, we can isolate y in equation (2):

[tex]y=10,000-x[/tex]

Now, let's substitute y=10,000-x in the equation (1):

[tex]\begin{gathered} 920=0.06x+0.1(10,000-x) \\ 920=0.06x+1000-0.1x \\ 0.1x-0.06x=1,000-920 \\ 0.04x=80 \\ x=\frac{80}{0.04} \\ x=2,000 \end{gathered}[/tex]

That means, he invested $2,000 in the account that paid 6% simple interest. Now, having x, we are going to substitute x in the second equation (2):

[tex]\begin{gathered} y=10,000-x \\ y=10,000-2,000 \\ y=8,000 \end{gathered}[/tex]

He invested $8,000 in the account that paid 10% simple interest per year.

Other Questions
how is the efficiency of cooling equipment measured? is using integrated part load values a good way to define the efficiency of large cooling equipment ? why or why not Owen lives in a country where everyone is ranked based on how much money they make. Which system of stratification would sociologists say Owens country MOST likely uses? A. meritocracy B. social class C. closed system D. caste A wooden sphere of mass 4.0 kg is completely immersed in water. A pushing force of 20. N isapplied.2120 N4.2 ms19At the moment shown in the diagram, the sphere is stationary and it experiences anacceleration upwards and to the right as shown.Calculate the size of the upwards force due to the water (upthrust) acting on the sphere. Type the number of the spelling rule that applies to the word. noisy Leila triples her recipe that calls for 2/5 of a cup of flour. Leila has 1 cup of flour. Does she have enough to triple her recipe?noyes which one of the following is a positive economic statement? group of answer choices thoughtful people oppose an increase in the minimum wage. social justice will be served by increasing the minimum wage. an increase in the minimum wage will reduce employment for teenagers. the minimum wage should be increased Let A = {0, 2, 4, 6}, B = {1, 2, 3, 4, 5}, and C = {1, 3, 5, 7}. Find AU (BNC).{ Patricia wants to examine the morphology of a hair sample. What is the BEST way for her to accomplish this task? A. Send the sample away to a lab for DNA testing. B. Observe the sample under a high-powered microscope. C. Add a solution to the hair to see if it reacts. D. Use a Hemastix strip to perform A-B-O testing. 3. The diameter of a spherical balloon shrinks to one-half of its original size.How does this affect the volume?Hint: Test two scenarios and compare the volumes! Show your work!!A. The volume is cut in halfB. The volume doublesC. The volume is 1/8 the original volumeD. The volume is 1/4 the original volume Question 10 of 183Consider the line y = -x +6.(a) Find the equation of the line that is parallel to this line and passes through the point (2, 6).(b) Find the equation of the line that is perpendicular to this line and passes through the point (2, 6).Note that a graphing calculator may be helpful in checking your answer. Michael earns (2x3 + 3x) every month. His wife earns (3x2 + 6) every month. x represents the number of days they work in a month. What is the total earnings in a month?2x3 - 3x2 + 3x - 62x3 + 3x2 + 3x + 66x5 + 21x3 + 18x(2x3 + 3x) / (3x2 + 6) 11. The ruralization of the Byzantine Empire resulted inO A. increased literacy.O B. a weakened economy.O C. lower agricultural output.O D. frequent invasions. Hand written rsums are still used frequently. please select the best answer from the choices provided t f a construction company recognizes revenue from construction contracts over time using the input method based on costs incurred. it reports the following: year 1 year 2 construction costs $100 $200 estimated cost to complete at year-end 300 0 the contract price is $1,000. what is the profit recognized in year 2? $400 $800 $150 $550 3.525 divided by 0.25 find the quotient gas prices recently increased by 25%. in response, purchases of gasoline decreased by 5%. based on this data, the price elasticity of demand for gas is: Bob decides to quit his job as a teacher in which he makes $50.000 to open a restaurant. The explicit cost of running his restaurant is $500.000 while the revenue go his business is 525,000. What is his accounting profit or loss? What is his economic profit or loss? What is the implicit cost in this example? a concrete mix with a 3-in. slump, w/c ratio of 0.50, and sand with a fineness modulus of 2.4 contains 1700 lb/yd3 of coarse aggregate. compute the required weight of coarse aggregate per cubic yard. Four wires running through the corners of a square with sides of length 16.166 cm carry equal currents, 3.684 A. Calculate the magnetic field at the center of the square. Write a multiplication expression to represent each situation. Then find each product and explain its meaning. Ethan burns 650 calories when he runs for 1 hour. Suppose he runs 5 hours in one week.